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Abstract

Cancer development is driven by an accumulation of a small number of driver genetic muta-

tions that confer the selective growth advantage to the cell, while most passenger mutations

do not contribute to tumor progression. The identification of these driver genes responsible

for tumorigenesis is a crucial step in designing effective cancer treatments. Although many

computational methods have been developed with this purpose, the majority of existing

methods solely provided a single driver gene list for the entire cohort of patients, ignoring

the high heterogeneity of driver events across patients. It remains challenging to identify the

personalized driver genes. Here, we propose a novel method (PDRWH), which aims to pri-

oritize the mutated genes of a single patient based on their impact on the abnormal expres-

sion of downstream genes across a group of patients who share the co-mutation genes and

similar gene expression profiles. The wide experimental results on 16 cancer datasets from

TCGA showed that PDRWH excels in identifying known general driver genes and tumor-

specific drivers. In the comparative testing across five cancer types, PDRWH outperformed

existing individual-level methods as well as cohort-level methods. Our results also demon-

strated that PDRWH could identify both common and rare drivers. The personalized driver

profiles could improve tumor stratification, providing new insights into understanding tumor

heterogeneity and taking a further step toward personalized treatment. We also validated

one of our predicted novel personalized driver genes on tumor cell proliferation by vitro cell-

based assays, the promoting effect of the high expression of Low-density lipoprotein recep-

tor-related protein 1 (LRP1) on tumor cell proliferation.

Author summary

In this study, using the TCGA dataset studies as benchmark datasets, we explored the

application of the commonality among patients of the same cancer type in personalized

driver gene prediction. We proposed a hypergraph model and a generalized random walk

method to rank the mutated genes of a patient based on their impact on the abnormal

expression of downstream genes in a group of samples rather than an individual sample.
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Following the extensive experimental results on 16 cancer datasets and the comparative

analysis across five cancer types, we have observed that the PDRWH method exhibits

remarkable effectiveness in identifying known general driver genes and tumor-specific

driver genes. In a few words, our method can provide a more accurate personalized cata-

log of driver mutations for each patient, and the predicted personalized driver genes can

be applied to improve tumor stratification. It can also provide oncologists with a reliable

candidate gene list to assist treatment decisions, thus potentially promoting the develop-

ment of personalized medicine.

Introduction

Cancer is a collection of genetic diseases characterized by abnormal and uncontrolled cellular

growth, which are primarily caused by the accumulation of genetic alterations [1–3]. Previous

evidence has shown that a small fraction of genomic and transcriptomic altered genes, called

cancer driver genes, could modify transcriptional programs and result in abnormal cell prolif-

eration and eventually tumorigenesis [4–6]. The majority of detected altered genes are passen-

gers that do not contribute to the oncogenic process. Distinguishing cancer driver genes from

numerous functionally neutral passenger mutation genes is critical for providing clinically

characterized insights into tumor biology. And it has led to the development of a paradigm of

targeted anticancer therapies, and the search for biomarkers of prognosis and response to can-

cer treatments [7–9].

With recent advances in genomics technologies, comprehensive platforms such as the Can-

cer Genome Atlas (TCGA), have led to the characterization of the molecular signatures of

human cancers spanning 33 cancer types, providing an unprecedented opportunity to develop

computational methods for driver gene identification [10]. Many bioinformatics tools are ded-

icated to identifying driver mutations from passengers in a cohort of patients [11–15]. How-

ever, since cancer patients possess different genomes and their disease might be driven by

different driver genes [16, 17], it is necessary to investigate personalized cancer drivers specific

to an individual patient. For example, DawnRank applies the PageRank algorithm to evaluate

the impact of genes on the overall differential expression of its downstream genes in a molecu-

lar interaction network [18]. Prodigy prioritizes candidate personalized driver genes by quan-

tifying the impact of mutated genes on deregulated pathway based on the patient’s tumor

mutation and expression profiles [19]. According to a single-sample network control strategy,

Guo et al. developed SCS to detect the minimum set of driver nodes that could achieve the

maximal coverage of individual differentially expressed genes during the transition from the

normal state to the disease state [20]. Despite achieving promising results, these personalized

driver prioritization methods take into account the data available from a single sample to pro-

duce a ranking of drivers for every specific patient, neglecting the availability of data from

other samples. More importantly, they are overly dependent on the data quality of individual

samples, with poor tolerance for noise and low reliability of the results. To address this issue,

PersonaDrive aims to utilize the comprehensive whole cohort data for guiding the personal-

ized driver prediction [21]. This is achieved by constructing a bipartite graph to model pair-

wise relationships among the set of mutated genes and the differently expressed genes. How-

ever, it is widely acknowledged that the bipartite graph, as a type of simple graph, is limited to

capturing pair-wise relationships between nodes and cannot represent more complex relation-

ships. An important aspect of cancer that has been overlooked by existing methods is that

patients with the same driver gene mutations are likely to share the same carcinogenic
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mechanism, unlike patients with only the same passenger mutations [22, 23]. Taking this into

account, incorporating higher-order relationships between mutated genes and abnormally

expressed genes in computational models holds significant promise for improving personal-

ized cancer driver prediction.

In this study, we present a novel method named PDRWH (Prioritizing Personalized Cancer

Driver Genes via Random Walks on a Hypergraph), inspired by the effectiveness of hyper-

graphs in modeling biology networks, data structures, and other systems [24–27]. Unlike

methods that rely on data from a specific sample, PDRWH integrates data from a cohort to

generate personalized driver gene predictions, enabling a more comprehensive analysis of the

collective information across multiple samples. Under the assumption that the impact of a

potential driver gene can be determined by its effect on the genes regulated by it, PDRWH

ranks potential driver genes based on the influence of mutated genes on transcriptional net-

works across the cohort of samples. To achieve this, a hypergraph model is proposed to effec-

tively represent high-order relationships among genes. It captures the implicit intrinsic

regulatory associations among genes within each sample by connecting a large number of

mutated genes and aberrantly expressed genes in the corresponding hyperedge. Additionally,

this model accurately characterizes the coexistence of mutated genes and aberrantly expressed

genes across diverse samples. PDRWH quantifies the impact of each mutated gene across the

group of samples by performing a generalized random walks algorithm on the personalized

hypergraph. Evaluated across datasets from 16 cancer types in TCGA and benchmarked

against existing driver gene prediction methods using five cancer type datasets, PDRWH con-

sistently demonstrates superior performance in identifying both known general driver genes

and tumor-specific driver genes. Notably, PDRWH excels at simultaneously identifying both

common and rare driver genes. The predicted personalized driver gene profiles can not only

improve tumor stratification but also provide oncologists with a reliable candidate gene list to

assist in treatment decisions. To validate the effectiveness of PDRWH, we experimentally veri-

fied a predicted personalized driver gene LRP1 through in vitro cell assays.

Results

An overview of PDRWH

The PDRWH method is a novel integrated genome/transcriptome analysis approach designed

to identify candidate personalized driver genes by leveraging the influence of mutated genes

on biological networks across cohort samples. We hypothesize that samples with the same can-

cer types of cancer display higher similarity in molecular characteristics and disease mecha-

nisms compared to samples with different types of cancer. Leveraging samples from the same

cancer type, specifically those closely resembling the target sample, has the potential to

improve the personalized driver genes prediction. A schematic overview of PDRWH is illus-

trated in Fig 1. PDRWH requires knowledge of cohort samples from a specific cancer type in

TCGA, including the somatic mutation and the gene expression profiles, as well as a gene

interaction network (Fig 1A). To ensure uniform baseline values and ranges for all genes

across the cohort samples, gene expression data is normalized. Subsequently, a screening pro-

cess is conducted to identify abnormally expressed genes for each sample (Fig 1B). PDRWH

consists of three main steps. The first step involves constructing a personalized hypergraph

model, where samples are represented as hyperedges, and the mutated genes as well as the

abnormally expressed genes in the target sample are described as vertices (Fig 1C). In this

model, a hyperedge in the hypergraph is capable of connecting multiple vertices (not limited

to two nodes as in a simple graph), enabling a more complex representation of relationships

between genes and facilitating a comprehensive analysis of association across the cohort
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Fig 1. Overview of PDRWH for prioritizing personalized cancer driver genes. (A) Model input. i) The somatic mutation profiles from the TCGA; ii)

The gene expression data of patients; iii) Gene interaction network. (B) Pro-processing the gene expression profiles and determining the abnormally

expressed genes for each sample. (C) Construction of a hypergraph model for each patient. In this model, each hyperedge represents a patient and the

vertices incident to each hyperedge represent the mutated genes and abnormally expressed genes in the corresponding patient. (D) Computing the

transition probability matrix of the random walks on the weighted hypergraph. (E) The process of generating PDRWH-scores through random walks on

the personalized hypergraph.

https://doi.org/10.1371/journal.pcbi.1012068.g001
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samples. As depicted in S1 Fig, each hypergraph typically consists of more than 50 hyperedges

(samples), indicating that PDRWH generates a relatively dense personalized hypergraph for

most individuals. Following this, weights are assigned to hyperedges based on the Pearson cor-

relation of gene expression profiles between the corresponding samples and the target sample.

This weighting scheme ensures that patients who closely resemble the target patient have a

more substantial impact on the personalized driver gene prediction. The weights of vertices

within each hyperedge are set as the degree of the subnetwork induced by genes corresponding

to these vertices, characterizing the influence of mutated genes on the abnormally expressed

genes in each sample. In the second step, the transition probability matrix is calculated by tak-

ing into account the structure of the hypergraph as well as the weights of the hyperedges and

vertices. This matrix indicates the probabilities of transitioning from one vertex to another

within the hypergraph (Fig 1D). The final step entails performing a random walk with restart

on the weighted personalized hypergraph. The walker, starting at a present vertex u, firstly

chooses a hyperedge with probability determined by the weights of hyperedges, and then trav-

els towards any vertex (for example v) within the selected hyperedge based on the weights of

the vertex in the hyperedge. After the random walks reach a stable state, a stationary distribu-

tion of the random walk is achieved. At this point, the PDRWH-scores are generated to quan-

titatively and rationally prioritize candidate genes (Fig 1E). For a target patient, a mutated

gene in the target sample should be ranked higher if it is adjacent to many genes that are

abnormally expressed in the target sample as well as in a group of other samples from the same

cancer type.

Known drivers have a higher degree of connectivity to abnormally

expressed genes in the gene interaction subnetwork

Our approach is built upon a crucial observation: the mutated genes that are adjacent to a

higher number of abnormally expressed genes are more likely to have a significant impact.

This assumption can be validated through empirical data analysis. To achieve this, we ran-

domly selected some patients from the five cancer types, breast invasive carcinoma (BRCA),

kidney renal clear cell carcinoma (KIRC), liver cancer (LIHC), glioblastoma (GBM), and stom-

ach adenocarcinoma (STAD), and created personalized gene interaction subnetworks for each

patient by mapping the mutated genes and abnormally expressed genes onto STRINGv10. We

then categorized all mutated genes in each patient into two groups based on whether they are

known driver genes and analyzed their node degrees distributions in the personalized gene

interaction subnetwork using the Satterthwaite approximation t-test (S2 Fig). Our analysis

revealed that the interactions involved by known driver genes were generally more extensive

compared to other mutant genes (p-value < 0.05). Furthermore, when we aggregated samples

from all five cancer types into a large cohort, the observed difference became even more statis-

tically significant (p-value 2.2×10−16).

PDRWH outperforms existing driver gene prediction methods in

identifying known general drivers

We applied PDRWH to the datasets of 16 cancer types from TCGA (S1 Table). To evaluate

the method, we utilized a union of four well-studied cancer gene databases as a general driver

gene reference with a total of 758 genes, including the Cancer Gene Census (CGC) [28], the

HiConf cancer gene panels [29], the high-confidence drivers (HCD) [30], and Mut-driver

genes defined by the ‘20/20 rules’. We evaluated the performance of PDRWH’s ability to iden-

tify known general driver genes based on the top-ranked genes. As shown in the S2 Table, in

as many as 85% of the total samples, the genes ranked first by PDRWH are known driver
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genes. Our approach shows exceptional performance in identifying known driver genes, par-

ticularly when considering genes at the top of the predictions, except in SKCM. In LGG and

UCEC, this proportion even reaches up to 95.8% and 98.2%. On the whole, approximately

50% of the samples have the gene ranked second as a known driver gene. In SKCM, DNAH8

ranked first in 29% of samples for the personalized prediction. Despite not being listed as a

known driver gene, previous studies have indicated its significant association with cancer,

thereby categorizing it as potential driver gene [31,32]. As the ranking increases, the propor-

tion of samples where these genes are known driver genes decreases, just as we expected.

Subsequently, we conducted a comparative analysis of PDRWH with four other personal-

ized cancer driver prediction methods (PersonaDrive, Prodigy, DawnRank, and SCS) using five

cancer datasets (BRCA, KIRC, LIHC, GBM, and STAD). All the methods utilized the same can-

cer dataset, which included somatic mutation data and the gene expression data of the tumor

samples in TCGA, along with the same gene molecular network STRINGv10 for all the net-

work-based methods. As for the SCS method, we had to limit the analysis to 50 randomly

selected patients for each cancer type due to its extended runtime. This allowed us to efficiently

run the SCS algorithm while still obtaining meaningful results for comparison with the other

methods. At the same time, to highlight the impact of utilizing different data information on

algorithm results, two naive methods were introduced as baselines. One method ranks genes

based on the mutation frequency among samples, while the other method ranks genes based on

the degree in the gene subnetwork induced by mutated genes within the sample. As mentioned

above, we utilized the general driver gene reference as the benchmark of known drivers. From

Figs 2 and S3, we found that methods utilizing the cohort data (PDRWH, PersonaDrive, and

Frequency) consistently outperformed those relying on individual data (Prodigy, DawnRank,

and Degree) in terms of average precision, recall, and F1-score. This highlights the significant

advantage of leveraging collective data over individual data. Among the three cohort data analy-

sis methods (PDRWH, PersonaDrive, and Frequency), PDRWH exhibits superior perfor-

mance, achieving an outstanding precision rate of up to 88.4% and 76.0% for genes ranked first

in BRCA and KIRC. Although PDRWH’s precision for the top-ranked gene in KIRC is slightly

lower than PersonaDrive, its superiority becomes more noticeable as the ranking advances, par-

ticularly in terms of recall and F1-score. Therefore, PDRWH excels in providing a more precise

and rational prioritization of known general driver genes for individual patients.

For each cancer type, we aggregated the personalized candidate driver gene rankings to cre-

ate a prioritization for the cohort. This allowed us to compare the results of personalized pre-

diction methods with those of cohort-level methods. Using the general reference driver gene

list as a benchmark, we generated receiver operating characteristic curves (ROC) and calcu-

lated areas under the curve (AUC). In Figs 3 and S4, it is clear that PDRWH outperforms

other tools in terms of sensitivity and specificity in identifying known driver genes in BRCA,

KIRC, GBM, and STAD. Additionally, the AUC values of PDRWH are consistently at the

highest level for BRCA, LIHC, and GBM, while ranked second compared to other tools in

KIRC and STAD.

PDRWH achieves reliable results in identifying known tumor-specific

drivers

Considering the diversity among cancer types, tumor-specific drivers hold more concern than

the general drivers across different tumor types. Therefore, it is highly valuable to assess the

ability of methods to accurately identify cancer-specific driver genes. To achieve this, we

downloaded a set of tumor-specific driver genes from the IntOGen database as benchmarks.

To further support the efficiency of PDRWH by statistical significance, the enrichment p-
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values of predicted genes in the tumor-specific driver gene lists were evaluated using the

hypergeometric test, representing the significance of tumor-specific driver genes rediscovered

by PDRWH. The computational details are provided in the Methods and Materials section.

From the result of S5 Fig, we can observe that PDRWH shows some variability in performance

across 16 cancer types. With the exceptions of LUSC and SKCM, as many as three-quarters of

the samples from each cancer type demonstrate enrichment in the tumor-specific driver gene

list.

For comparison, we used a naive method that randomly selected mutated genes as pre-

dicted personalized drivers as a baseline. From Fig 4A, we can find that the five personalized

driver prediction methods show higher percentages of significant samples for identifying the

cancer-specific driver genes than randomly chosen. In comparison to other methods,

PDRWH consistently outperforms. For instance, in the case of BRCA, our method achieves

significant enrichment in BRCA-specific cancer drivers for 85.19% of the samples. Similarly,

Fig 2. Comparison of the PDRWH with the other personalized prediction methods. The average precision, recall,

and F1-score for (A) the BRCA dataset, (B) the KIRC dataset, and (C) the LIHC dataset, are plotted as a function of the

number of top-n ranked genes involved in the calculation of the scores. The general driver gene list is used as the

reference set.

https://doi.org/10.1371/journal.pcbi.1012068.g002
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Fig 3. Prediction performance of five personalized prediction methods as well as five cohort prediction methods. (A-C) ROC plots of results on the

different cancer types based on the general reference driver set. The solid lines represent the personalized prediction methods (PDRWH, PersonaDrive,

Prodigy, DawnRank, and SCS). The dashed lines indicate the cohort-level prediction methods (OncodriveFML, MinNetRank, MutsigCV, Subdyquency and

DriverRWH). The numbers in parentheses behind the methods are the AUC values of the corresponding method.

https://doi.org/10.1371/journal.pcbi.1012068.g003

Fig 4. The performance of PDRWH and other four methods for identifying the known tumor-specific driver

genes. (A) The percentage of patients whose predicted personalized drivers are significantly enriched in the known

tumor-specific driver gene list. (B) Comparison of the number of predicted tumor-specific driver genes by various

methods and the recall ratio. (C) Overlap among the tumor-specific cancer drivers predicted by different methods for

BRCA, KIRC, and LIHC.

https://doi.org/10.1371/journal.pcbi.1012068.g004
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for KIRC, LIHC, GBM, and STAD, the percentages are 77.41%, 74.16%, 78.67%, and 84.86%

respectively. These results indicate that a considerable number of samples support the reliable

outcomes produced by PDRWH, highlighting its effectiveness in predicting tumor-specific

driver genes for individuals.

Assuming that the data of a particular cancer type from TCGA is sufficiently representative

of the majority of samples for that cancer, the known tumor-specific driver genes should be

detected in the corresponding cancer samples. For each cancer type, we collected the predicted

personalized driver genes of all tumor samples and compared PDRWH with four other meth-

ods based on their overlap with the known tumor-specific cancer drivers. The number of

known tumor-specific driver genes identified by different methods is illustrated in Fig 4B for

each cancer type. PDRWH successfully detected 36 out of 39 known BRCA-specific driver

genes and 18 out of 22 KIRC-specific drivers, demonstrating its superiority over the other

methods. In the remaining three cancer types, our method exhibited similar performance to

PersonaDrive while still outperforming DawnRank, Prodigy, and SCS.

Furthermore, we analyzed the overlap and difference of the identified known tumor-spe-

cific driver genes between different methods (Figs 4C and S6A). Since SCS utilized insufficient

samples, its results were not included in the comparison. Our findings revealed that PDRWH

was able to detect a majority of the known drivers predicted by other methods. It is noteworthy

that PDRWH also identified known tumor-specific drivers that were missed by other methods,

such as ABL2 for BRCA, SETBP1 for KIRC, NIN and TOP2A for STAD (S3 Table). This sug-

gests that PDRWH can serve as a complementary approach to other methods to promote

tumor-specific driver gene identification.

PDRWH efficiently identifies both common and rare drivers

One of the advantages of our method is its ability to identify both common and rare driver

genes, demonstrating a balanced performance that effectively trades off algorithm generaliz-

ability and specificity. To further demonstrate this ability, we divided the top-ranked predicted

driver genes into two categories based on the frequency of occurrence in the respective cancer-

type cohort: common and rare. Genes with mutation frequency�2% are classified as common

drivers, while those with a mutation frequency <2% are classified as the rare. The results are

summarized in Figs 5A–5C and S6B. The majority of genes ranked at first are known high-

frequency driver genes. As the ranking increases, even if the proportion of known high-fre-

quency drivers decreases, the known low-frequency drivers always have a relatively stable pro-

portion, which indicates the PDRWH’s capability in detecting known rare drivers. Figs 5D–5F

and S6C show the scatter plots of the gene mutation frequency versus the frequency that

appears as the personalized driver genes in patients. The mutation frequencies of the known

driver genes (red dots) exhibit a remarkably high concordance with those drive genes pre-

dicted by PDRWH (Pearson R-square > 0.99, p-value < 2.2e-16). Across the five cancer types,

the potential driver gene TTN with high mutation frequency is the most promising, which has

been observed to be involved in several cancer functions and to become an effective predictor

for overall survival and chemotherapy response [31]. In LIHC, ALB, a novel potential driver

gene predicted by PDRWH, has been proposed as an effective biomarker for cancer detection

[32]. In addition, all the predicted personalized driver genes but not the known drivers are also

enriched in multiple cancer-related pathways based on the Database for Annotation, Visuali-

zation and Integrated Discovery (DAVID) online database [33] and Kyoto Encyclopedia of

Genes and Genomes (KEGG) database [34]. The results of the enrichment analysis are shown

in S4 Table and S7 Fig.
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Subtypes recovered by expressions of predicted rare drivers are

significantly associated with patient survival

Considering that the state of driver genes is supposed to reflect their phenotypic impact on car-

cinogenesis, we further verified the ability of the personalized drivers identified by PDRWH in

stratifying tumor samples. Employing unsupervised K-means clustering, we separated the

tumor samples into different subtypes based on the gene expression of the predicted personal-

ized drivers. The number of clusters for each cancer type was determined using a CDF (Cumu-

lative Distribution Function) curve. We suggested that there is a distinction in the

effectiveness of the rare (<2%) drivers and the common (�2%) drivers used for stratifying

patients. From Figs 6A, 6B and S8, the expression of known tumor-specific drivers was unable

to identify subtypes correlated with patient survival regardless of which part of the gene set

was used. When the expression profiles on predicted drivers with high frequency were used,

we could obtain a significant survival analysis result among KIRC patients only (Fig 6C). Nota-

bly, predicted driver genes with low frequency have significant prognostic values for survival

in BRCA, KIRC, and LIHC (Fig 6D).

Similar results were also obtained in GBM and STAD (S9 Fig). It should be noted that the

numbers of subtypes (we recognized five subtypes for BRCA, four subtypes for KIRC, four

subtypes for LIHC, and three subtypes for both GBM and STAD) are consistent with the

approbatory numbers of subtypes in literature [35–39]. To sum up, the rare drivers predicted

Fig 5. PDRWH identifies both common and rare drivers. (A-C) Distribution of mutation frequency of top genes

predicted by PDRWH. The i-th column in the plot represents the distribution of mutation frequency of the genes

which ranked at the i-th in the predicted drivers. Each range of mutation frequency is further classified into whether

the genes are known drivers in the reference set. (D-F) Scatter plots about mutation frequency of potential drivers and

the occurrence of genes as predicted driver gene. Known tumor-specific driver genes are represented as red dots and

others are represented as black dots. Purple lines constructed by known tumor-specific driver genes are the regression

lines.

https://doi.org/10.1371/journal.pcbi.1012068.g005
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by PDRWH are more conducive to subtype clustering, and we can assume that our methods

capture more precise causative events for carcinogenesis in individuals.

Clinical application of the predicted driver genes

We next evaluated whether our predicted personalized driver genes can provide useful infor-

mation to the oncologist in deciding on therapy. For each patient, the number of predicted

personalized drivers in Therapeutically Applicable Research to Generate Effective Treatments

Fig 6. The survival curves for subtyping BRCA, KIRC, and LIHC using the gene expression data. (A) In different

cancer types, the expression data of known tumor-specific drivers with mutation frequency� 2% were used in

subtyping patients. Different subtypes (S1, S2,. . .) are indicated by different colored lines. (B-D) The similar analysis

based on expression data of genes that are known tumor-specific drivers with mutation frequency< 2%, predicted

driver genes with mutation frequency� 2%, and predicted driver genes with mutation frequency< 2% respectively.

https://doi.org/10.1371/journal.pcbi.1012068.g006
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(TARGET, 135 actionable genes), the Drug-Gene Interaction database (DGIdb, 1387 drug-

gable genes) [40], and the union of the two sets (1407 actionable or druggable genes) was

counted. As shown in Figs 7 and S10, more than three-quarters of patients have at least one

actionable gene, and the majority of patients contain more than one druggable driver. As a

case, in the union set, there are only 3.58% of patients on BRCA, 2.48% on KIRC, and 1.12%

on LIHC without any actionable genes or druggable genes. These results confirm that the

results predicted by PDRWH may be reasonable and useful references in individually tailored

therapy.

Fig 7. Distribution of the number of predicted personalized driver genes in TARGET and DGIdb. (A) For cancer

type BRCA, the first pie chart shows the distribution of the number of predicted personalized driver genes in

TARGET. Restricted to predicted personalized drivers predicted by PDRWH, there are 17.88% of patients with not less

than three actionable driver genes. The second pie chart shows the distribution of the number of predicted

personalized driver genes in DGIdb. There are more than 50% of patients with not less than three druggable

personalized drivers. The third pie chart is the distribution of the number of predicted personalized driver genes in the

union of the two sets. (B-C) The similar pie charts display for cancer type KIRC and LIHC.

https://doi.org/10.1371/journal.pcbi.1012068.g007
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Experimental validation of predicted novel cancer drivers

Finally, we performed in vitro cell-based assays for a novel drive gene identified by PDRWH

(S1 Text). By way of illustration, Low-density lipoprotein receptor-related protein 1 (LRP1)

was predicted as a driver gene in Human gastric cancer cells (GC) by our method and Perso-

naDrive. This gene was not detected by widely used methods, such as DawnRank, Prodigy,

and SCS, and was not presented in the known driver gene list. As shown in Fig 8A and 8B,

LRP1 was up-regulated in GC cells and GC tissues, especially, higher expressed in the HGC-

27, MGC-803, and AGS cells. LRP1 was also negatively associated with the overall survival

rates of patients with GC (Fig 8C). The overall survival analysis of LRP1 was based on Gene

Expression Profiling Interactive Analysis (GEPIA) [41]. To investigate the potential cancer-

related roles of LRP1, loss-of-function assays were performed in HGC-27 cells. After the trans-

fection of three siRNAs respectively, which could produce specific weak knock (knockdown)

effects on the LRP1 gene, LRP1 expression in the three experimental groups was significantly

on the decline at the mRNA and protein levels (Fig 8D). By Wound healing assay, we also

observed that the knockdown of LRP1 suppresses the metastatic ability of HGC-27 cells

(Fig 8E). Besides, the knockdown of LRP1 increased the apoptosis rate of gastric cancer cells

(Fig 8F), and inhibited cell proliferation reducing the proliferation rate of HGC-27 cells from

4.4% in controls to 1.2%~1.8% in experimental groups (Fig 8G). Furthermore, depletion of

LRP1 could induce G1 and G2 phase arrest (Fig 8H). These collective preliminary results indi-

cate that LRP1 predicted by PDRWH as a personalized driver gene is potentially involved in

the development of GC.

Discussion

Identifying personalized driver genes that lead to particular cancer initiation and progression

of individual patients is a crucial part of precision medicine. In this study, we have presented

an unsupervised learning method to identify patient-specific driver genes by leveraging

genome and transcriptome datasets from a cohort. PDRWH, similar to many unsupervised

algorithms, can directly uncover hidden patterns and structures in data without the need for

explicit model training or a large number of labeled genes, aiming to provide comprehensive

support for the analysis of driver genes. The novelty of this study lies in the introduction of the

concept and methodology of hypergraph random walks to predict personalized driver genes.

The hypergraph model offers substantial benefits in terms of data integration and interpret-

ability. By grouping patient-specific mutated genes and abnormally expressed genes within the

corresponding hyperedge, the hypergraph model allows for a comprehensive representation of

association among genes across multiple samples simultaneously, rather than separately. The

random walk algorithm on the hypergraph is tailored to generate a quantitative assessment of

the influence on the gene interaction network within the target sample and its neighboring

samples, facilitating the systematic prioritization of candidate personalized driver genes. Com-

parisons based on the TCGA have demonstrated the superior performance of PDRWH over

other computational methods in identifying the known cancer drivers. We believe our method

will complement existing driver identification methods and will help us discover potential per-

sonalized drivers, especially those rare drivers that often escape detection by other methods.

One limitation of the current model is that it relies on a broad-context molecular network

rather than a patient-specific one. As a result, it overlooks regulation information that is spe-

cific to individual patients, which could potentially lead to false positives in the results. More-

over, PDRWH focuses on prioritizing single genes, while it is well-established that genes often

collaborate to drive cancer initiation and progression. Therefore, there is a clear need for com-

putation methods to elucidate how these genetic aberrations collaborate to induce
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Fig 8. In vitro assays of a novel driver gene LRP1 predicted by PDRWH. (A) The expression of LRP1 was detected between GES-1 and GC cells. (B)

The expression of LRP1 was detected between GC tissues and adjacent tissues using Immunohistochemical analysis. (C) Overall Survival analysis of

LRP1 based on GEPIA. (D) HGC-27 cells transfected with siRNA by real-time PCR and Western Blot. (E) Wound healing assay following knockdown

of LRP1 in HGC-27 cells. (F) Apoptosis detection for HGC-27 cells transfected with siRNA. (G) Proliferation detection for HGC-27 cells transfected

with siRNA using EdU assay. (H) Cell cycle profile of control and LRP1 knockdown cells.GAPDH protein is used as control. All cell assays were

performed in triplicate. The error bars indicate SD of three independent experiments. *P< 0.05, **P< 0.01 using the two-sided Student’s t test.

https://doi.org/10.1371/journal.pcbi.1012068.g008
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transcriptional abnormalities, and ultimately lead to the onset of cancer. Additionally, our cur-

rent model primarily focuses on point mutations, including single-nucleotide variants (SNVs)

and short insertions or deletions (indels), due to their prevalence, ease of detection, and poten-

tial as genetic markers for specific phenotypes that promote tumor formation. However, the

impact of other somatic alterations like amplifications, genomic rearrangements, and epige-

netic silencing, which are also crucial in tumorigenesis, has not been considered. Integrating

information on all these alterations would improve the identification of driver genes in cancer.

Despite these limitations, PDRWH has demonstrated reliable performance in inferring per-

sonalized driver genes, which is promising for discovering potential causal genetic variants

that would be obscured by tumor heterogeneity. In the future, we expect that PDRWH will

assist in the development of optimal personalized treatment.

Methods and materials

Data resources

In this work, we use two types of genomic data from a cohort: somatic mutation data, which

includes non-synonymous point mutations and insertions/deletions (indels) in coding

regions, and gene expression profiles. We downloaded 16 cancer datasets that contained a suf-

ficient number of samples with both mutation and gene expression data (>150 samples) from

the TCGA data portal [42] through the Xena platform [43]. The samples with less than three

mutated genes in the cohort were filtered out. PDRWH also uses a gene interaction network: a

global PPI network taken from STRINGv10 [44]. This network includes 17084 genes and

3513941 interactions. Information about the databases is given in the S1 Table. It should be

noted that we primarily used five common types of cancer as examples to demonstrate the

evaluation of the algorithm’s performance, including breast invasive carcinoma (BRCA), kid-

ney renal clear cell carcinoma (KIRC), liver cancer (LIHC), glioblastoma (GBM), and stomach

adenocarcinoma (STAD). Additionally, we also provided a summary of the performance of

PDRWH on the other cancer types.

Pre-processing

In a given cohort gene expression profile X = {xi,j}, where the rows represent genes and col-

umns represent patient samples, the gene expression values are processed using z-score nor-

malization by the following formula:

x0i;j ¼
xi;j � mi
si

ð1Þ

where μi and σi are the mean expression values and standard deviation of the gene i. To iden-

tify the abnormally expressed genes for each patient, a threshold θ is set for each gene, which is

the smaller value between the absolute values of the 5% and 95% quantiles among {x0i;j}, to pick

the significant high or low expression values of the standard gene expression profile X0. A gene

i is regarded as an abnormally expressed gene of sample j if its absolute value of x0i;j is more

than θ, which indicates that the gene is expressed quite differently in this sample compared to

the other samples. The advantage of this definition of abnormally expressed genes is that it

does not rely on the existence of paired normal and tumor data of the same patient or back-

ground gene expression profile from healthy samples. It provides a robust method to detect

genes with distinct expression patterns within the cohort. For each sample, the number of

genes contained in the set of abnormally expressed genes is approximately about 400 to 1600.

PLOS COMPUTATIONAL BIOLOGY A novel hypergraph model for identifying and prioritizing personalized drivers in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012068 April 29, 2024 15 / 23

https://doi.org/10.1371/journal.pcbi.1012068


Construction of personalized hypergraph model

At first, a personalized weighted hypergraph model is constructed to accurately capture the

implicit inherent similarity of samples and the association between the mutated genes and abnor-

mally expressed genes. For a target sample s0, if a sample shares at least one co-mutant gene with

this one, it is defined as a neighbor of that patient. Let S = {s1,. . .,sn} denote the set of neighbor

samples of the target sample. Then, we defined the patient-specific hypergraphH(V,E), where V
is a set of vertices representing all mutant genes and abnormally expressed genes of s0, and E =

e0[{e1,. . .,en} is a set of hyperedges. Hyperedge e0 represents the target sample s0, which is inci-

dent with node v if this gene is mutated or abnormally expressed in this sample. Likewise, hyper-

edges e1,. . .,en, corresponding samples s1,. . .,sn, are incident with their mutant genes and

abnormally expressed within vertex set V. The incidence matrixH2R|V|×|E| is defined as follows:

hðv; eÞ ¼
1; if v 2 e

0; otherwise
ð2Þ

(

which indicates whether vertices are incident with the hyperedges. According to the assumption

that patients with similar gene expression profiles may have the more similar pathogenic mecha-

nism to each other than the rest of the patients, the most closely related patient in terms of its

gene expression profile will contribute much more to the prediction of driver genes compared to

other patients. Therefore, the weight of a hyperedge should be an increased function with their

correlation to the target sample. A fairly standard choice for the weights is:

we ¼ exp �
k1 � rðe; eoÞk

2

2d
2

� �

; e 2 E ð3Þ

in which ρ(e, eo) is the Pearson correlation of gene expression profiles between sample s and the

target sample s0, and δ is the bandwidth parameter (default δ = 0.1) controlling how quickly the

weight of a sample falls off with the distance of s from the query point s0. Here, if ρ(e, eo) is close

to 1, we will also be close to 1, implying that this sample has a high impact in the evaluation of

driver genes of target sample s. On the contrary, if ρ(e, eo) is small (e.g., close to 0), we will be rela-

tively small too. In this case, the corresponding neighbor will have a weak contribution to the

determination of the driver genes of the target sample. Then the weight matrix of hyperedge is

defined as the diagonal matrix:

We ¼ diagfweje 2 Eg ð4Þ

To model the relationship between the mutated genes and the abnormally expressed genes,

we project the mutant genes and abnormally expressed genes in each hyperedge onto a human

gene interaction network. PDRWH views the gene network as an undirected graph. For gene

vi and vj in hyperedge e, an edge exists if the two genes interact in the gene interaction network.

This way, the vertices in each hyperedge e induce a corresponding gene interaction subnet-

work Ne. Since the driver genes tend to adjacent more abnormally expressed genes in the sub-

network Ne (S1 Fig), the weight of node v in the hyperedge e, denoted as w(ve), can be set as its

degree in Ne. The matrixWv2R|V|×|E| is defined as follows:

wðv; eÞ ¼
wðveÞ; if v 2 e

0; ifv=2e
ð5Þ

(

Since the interaction of isolated vertices with other genes in the network is unknown, the

weights of the isolated vertices are set to a small value of 0.01 instead of 0. Then, the degrees of
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vertices and hyperedges in the weighted hypergraph are defined as:

dðvÞ ¼
X

e2E
hðv; eÞwe; v 2 V ð6Þ

dðeÞ ¼
X

v2V
wðv; eÞ; e 2 E ð7Þ

Transition probability matrix of the random walks on hypergraph

A random walk on a hypergraph H(V, E) is similar to the classic random walk, where transi-

tions occur between two incident vertices in the hyperedge [45]. Specifically, the movement

between vertices is modeled as a discrete-time Markov chain based on predefined transition

probabilities. A standard formulation for a hypergraph random walk can be broken down into

two steps. Given the current state v!t :

i. Starting at a vertex u, a hyperedge is selected with a probability determined by the weights

of hyperedges we.

ii. a vertex v is chosen from the selected hyperedge e. The walker can travel to any nodes

within the selected hyperedge based on the weights of the vertex in the hyperedge w(v, e).

Thus, transition probabilities from vertex u to vertex v are calculated as follows:

p u; vð Þ ¼
X

e2E

hðu; eÞweP
ê2Ehðu; êÞwê

wðv; eÞ
P

v̂2V wðv̂; eÞ
ð8Þ

which can be written in an alternative matrix form:

P ¼ D� 1

v HWeD
� 1

ve Wv
T ð9Þ

whereH,We, andWv are defined as previously mentioned, while Dv and Dve represent the

diagonal matrix for the degrees of vertices and hyperedges, with d(v) and δ(e) being the respec-

tive diagonal elements.

Generalized random walks on the personalized hypergraph model

We implement a random walk with restart on the personalized hypergraph by adding a damping

factor. Specifically, all the mutated genes in the target sample s0 are assumed to have an equal

probability of being driver genes. Therefore, an equal probability of 1

n is assigned to each of the

mutated genes in s0 initially, where n represents the number of mutated genes in s0. The initial

values of the abnormally expressed genes are set to zero. Let the initial column vector be denoted

as v!0 2 RjVj
. The process can be mathematically represented by the following formula:

v!tþ1 ¼ aP
T v!t þ ð1 � aÞ v

!
0; t 2 N ð10Þ

where the i-th element of state v!t represents the probability that the walker moves to node i at

step t. The damping factor, α (0<α<1), is introduced to ensure the graph satisfies ergodic condi-

tions [45]. In our study, we have empirically set the damping factor α to 0.85. The term aPT v!t

in the formula means that the random surfer may transition to one of the adjacent vertices, while

ð1 � aÞ v!0 represents a vector introducing the probability of teleporting the random walk back

to the initial state. After several iterations of the random walk, the distribution vector v! stabilizes

when the difference between v!tþ1 and v!t measured by L1 norm falls below a small ε (default

10−6). PDRWH algorithm generally converges within ten times iterations. The stationary proba-

bility indicates the likelihood of genes being personalized cancer drivers of the target sample.
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Finally, the values of mutated genes in the stationary probability vector are preserved and then

normalized to generate the PDRWH-score. PDRWH-scores can be ranked in descending order

to prioritize the personalized candidate driver genes.

Comparison to other methods

We utilized two benchmarking measures for comparison of the methods’ ability to identify

known personalized driver genes. One benchmark is the ability to recapitulate many of the

well-studied general cancer-associated genes. We assembled a general driver list of 758 known

cancer driver genes from various sources, including the Cancer Gene Census (CGC) [28], the

HiConf cancer gene panels [29], the high-confidence drivers (HCD) identified by a rule-based

method [30], and Mut-driver genes defined by the ‘20/20 rules’, which identifies driver genes

based on the characteristic mutational patterns for oncogenes and tumor suppressor genes

[46]. This list served as an approximate benchmark of known general drivers for validation.

Then, we defined personalized drivers predicted by PDRWH as the top-n ranked genes, where

n was assigned as twice the median of number of mutated genes in the general driver set across

the population of patients [21]: 8 for breast cancer (BRCA), 10 for kidney clear cell carcinoma

(KIRC), 12 for liver cancer (LIHC), 8 for glioblastoma (GBM), and 16 for stomach cancer

(STAD). We used the modified REA strategy proposed by PersonaDrive [21] for a comparison

of PDRWH with six personalized prediction methods (DawnRank, Prodigy, SCS, PersonaD-

rive, Degree and Frequency) across five cancer types from TCGA. For each sample, the identi-

fied cancer drivers in the general driver list were adopted to compute the Precision, Recall, and

F1-score. Three measurements were generated for each individual:

Precision ¼
jgenes in reference list \ genes predicted by computational methodsj

jgenes predicted by computational methodsj
ð11Þ

Recall ¼
jgenes in reference list \ genes predicted by computational methodsj

jgenes in reference listj
ð12Þ

F1score ¼ 2∗
Precison∗Recall
Precisonþ Recall

ð13Þ

in which |�| is the number of genes in a set. The averaged values were calculated for the sake of

comparison. To predict driver genes for a cohort and compare them with other cohort-level

methods, we utilized an adapted version of PageRank, considering the personalized driver

gene ranking score as the voters’ preference for candidate driver genes. Using the aforemen-

tioned general driver genes as a benchmark, we generated receiver operating characteristic

(ROC) curves and calculated areas under the curve (AUCs) to evaluate the true positive and

false positive rates. All the details of this study are provided in the S1 Text.

The second benchmark involves the identification of tumor-specific driver genes. As there

is a remarkable discrepancy among different cancer types, we downloaded a list of tumor-spe-

cific driver genes from the IntOGen database [47]. This list is considered to be the best trade-

off between sensitivity and specificity among those currently available (S5 Table). Given the

top-n predicted personalized drivers, an enrichment analysis of the personalized driver genes

was performed using the hypergeometric test:

P X ¼ mð Þ ¼
M
m

� �
N� M
n� m

� �

N
n

� � ð14Þ

where N represents the total number of genes in a patient,M is the number of genes in the
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known tumor-specific driver gene list, n is the number of predicted personalized driver genes

of the patient, andm is the number of overlapping genes between the known tumor-specific

driver genes and predicted personalized driver genes of the individual. If P(X�m)<0.05, it

indicates that the predicted driver genes for this patient is significantly enriched in known

driver genes. Additionally, we investigated the consistency and differences in the identified

tumor-specific driver genes among different methods.

Supporting information

S1 Text. Supplementary material for “A novel hypergraph model for identifying and prior-

itizing personalized drivers in cancer”.

(DOCX)

S1 Fig. The distribution of neighbor numbers involved in modeling a personalized hyper-

graph. The n in parentheses represents the number of tumor samples.

(TIF)

S2 Fig. The degree of known driver with the other genes in gene interaction subnetwork.

(A-E) Comparison in randomly selected tumor patients. Each subnetwork is induced from

STRINGv10 PPI network by the mutant genes and abnormally expressed genes of that patient.

(F) Cumulating the result of all the patients in a large cohort consisting of 2022 tumor samples

across five cancer types. * P< 0.05, ** P< 0.01 *** P< 0.001 and **** P < 0.0001using the

Satterthwaite approximation t test.

(TIF)

S3 Fig. Comparison of the PDRWH with other personalized prediction methods. The aver-

age precision, recall, and F1-score for (A) the GBM dataset and (B) the STAD dataset, are plot-

ted as a function of the number of top-n ranked genes involved in the calculation of the scores.

The general driver gene list is used as the reference set.

(TIF)

S4 Fig. Prediction performance of five personalized prediction methods as well as four

cohort prediction methods. (A-B) ROC plots of results on the five cancer types based on the

general reference driver set. The solid lines represent the personalized prediction methods

(PDRWH, DawnRank, SCS, PRODIGY and PersonaDrive). The dashed lines indicate the

cohort-level prediction methods (OncodriveFML, MinNetRank, Subdyquency, MutsigCV and

DriverRWH). The numbers in parentheses behind the methods are corresponding AUC values.

(TIF)

S5 Fig. The p-values of personalized drive genes enriched in tumor-specific drive genes on

16 cancer datasets.

(TIF)

S6 Fig. The known driver genes and potential driver genes predicted by PDRWH. (A)

Overlap among the tumor-specific cancer drivers predicted by different methods in GBM and

STAD. (B) Distribution of mutation frequency of top genes predicted by PDRWH. The i-th

column in the plot represents the distribution of mutation frequency of the genes which

ranked at the i-th in the predicted personalized drivers. Each range of mutation frequency is

further classified into whether the genes are known drivers in the general reference driver gene

list. (C) Scatter plots about mutation frequency of potential drivers and the occurrence of

genes as predicted driver gene. Known tumor-specific driver genes are represented as red dots

and others are represented as black dots. Purple lines constructed by known tumor-specific
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driver genes are the regression lines.

(TIF)

S7 Fig. Enrichment analysis of potential driver genes in KEGG pathways. The vertical axis

represents the id of KEGG pathway, such as “hsa04020: Calcium signaling pathway” and

“hsa05022: Pathways of neurodegeneration-multiple diseases”. The ids and names of KEGG

pathways can be found in S4 Table. And “GeneRatio” represents the ratio of the number of

genes enriched in the target pathway to the gene list. (A-E) The potential driver genes pre-

dicted in the cohort by PDRWH enriched in part of KEGG pathways.

(TIF)

S8 Fig. Tumor stratification using the gene expression of known tumor specific drivers.

(A-E) Tumor stratification using the gene expression of known tumor specific drivers in

BRCA, KIRC, LIHC, GBM and STAD respectively. Different subtypes (S1, S2,. . .) are indi-

cated by different colored lines.

(TIF)

S9 Fig. The survival curves for subtyping GBM and STAD using the gene expression data.

(A) In different cancer types, the expression data of genes those are known tumor-specific

drivers with mutation frequency�2% were used in subtyping patients. (B-D) Similar analysis

based on expression data of genes which are known tumor-specific drivers with mutation fre-

quency<2%, predicted driver genes with mutation frequency�2% and predicted driver genes

with mutation frequency<2% respectively. Different subtypes (S1, S2,. . .) are indicated by dif-

ferent colored lines.

(TIF)

S10 Fig. Distribution of the number of predicted personalized driver genes in TARGET

and DGIdb. (A) For cancer type GBM, the first pie chart shows the distribution of the number

of predicted personalized driver genes in TARGET. Restricted to predicted personalized driv-

ers predicted by PDRWH, there are 21.33% of patients with not less than three actionable

driver genes. The second pie chart shows the distribution of the number of predicted personal-

ized driver genes in DGIdb. There are 64.67% of patients with not less than three druggable

personalized drivers. The third pie chart is the distribution of the number of predicted person-

alized driver genes in the union of the two sets. (B) The similar pie chart display for cancer

type STAD.

(TIF)

S1 Table. The list of sample numbers and mutant gene numbers in 16 cancer datasets.

(XLSX)

S2 Table. Accuracy for the top i-th driver genes predicted by PDRWH in 16 cancer data-

sets.

(XLSX)

S3 Table. The tumor-specific driver genes identified by PDRWH and other methods for

five cancer types.

(XLSX)

S4 Table. The list of personalized drivers predicted by PDRWH used in stratifying tumor

samples and the pathway enrichment analysis.

(XLSX)
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