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Abstract

Background

Further evidence is required regarding the influence of metal mixture exposure on mortality.

Therefore, we employed diverse statistical models to evaluate the associations between

eight urinary metals and the risks of all-cause and cardiovascular mortality.

Methods

We measured the levels of 8 metals in the urine of adults who participated in the National

Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. Based on follow-up

data, we determined whether they died and the reasons for their deaths. We estimated the

association between urine metal exposure and all-cause mortality using Cox regression,

weighted quantile sum (WQS) regression, and Bayesian kernel machine regression

(BKMR) models. Additionally, we used a competing risk model to estimate the relationship

between metal exposure and cardiovascular mortality.

Results

Among the 14,305 individuals included in our final analysis, there were 2,066 deaths, with

1,429 being cardiovascular-related. Cox regression analysis showed that cobalt (Co) (HR:

1.21; 95% CI: 1.13, 1.30) and antimony (Sb) (HR: 1.26; 95% CI: 1.12, 1.40) were positively

associated with all-cause mortality (all P for trend <0.001). In the competing risk model, Co

(HR: 1.29; 95% CI: 1.12, 1.48), lead (Pb) (HR: 1.18; 95% CI: 1.03, 1.37), and Sb (HR: 1.44;

95% CI: 1.18, 1.75) were significantly associated with an increased risk of cardiovascular

mortality (all P for trend <0.001). Sb, Pb, cadmium (Cd), and molybdenum (Mo) had the

highest weight rankings in the final WQS model. All metals showed a complex non-linear

relationship with all-cause mortality, with high posterior inclusion probabilities (PIPs) in the

final BKMR models.
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Conclusions

Combining all models, it is possible that Sb may have a more stable impact on all-cause and

cardiovascular mortality. Meaningful metal effects in individual statistical models still require

careful attention.

Introduction

Metal pollution is considered one of the most common byproducts of industrialization and

urbanization. The general public can be exposed to various metals through mediums such as

water, air, soil, and food [1]. An increasing amount of epidemiological evidence suggests that

exposure to metals increases the risk of various diseases, such as cardiovascular disease, arte-

riosclerosis, infertility, and kidney stones [2–5]. In addition, some studies have found that the

levels of metals in blood and urine in the human body can partly predict the risk of all-cause,

cardiovascular, and cancer mortality [6–9]. Most of the early literature is limited to analyzing

the effects of individual chemicals on human health or death [10,11]. The effects of different

metal exposures on the human body may be cumulative, synergistic, antagonistic, or indirectly

complex, requiring more evidence to support each other [12]. Even though a few studies have

begun to focus on the effects of metal mixtures on various diseases [12–15], however, extend-

ing it to survival analysis is rare. Additionally, due to competitive risk bias, traditional survival

analysis methods used in the early stages may overestimate the impact of metals on specific

mortality risk [16,17]. The different exposure patterns, high correlations, and complex interac-

tions of metals in the environment require more statistical strategies to evaluate their com-

bined effects [18]. Currently, many new statistical methods have been successfully introduced

into the field of environmental health [19,20], previous studies exploring mixture exposure

have shown that combining multiple methods can lead to more comprehensive and reliable

conclusions [7]. It is difficult to establish a set of standard criteria for determining which statis-

tical method is most suitable for a specific study. Therefore, there is still insufficient evidence

on the combined effects of different metals on mortality.

This study employed data from the National Health and Nutrition Examination Survey

(NHANES) carried out from 1999 to 2018 to evaluate the connection between the presence of

eight heavy metals in the urine and the all-cause mortality rate for the general population in

the United States (US). We employed three different models, specifically Cox regression,

weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR),

to assess this association. Moreover, we examined the link between metal exposure and the

risk of cardiovascular mortality using a competing risk model. Subsequently, we interpreted

the results from multiple models jointly to further explore the relationship between mixed

metal exposure and mortality risk. These findings may offer novel suggestions for longitudinal

epidemiological and experimental investigations.

Materials and methods

Study population

NHANES is an ongoing national cross-sectional survey, and its data can be found on the web-

site of the Centers for Disease Control and Prevention (CDC) in the US (https://wwwn.cdc.

gov/nchs/nhanes/Default.aspx) [21]. The research protocol has been approved by the Research

Ethics Review Committee of the National Center for Health Statistics (NCHS). All participants
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provided written consent at the time of recruitment. In this study, we included 101316 data

from 10 survey cycles conducted between 1999 and 2018. Exclusion criteria include: (a)

age< 20 years; (b) pregnancy status; (c) loss to follow-up; (d) missing data of any covariate. A

total of 14,305 participants were ultimately included in the final analysis (Fig 1). As this study

is a retrospective analysis and poses no risk of exposure to personally identifiable information,

no additional ethical review or informed consent is required.

Measurement of urinary metal and covariation assessment

The data for 8 urine metals, namely cadmium (Cd), cobalt (Co), lead (Pb), barium (Ba), anti-

mony (Sb), cesium (Cs), molybdenum (Mo), and thallium (Tl), were obtained from NHANES

1999–2018. These metals in urine samples were primarily measured by using the Inductively

Coupled Plasma Mass Spectrometry (ICP-MS). The final metal concentrations used in the

analysis were obtained by dividing the metal concentration (μg/L) by the urine creatinine con-

centration (mg/dL) [22].

We have taken into account the covariates that are most likely to affect metal exposure and

mortality rates, including gender, age, race, body mass index (BMI), marital status, education

level, family poverty income ratio (PIR), smoking, alcohol consumption, health insurance

[12,23]. PIR refers to the ratio of household income to the federal poverty line, used to measure

the relationship between household income and poverty level [24]. Smoking is defined as hav-

ing smoked at least 100 cigarettes in one’s lifetime. According to the categorization of alcohol

consumption levels by the United States Department of Agriculture, drinking is divided into

five categories: never, former, light, moderate, and heavy [25]. We also include self-reported

cardiovascular diseases (if including any of congestive heart failure, coronary heart disease,

angina or myocardial infarction), stroke (yes or no), cancer (if including any type of cancer),

hypertension (yes or no) and diabetes (yes or no).

Outcomes

The public use mortality files from NHANES offer mortality data recorded in the survey regis-

tration up to December 31, 2019. These files enable tracking of participant deaths and identifi-

cation of specific causes. Starting from 1998, the death codes adhere to the guidelines of the

10th edition of the International Classification of Diseases, Injuries, and Causes of Death

(ICD-10) [26]. Determine alive or deceased based on the variable MORTSTAT (final mortality

status). The mortality specifically related to cardiovascular diseases (coded I00-I09, I11, I13

and I20-I51) was identified based on the ICD-10. For participants who did not experience the

event during the study period, their follow-up time was considered right-censored. Similarly,

all missing follow-up data were treated as right-censored.

Statistical analysis

All analyses were conducted using R 4.2 (the R Foundation for Statistical Computing, Vienna,

Austria). Chi-square tests or t-tests were used to assess participants’ baseline characteristics.

Categorical variables were represented as numbers (n) and percentages (%), while continuous

variables were represented as means and the 25th and 75th percentiles (P25, P75). This study

used creatinine-corrected metal concentrations to analyze the relationship between heavy

metal exposure levels and mortality risk, in order to reduce the impact of urine dilution on the

measurements [12]. Due to the severely skewed concentrations of these eight chemicals, the

standardized data were ln-transformed when treated as continuous variables to approximate a

normal distribution. Firstly, we analyzed the Pearson correlation coefficients between the ln-
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Fig 1. Selection criteria for participants in this study.

https://doi.org/10.1371/journal.pone.0316045.g001
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transformed concentrations of the eight metals and the trends of individual metal concentra-

tions in each survey period.

Only Co, Mo, Pb, and Sb passed the proportional hazards (PH) assumption (S1 Table). Cox

regression analysis was used to examine the relationship between individual metals and all-

cause mortality, and individual metals were categorized into four quartiles (i.e., were split by

P25, P50 and P75 into Q1, Q2, Q3, and Q4, respectively) to calculate Hazard Ratio (HR) and P
for trend.

Competing risks refer to events that may hinder the occurrence of the primary event of inter-

est, as these events can prevent the occurrence of the event of interest or alter the probability of

the primary endpoint occurring [16]. For example, when studying cardiovascular mortality,

deaths due to non-cardiovascular causes are considered competing risks. When estimating the

incidence of the target outcome, analysts should use the cumulative incidence function [27].

Considering that cardiovascular mortality may be masked by other causes, a competing risk

model was used to assess the impact of individual metals on the risk of cardiovascular death.

The weighted quantile sum (WQS) regression model constructs a weighted index ranging

from 0 to 1, reflecting the contribution of each metal in the mixture [28]. It is used to estimate

the combined impact of all environmental chemical exposures on the outcome and can be

employed to test the association between the index and the dependent variable or outcome

[29]. Consequently, the relative strength of weights assigned to each variable in the model

allows for the assessment of each environmental chemical’s contribution to the overall index

effect, thus identifying important chemicals within the mixture [12]. It is important to note

that the WQS regression limits the effect of a single metal on mortality risk to one direction. In

this study, we used the R package “gWQS” with family = binomial to construct the WQS index

for heavy metal exposure, analyzing the combined impact of metal mixture components on

all-cause risk, and used 40% of the data as a training set and the remaining data as a test set

[30]. We performed 1000 bootstrap samples in the multivariable regression model and applied

regularization constraints in the optimization function for weight estimation.

To evaluate the combined impact of metal mixtures on all-cause mortality, we used the

“Bayesian kernel machine regression (BKMR)” package and adopted default priors for 10,000

iterations [31]. We analyzed the following three exposure-response functions: 1) Univariate

exposure-response function: Assessed the impact of individual metal exposure on all-cause

mortality risk. 2) Cumulative effect at different percentiles: Compared the cumulative effect of

metal mixtures at different percentiles on cardiovascular disease (CVD) risk. 3) Bivariate expo-

sure-response function: Evaluated the impact of one metal on all-cause mortality risk while fix-

ing the other metals at different percentiles [12,28]. Additionally, we calculated the posterior

inclusion probability (PIP) for each metal to identify those with the most significant impact on

all-cause mortality risk.

For all statistical methods mentioned above, we progressively built four models to assess the

potential confounding effects of different covariate combinations. Model 0 was a crude model,

Model 1 adjusted for age, sex, and race. Model 2 additionally considered marital status, PIR,

education, BMI, smoking, drinking, and health insurance. In Model 3, we further adjusted for

the combined presence of diabetes, stroke, cancer, CVD, and hypertension. A two-sided P-

value less than 0.025 was considered statistically significant.

Results

Population characteristics

During the 10 survey cycles, a total of 14,305 participants were included, with 2,066 deaths

recorded as all causes (Table 1). Among these deaths, 1,429 were due to cardiovascular reasons.
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Table 1. Basic characteristics of subjects (NHANES1999-2018).

Characteristic Overall, N = 14,305 Assumed alive, N = 12,239 Assumed deceased, N = 2,066 P
Year <0.001

1999–2000 768(5.37%) 523 (4.27%) 245 (11.86%)

2001–2002 1231 (8.61%) 893 (7.30%) 338 (16.36%)

2003–2004 1177 (8.23%) 843 (6.89%) 334 (16.17%)

2005–2006 1249 (8.73%) 993 (8.11%) 256 (12.39%)

2007–2008 1528 (10.68%) 1,266 (10.34%) 262 (12.68%)

2009–2010 1624 (11.35%) 1,422 (11.62%) 202 (9.78%)

2011–2012 1823 (12.74%) 1,632 (13.33%) 191 (9.24%)

2013–2014 2008 (14.04%) 1,869 (15.27%) 139 (6.73%)

2015–2016 1834 (12.82%) 1,754 (14.33%) 80 (3.87%)

2017–2018 1063 (7.43%) 1,044 (8.53%) 19 (0.92%)

Age <0.001

20–39 4739 (33.13%) 4660 (38.08%) 79 (3.82%)

40–59 4820 (33.69%) 4447 (36.33%) 373(18.05%)

�60 4746 (33.18%) 3132 (25.59%) 1614 (78.12%)

Sex <0.001

Female 6922 (48.39%) 6073 (49.62%) 849 (41.09%)

Male 7383 (51.61%) 6166 (50.38%) 1217 (58.91%)

Race/Ethnicity <0.001

Non-Hispanic White 6644 (46.45%) 5387 (44.02%) 1257 (60.84%)

Non-Hispanic Black 3057 (21.37%) 2598 (21.23%) 459 (22.22%)

Mexican American 2226 (15.56%) 2021 (16.51%) 205 (9.92%)

Other 2378 (16.62%) 2233 (18.24%) 145 (7.02%)

Marital status <0.001

Alone 5761 (40.27%) 4766 (38.94%) 995 (48.16%)

Married or partner 8544 (59.73%) 7473 (61.06%) 1071 (51.84%)

Education <0.001

Less than 9th grade 1533 (10.72%) 1153 (9.42%) 380 (18.39%)

High school graduate 5638 (39.41%) 4680 (38.24%) 958 (46.37%)

College graduate or above 7134 (49.87%) 6406 (52.34%) 728 (35.24%)

PIR 2.09 (1.10, 3.97) 2.15 (1.11, 4.12) 1.72 (1.08, 3.18) <0.001

Health insurance <0.001

No 3116 (21.78%) 2919 (23.85%) 197 (9.54%)

Yes 11189 (78.22%) 9320 (76.15%) 1869 (90.46%)

BMI (kg/m2) <0.001

<25 4281 (29.93%) 3622 (29.59%) 659 (31.90%)

25–29.9 4844 (33.86%) 4103 (33.52%) 741 (35.87%)

�30 5180 (36.21%) 4514 (36.88%) 666 (32.24%)

Alcohol <0.001

Never 1864 (13.03%) 1545 (12.62%) 319 (15.44%)

Former 2507 (17.53%) 1789 (14.62%) 718 (34.75%)

Mild 4639 (32.43%) 4022 (32.86%) 617 (29.86%)

Moderate 2170 (15.17%) 1984 (16.21%) 186 (9.00%)

Heavy 3125 (21.85%) 2899 (23.69%) 226 (10.94%)

Smoke <0.001

No 6887 (48.14%) 6127 (50.06%) 760 (36.79%)

Yes 7418 (51.86%) 6112 (49.94%) 1306 (63.21%)

(Continued)
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The median follow-up time was 101 months, with the longest follow-up period being 249

months. The age range of the participants was between 20 and 85 years, with males accounting

for 51.61% of the total. The majority of deaths due to all causes were in individuals over 60

years old, male, white ethnicity and of highly educated. The cumulative incidence rates of all-

cause and cardiovascular deaths can be seen in S1 Fig.

Measurement of urinary metals and their correlation

The detection rates of metal content in urine are shown in S2 Table. Except for Sb, the detec-

tion rates of other metals are greater than 90%. The Pearson coefficients for the Ln transforma-

tion of metals show a moderate correlation between Cs and Tl (r = 0.58), while the

correlations with other metals are relatively weak (S2 Fig). The concentration trends of indi-

vidual metals during each survey period were reported in S3 Fig and S3 Table.

Assess the association between urinary metal and all-cause and

cardiovascular mortality

We used Cox regression analysis to examine the relationship between the levels of 4 urinary metals

and the risk of all-cause mortality, as shown in Tables 2 and S4. In the crude model, Co, Mo, Pb

and Sb were associated with an increased risk of all-cause mortality (all P for trend<0.001). After

adjusting for all covariates in Model 3, Co (HR: 1.21; 95% CI: 1.13, 1.30) and Sb (HR: 1.26; 95%

CI: 1.12, 1.40) remained positively associated with all-cause mortality (all P for trend<0.001).

Table 3 presents the results of the competing risk model analyzing the relationship between

the levels of 8 urinary metals and cardiovascular mortality. There were a total of 552 cardiovas-

cular deaths. In the crude model, 5 metals (Cd, Co, Mo, Pb, Sb) were each positively associated

Table 1. (Continued)

Characteristic Overall, N = 14,305 Assumed alive, N = 12,239 Assumed deceased, N = 2,066 P
Follow-up time 101.00 (60.00, 155.00) 105.00 (63.00, 160.00) 77.00 (42.00, 124.00) <0.001

Hypertension <0.001

No 8187 (57.23%) 7545 (61.65%) 642 (31.07%)

Yes 6118 (42.77%) 4694 (38.35%) 1424 (68.93%)

Diabetes <0.001

No 12278 (85.83%) 10732 (87.69%) 1546 (74.83%)

Yes 2027 (14.17%) 1507 (12.31%) 520 (25.17%)

Stroke <0.001

No 13772 (96.27%) 11921 (97.40%) 1851 (89.59%)

Yes 533 (3.73%) 318 (2.60%) 215 (10.41%)

Cancer <0.001

No 12955 (90.56%) 11364 (92.85%) 1591 (77.01%)

Yes 1350 (9.44%) 875 (7.15%) 475 (22.99%)

CVD <0.001

No 12,876 (90.01%) 11389 (93.05%) 1487 (71.97%)

Yes 1429 (9.99%) 850 (6.95%) 579 (28.03%)

HR: Hazard ratio; CI: Confidence intervals; BMI: Body mass index; PIR: Poverty income ratio; Cardiovascular diseases: Doctor diagnosed with any of the following—

congestive heart failure, coronary heart disease, angina, or myocardial infarction; Stroke: Doctor diagnosed with a stroke; Cancer: Doctor diagnosed with any type of

cancer; Diabetes: Doctor diagnosed with diabetes, glycohemoglobin HbA1c (%) > = 6.5, fasting glucose (mmol/L) > = 7.0, random blood glucose (mmol/L) > = 11.1,

two-hour OGTT blood glucose (mmol/L) > = 11.1, or use of diabetes medication or insulin; Hypertension: Diagnosed with hypertension, currently taking

antihypertensive medication, with an average systolic blood pressure> = 140 mmHg or average diastolic blood pressure > = 90 mmHg measured over three readings.

https://doi.org/10.1371/journal.pone.0316045.t001
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with cardiovascular mortality (all P for trend<0.001), except for Ba, Tl, and Cs. After adjusting

for all covariates in Model 3, Co (HR: 1.29; 95% CI: 1.12, 1.48), Pb (HR: 1.18; 95% CI: 1.03,

1.37), and Sb (HR: 1.44; 95% CI: 1.18, 1.75) remained significantly associated with an increased

risk of cardiovascular mortality (all P for trend<0.001). These findings suggest that higher lev-

els of Co, Pb, and Sb are robustly linked to an elevated risk of cardiovascular mortality, even

when accounting for other competing risks and covariates.

The association between urinary metal and all-cause mortality by WQS

regression model

The Model 3 of WQS analysis showed a positive association between metal mixtures (HR:

2.23; 95%CI: 2.00, 2.48) and all-cause mortality (Table 4). The weighted indices of the four

metals (Sb, Cd, Pb, and Mo) in WQS are 0.356, 0.297, 0.262, and 0.080, respectively (Table 5).

This result remained stable across Models 0, 1, and 2 (Fig 2).

BKMR model to assess the association between urinary metal and all-cause

mortality

In the final model, the relationship between all metals and all-cause mortality rate shows a

complex non-linear relationship, with positive association within a certain range (Fig 3).

Table 2. Cox regression analysis of the relationship between 4 metals and all-cause mortality.

HR (95%CI) Q1 Q2 Q3 Q4 P for trend

Model 0

Co 1.36(1.27,1.46) ref 1.03(0.91,1.16) 1.21(1.06,1.36) 1.52(1.35,1.71) <0.001

Mo 1.16(1.09,1.24) ref 0.98(0.86,1.11) 1.08(0.95,1.23) 1.26(1.12,1.43) <0.001

Pb 1.76(1.65,1.87) ref 1.43(1.19,1.71) 2.36(2.00,2.78) 3.14(2.68,3.69) <0.001

Sb 1.35(1.21,1.51) ref 1.16(1.00,1.35) 1.32(1.14,1.52) 1.49(1.30,1.71) <0.001

Model 1

Co 1.29(1.20,1.37) ref 0.98(0.87,1.12) 1.22(1.07,1.38) 1.53(1.34,1.73) <0.001

Mo 1.04(0.98,1.11) ref 0.95(0.84,1.09) 1.12(0.98,1.27) 1.10(0.97,1.24) 0.028

Pb 1.20(1.12,1.30) ref 0.84(0.70,1.01) 0.95(0.80,1.13) 1.07(0.91,1.27) 0.005

Sb 1.33(1.20,1.48) ref 1.18(1.01,1.37) 1.39(1.21,1.61) 1.54(1.34,1.77) <0.001

Model 2

Co 1.26(1.17,1.35) ref 0.95(0.84,1.08) 1.15(1.01,1.31) 1.41(1.24,1.60) <0.001

Mo 1.05(0.99,1.12) ref 0.94(0.82,1.07) 1.11(0.98,1.26) 1.08(0.95,1.22) 0.048

Pb 1.09(1.01,1.18) ref 0.82(0.68,0.98) 0.89(0.75,1.06) 0.94(0.80,1.12) 0.385

Sb 1.28(1.15,1.43) ref 1.07(0.92,1.25) 1.25(1.08,1.44) 1.39(1.21,1.59) <0.001

Model 3

Co 1.21(1.13,1.30) ref 0.93(0.82,1.06) 1.10(0.96,1.25) 1.31(1.15,1.49) <0.001

Mo 1.02(0.96,1.09) ref 0.94(0.83,1.07) 1.07(0.94,1.22) 1.01(0.89,1.15) 0.425

Pb 1.12(1.03,1.20) ref 0.88(0.73,1.05) 0.97(0.82,1.15) 1.03(0.87,1.22) 0.086

Sb 1.26(1.12,1.40) ref 1.06(0.91,1.23) 1.25(1.08,1.44) 1.36(1.18,1.56) <0.001

Co: Cobalt; Mo: Molybdenum; Pb: Lead; Sb: Antimony; HR: Hazard ratio; CI: Confidence Intervals; Q: Quartiles; BMI: Body mass index; PIR: Poverty income ratio; P-

value less than 0.025; Q1, Q2, Q3 and Q4: Individual metals measurements were categorized by P25, P50 and P75 into Q1, Q2, Q3, and Q4, respectively.

Model 0: Adjusted for none.

Model 1: Adjusted for age, sex, race.

Model 2: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, and health insurance.

Model 3: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, health insurance, diabetes, stroke, cancer, CVD, and hypertension.

https://doi.org/10.1371/journal.pone.0316045.t002
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Compared to the previous three models, it can be inferred that covariates have influenced the

relationship between metal mixtures and all-cause mortality to some extent. We analyzed the

overall impact of metal mixtures on all-cause mortality rate. Compared to the 50th percentile,

Table 3. The relationship between 8 metals and cardiovascular mortality in the competing risk model.

HR (95%CI) P
Model 0 n

Ba 552 0.85(0.76, 0.96) 0.006

Cd 552 1.88(1.63, 2.18) <0.001

Co 552 1.46(1.28, 1.67) <0.001

Cs 552 1.10(0.93, 1.31) 0.280

Mo 552 1.28(1.12, 1.46) <0.001

Pb 552 1.69(1.53, 1.88) <0.001

Sb 552 1.41(1.18, 1.69) <0.001

Tl 552 0.77(0.57, 1.04) 0.088

Model 1

Ba 552 0.87(0.78, 0.97) 0.0095

Cd 552 125(1.07, 1.45) 0.004

Co 552 1.36(1.19, 1.54) <0.001

Cs 552 0.83(0.68, 1.01) 0.062

Mo 552 1.15(1.02, 1.30) 0.023

Pb 552 1.13(0.98, 1.31) 0.098

Sb 552 1.45(1.21, 1.74) <0.001

Tl 552 0.88(0.67, 1.15) 0.34

Model 2

Ba 552 0.90(0.81, 1.00) 0.05

Cd 552 1.20(1.01, 1.43) 0.037

Co 552 1.34(1.18, 1.53) <0.001

Cs 552 0.95(0.78, 1.14) 0.580

Mo 552 1.15(1.02, 1.31) 0.025

Pb 552 1.12(0.96, 1.29) 0.140

Sb 552 1.47(1.21, 1.77) <0.001

Tl 552 1.07(0.82, 1.38) 0.630

Model 3

Ba 552 0.93(0.84, 1.03) 0.180

Cd 552 1.16(0.98, 1.38) 0.090

Co 552 1.29(1.12, 1.48) <0.001

Cs 552 0.97(0.80, 1.17) 0.720

Mo 552 1.12(0.99, 1.27) 0.071

Pb 552 1.18(1.03, 1.37) 0.021

Sb 552 1.44(1.18, 1.75) <0.001

Tl 552 1.06(0.82, 1.37) 0.630

Ba: Barium; Cd: Cadmium; Co: Cobalt; Cs: Cesium; Mo: Molybdenum; Pb: Lead; Sb: Antimony; TI: Thallium; HR:

Hazard ratio; CI: Confidence intervals; BMI: Body mass index; PIR: Poverty income ratio.

Model 0: Adjusted for none.

Model 1: Adjusted for age, sex, race.

Model 2: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, and health insurance.

Model 3: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, health insurance,

diabetes, stroke, cancer, CVD, and hypertension. P-value less than 0.025.

https://doi.org/10.1371/journal.pone.0316045.t003
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when all metal mixtures are at or above the 40th percentile, there is an increasing trend in all-

cause mortality rate (Fig 4). The posterior inclusion probabilities (PIPs) indicate that each

metal is associated with all-cause mortality (Table 5).

Discussion

In this research, we conducted a comprehensive comparison of the outcomes obtained from

various statistical methods in order to assess the influence of 8 urinary metals on the mortality

rate among the general population of the US. Firstly, Cox regression analysis showed a positive

association between between Co and Sb with the all-cause mortality rate. Competing risk mod-

els provided additional evidence of a positive association between Co, Sb, Pb, and

Table 4. The WQS analysis of 8 metals and all-cause mortality.

HR (95%CI) P
Model 0

mixed metals 3.20 (2.92,3.50) < 0.001

Model 1

mixed metals 2.48 (2.24,2.76) < 0.001

Model 2

mixed metals 2.23 (2.00,2.48) < 0.001

Model 3

mixed metals 2.23 (2.00,2.48) < 0.001

HR: Hazard ratio; CI: Confidence intervals; BMI: Body mass index; PIR: Poverty income ratio; WQS: Weighted

quantile sum.

Model 0: Adjusted for none.

Model 1: Adjusted for age, sex, race.

Model 2: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, and health insurance.

Model 3: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, health insurance,

diabetes, stroke, cancer, CVD, and hypertension.

https://doi.org/10.1371/journal.pone.0316045.t004

Table 5. Summary of all analysis results.

Metal Cox regression Competing risk model WQS (positive direction)* BKMR (PIP)#

Ba / - <0.001 1.00

Cd / - 0.297 1.00

Co + + <0.001 1.00

Cs / - 0.005 1.00

Mo - - 0.080 1.00

Pb - + 0.262 1.00

Sb + + 0.356 1.00

Tl / - <0.001 1.00

Ba: Barium; Cd: Cadmium; Co: Cobalt; Cs: Cesium; Mo: Molybdenum; Pb: Lead; Sb: Antimony; TI: Thallium; WQS: Weighted quantile sum; BKMR: Bayesian kernel

machine regression; PIP: Posterior inclusion probability.

+: Indicates that P < 0.05 in the final Cox model and Competing Risk model.

-: Indicates that P � 0.05 in the final in the final Cox model and Competing Risk model.

/: Indicates that the Cox regression proportional hazards (PH) assumption is not met.

*: Indicates the weighted index in WQS, with values closer to 1 indicating a stronger association.

#: Indicates the PIP in the final BKMR model, with values closer to 1 indicating a stronger association.

https://doi.org/10.1371/journal.pone.0316045.t005
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cardiovascular mortality. Sb, Pb, Cd, and Mo had the highest weight rankings in the final

WQS model. All metals showed a complex non-linear relationship with all-cause mortality,

with high PIPs in the final BKMR models.This study fully considered the strengths and limita-

tions of different statistical methods and comprehensively evaluated the combined impact of

urinary metals on mortality.

We observed that the detection rates of most metals increased over time, with all metals

showing generally high detection rates except for Sb. Despite the lower detection rate of anti-

mony, we found a significant association between it and mortality. This may suggest that anti-

mony, even at low concentrations, can still have a notable impact on health, potentially due to

its toxicity, bioaccumulation effects, or specific effects on certain populations. Therefore, the

health risks of antimony should not be overlooked. We found an interaction Sb and certain

years with respect to all-cause mortality (S5 Table). This suggests that the health impact of Sb

may be modulated by temporal factors. Variations in Sb emissions, differences in detection

technologies and methods, as well as socioeconomic factors and policy interventions in spe-

cific years may all influence this interaction.

Cox regression is most commonly used to assess the impact of chemical substances on all-

cause and cardiovascular mortality. Typically, these analyses involve one or a group of similar

chemical substances for ease of interpretation. However, metal exposures in real environments

are not singular, and the interactions between mixed exposures may result in false positive or

Fig 2. Weighted quantile sum (WQS) model regression index weights for all-cause mortality. (Ba: Barium; Cd: Cadmium; Co: Cobalt; Cs: Cesium;

Mo: Molybdenum; Pb: Lead; Sb: Antimony; TI: Thallium; A: Adjusted for none; B: Adjusted for age, sex, race; C: Adjusted for age, sex, race, BMI,

marital status, PIR, education, smoking, drinking, and health insurance; D: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking,

drinking, health insurance, diabetes, stroke, cancer, CVD, and hypertension).

https://doi.org/10.1371/journal.pone.0316045.g002
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false negative results. After adjusting for all potential confounders, we found a positive associa-

tion between Co, and Sb with overall mortality, which is consistent with previous research

findings [32]. The epidemiological research on the relationship between adult cardiovascular

diseases and environmental metals (such as Ba, Sb, etc.) is receiving increasing attention [33].

Some scholars have proposed that the traditional Cox regression overestimates the cumulative

incidence rate when evaluating the impact of metals on cardiovascular mortality [34], so this

analysis introduced a competitive risk model. We found that cobalt (Co), lead (Pb), and anti-

mony (Sb) are significantly associated with an increased risk of cardiovascular mortality. The

competing risk model has a distinct advantage over Cox regression in multiple potential events

studies. It can accurately estimate the risk of a specific event while accounting for the impact of

other competing events, thereby providing a more realistic risk assessment [16,27]. Previous

literature has confirmed that the proportion of Cd and Sb in urine metal mixtures contributes

the most to the incidence of cardiovascular diseases [35]. Sb is positively correlated with mean

platelet volume (MPV), which contributes to thrombus formation and increases the risk of

cardiovascular disease [1]. Additionally, literature has found that Co, Sb, and Pb have a

Fig 3. Univariate exposure-response function (95% CI) between urinary metals and all-cause mortality when fixing the concentrations of other

metals at the median. (Ba: Barium; Cd: Cadmium; Co: Cobalt; Cs: Cesium; Mo: Molybdenum; Pb: Lead; Sb: Antimony; TI: Thallium; A: Adjusted for

none; B: Adjusted for age, sex, race; C: Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, and health insurance; D:

Adjusted for age, sex, race, BMI, marital status, PIR, education, smoking, drinking, health insurance, diabetes, stroke, cancer, CVD, and hypertension).

https://doi.org/10.1371/journal.pone.0316045.g003
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significant impact on cardiovascular mortality rate [6]. The above results were consistent with

our competition risk model results.

WQS analysis can better explain the complex impact of exposure on health in real life by

considering the weight and correlation of chemical substances [30]. In our analysis, Sb, Cd,

Pb, and Mo are considered to have the highest impact weight on overall mortality. On one

hand, this may be due to differences in sample size, which results in a slight difference from

the previous WQS regression analysis that mentioned cadmium having the highest weight in

the mixture [6]. On the other hand, it has been demonstrated that Pb and Mo are significantly

associated with all-cause mortality in the WQS regression model, possibly due to interactions

with other metals. However, this association is not observed in the Cox regression model. This

indicates that WQS analysis may be more sensitive in identifying important factors than indi-

vidual analyses, but the standard WQS without penalty terms has limitations in simultaneously

evaluating the joint effects of chemicals with different directions of action [36]. High Pb expo-

sure has been confirmed to be positively correlated with the all-cause and cancer mortality

[37,38]. Mo also has an independent and comprehensive correlation with all-cause mortality

Fig 4. Joint effect of the mixture on all-cause mortality when all metals at particular percentiles were compared to all the metals at their 50th

percentile by Bayesian kernel machine regression (BKMR) model. (A: Adjusted for none; B: Adjusted for age, sex, race; C: Adjusted for age, sex, race,

BMI, marital status, PIR, education, smoking, drinking, and health insurance; D: Adjusted for age, sex, race, BMI, marital status, PIR, education,

smoking, drinking, health insurance, diabetes, stroke, cancer, CVD, and hypertension).

https://doi.org/10.1371/journal.pone.0316045.g004
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rate [7]. The results of this study once again provide additional evidence for the impact of

mixed metal exposure on mortality.

The BKMR analysis can flexibly estimate multivariable exposure-response functions, identi-

fying hidden complex patterns and non-linear relationships [31]. Our final model revealed a

complex non-linear relationship between 8 types of metal substances and overall mortality

rate, with a positive correlation within a certain range. Due to the introduction of kernel func-

tions, the calculation complexity of the BKMR model is high, leading to slower computation

speed and higher requirements for computer configuration. It is necessary to choose appropri-

ate kernel functions and related parameters based on actual situations in order to ensure better

interpretability of the model.

This study demonstrates that traditional survival analysis can provide a simple relationship

between individual metals and mortality. When considering competing biases, the competing

risk model is an alternative additional strategy [39]. The WQS model can explore the impact of

mixed exposures on the target outcome [40]. The BKMR model can explore the exposure-

response effects of each substance and the interactions between substances [41]. Therefore,

these models have their own advantages and disadvantages, and their combined application is

beneficial for a comprehensive assessment of the effects of mixed substances on the outcome.

The main findings of this study are summarized in Table 5, which can provide a reference for

future related research.

Our analysis has some limitations. The assumption underlying our analysis is that the sam-

ple based on inclusion analysis represents the adult population of the US. Nevertheless, it

remains unclear whether the WQS and BKMR models can be applied under this assumption.

In addition, we referred to previous designs that used unweighted data as unweighted esti-

mates are preferable to weighted estimates if the covariates used to calculate sample weights

are already included in the regression model [42]. Another limitation is the use of cross-sec-

tional survey data. The measured metal levels in this study can only reflect recent exposure,

and long-term follow-up is needed to determine the actual impact of metals on mortality out-

comes. Additionally, we did not discuss the relationship between mixed metals and cancer

mortality. Furthermore, we cannot establish a causal relationship between mixed metals and

mortality. To gather more evidence, it will be necessary to conduct large-scale prospective

cohort studies or experimental studies in the future.

Conclusion

Combining all models, it is possible that Sb may have a more stable impact on overall mortality

and cardiovascular mortality. We recommend using multiple methods to comprehensively

explain the effects of mixtures, meaningful metal effects in individual statistical models still

require careful attention.
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