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Abstract

Background

Analysis of omics data that contain multidimensional biological and clinical information can

be complex and make it difficult to deduce significance of specific biomarker factors.

Methods

We explored the utility of propensity score matching (PSM), a statistical technique for mini-

mizing confounding factors and simplifying the examination of specific factors. We tested

two datasets generated from cohorts of colorectal cancer (CRC) patients, one comprised of

immunohistochemical analysis of 12 protein markers in 544 CRC tissues and another con-

sisting of RNA-seq profiles of 163 CRC cases. We examined the efficiency of PSM by com-

paring pre- and post-PSM analytical results.

Results

Unlike conventional analysis which typically compares randomized cohorts of cancer and

normal tissues, PSM enabled direct comparison between patient characteristics uncovering

new prognostic biomarkers. By creating optimally matched groups to minimize confounding

effects, our study demonstrates that PSM enables robust extraction of significant biomark-

ers while requiring fewer cancer cases and smaller overall patient cohorts.

Conclusion

PSM may emerge as an efficient and cost-effective strategy for multiomic data analysis and

clinical trial design for biomarker discovery.
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Background

Omics data analysis has become increasingly popular in biomedical research and precision

medicine. Due to advances in sequencing and other deep molecular profiling methods and

infrastructure, a wealth of multiomic data, spanning from the genome, transcriptome, prote-

ome to the metabolome, have been generated. Omics datasets are complex and associated with

multiple biological and clinical parameters. There is currently no standard method for parsing

through omics data to extract significant specific biomarkers and separating them from a mul-

titude of possibly confounding variables. Typically, very large randomized patient cohorts are

considered to be needed in disease biomarker discovery for addressing the confounding vari-

able problem.

Propensity score matching (PSM) is a statistical matching technique that attempts to

deduce the effect of a single specific factor by reducing bias due to confounding variables [1].

In past studies, the assignment of a single specific factor to a subject was not random, and

there were many confounding variables between the group with the specific factor and the

control group without the factor. The propensity score expresses quantitatively “how likely

each case is to have the specific factor.” The estimated propensity score e(xi) of each case can

be calculated based on its background, i (i = 1,2,. . .,N), which could be a confounding variable.

Paired cases with most similar propensity scores can be extracted from each group with or

without the single specific factor [2–5]. This process of homogenizing confounding factors is

called PSM, and it enables to obtain extracted groups and control groups which have a differ-

ence only in the single specific biomarker to be examined.

Although PSM is a powerful statistical method, it has not been implemented into routine

omics data analysis for biomarker discovery. In this study, we tested PSM in two colorectal

cancer datasets to investigate its efficiency in omics analysis. One dataset was derived from

immunohistochemical (IHC) protein expression of 12 protein markers in a cohort of 544 colo-

rectal cancer (CRC) patients [6, 7]. The second dataset was obtained from The Cancer Genome

Atlas database (TCGA) and contained total RNA-sequencing profiling of 163 CRC patients

[8]. We clustered the cancer cases into good or poor prognosis groups based on patient sur-

vival information, and the groups were compared to uncover prognostic protein or transcript

biomarkers. We then compared the results before and after PSM implementation to evaluate

the efficiency of PSM for omics data analyses and confounding variable-avoiding biomarker

discovery.

Methods

The study used retrospective archives samples and was classified by the institution as minimal

risk and with waiver of consent (BIDMC IRB 2023P000933).

Dataset of proteomic markers of CRC

This dataset was derived from proteomic expression profiles of 544 surgically resected CRC tis-

sue obtained from the pathology archives of MSKCC. Clinicopathological parameters, includ-

ing patient age, gender, tumor location, TNM stage, mismatch repair (MMR) status, histology,

tumor differentiation, lymphovascular invasion, and perineural invasion were retrieved from

medical records. This cohort comprised 367 patients who survived more than three years with-

out recurrence (good outcome group), and 60 patients who had recurrence within three years

(poor outcome group). The others did not have sufficient survival information due to short

follow-up periods.

Twelve potential prognostic biomarkers (NNMT, GALNT6, SLC3A2, SLC7A5, IGF2BP3,

MCM6, SERPIN B5, STAT1, NAMPT, P4HA1, DDX21, and LTBP2) were chosen based on
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preliminary proteomic findings from our laboratory [6, 7]. Expression levels of these proteins

were determined by immunohistochemical (IHC) staining of tissue microarrays. The tissue

microarrays were constructed from 544 formalin fixed and paraffin embedded CRC tissue

specimens. Tissue sections were incubated with polyclonal antibodies specific to each protein

marker (see S1 Table for details on antibodies used) and visualized with Bond Polymer Refine

Detection (Leica). IHC staining scores, which correspond to protein expression levels in can-

cer tissue, were determined independently by two pathologists without knowledge of the

patients’ clinical information.

For seven markers, IHC staining intensity of individual tumor cells was determined and

assigned intensities of 0, 1+, 2+, or 3+, and the total weighted IHC score of a sample slide was

calculated by multiplying the expression intensity of individual tumor areas (score 0–3) by

their relative contribution (0–100%) to total tumor area. The total weighted IHC scores

thereby had a range of 0–300 for these protein biomarkers. For NNMT, GALNT6, or MCM6,

each tissue section was scored by counting the number of cancer cells staining positively for

the protein biomarker (staining intensity�1+) relative to the total number of evaluated cancer

cells. A minimum of 500 cancer cells were evaluated per tissue sample, and the IHC scores had

a range of 0–100. For DDX21 or LTBP2, IHC stains were scored binomially as negative or pos-

itive (score 0 or 1+).

Random forest analysis

IHC scorings were compared between the good and poor prognosis groups. A random forest

analysis was performed to detect prognostic IHC markers using the R (version 4.2) packages

“randomForestSRC” (version 3.3.2) and “ggRandomForests” (version 2.2.1) downloaded from

cran.rstudio.com. The analysis included recurrence-free survival data, clinicopathological fea-

tures, and IHC scorings. The number of trees used was set to 100,000. Minimal depth value

and variable importance were utilized to detect significant prognostic factors. Additionally, the

significant prognostic IHCs which were selected by random forest analysis were compared to

the results of the original comparisons.

Statistical comparison

Clinicopathological values were compared using a Student t-test or a chi-squared test if the val-

ues were binary. The comparisons of IHC scorings were also conducted using a Student t-test

or a chi-squared test.

Dataset of CRC transcriptome

The original RNA-seq dataset used in this study is available using the “GDCquery” function in

the package “TCGAbiolinks” (version 2.18.0) downloaded from bioconductor.org (R version

4.2). The “project” names used are “TCGA-COAD” and “TCGA-READ”. The “data.category”

name used is “Transcriptome Profiling” and the “data.type” used is “Gene Expression Quanti-

fication” for RNA-seq data. The “data.category” name used is “Clinical” for clinical

information.

This dataset contains mRNA sequencing counts for 60,660 genes from 163 CRC patients

[8]. The data were obtained from TCGA-COAD and TCGA-READ using the Bioconductor

package in R [9, 10]. In this CRC cohort, 130 patients survived more than three years after

sample collection and were considered in the good prognosis group, and 33 patients died

within three years and were considered in the poor prognosis group. The dataset included

clinicopathological information such as age, gender, TNM stage, MMR status, histology, resid-

ual tumor status, venous invasion, lymphovascular invasion, and perineural invasion.
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Differential gene expression analysis

Differential expression analysis was performed to identify genes that were significantly associ-

ated with outcome separating good and poor prognosis groups. Differential transcriptome

expression analysis of was conducted using the R (version 4.2) packages “limma” (version

3.56.2) and “edgeR” (version 3.42.4) downloaded from bioconductor.org [11–13]. Transcripts

with counts per million (CPM) <15 were filtered out in order to exclude low-expression

genes, and the dataset was normalized. The dispersion of gene expression values was estimated

[14], and statistical tests of fold change were computed to compare the poor prognosis group

to the good prognosis group. Gene transcript changes with a false discovery rate (FDR) less

than 0.05 were considered significant.

Propensity score matching (PSM)

A flow chart of how PSM was performed in this study is shown in Fig 1. Estimated propensity

scores of each case e(Xi) were calculated using linear logistic regression:

ln
eðxiÞ

1 � eðxiÞ
¼ ln

PrðZi ¼ 1jxiÞ
1 � PrðZi ¼ 1jxiÞ

¼ aþ b
Txi

eðxiÞ ¼ PrðZi ¼ 1jxiÞ

eðXiÞ ¼ b0 þ b1X1 þ b2X2 þ � � � þ biXi

b0: the intercept

bi: the regression coefficient

xi: the variables of each case

Xi: the specific variable to investigate and covariates

Zi = 1: case in a poor prognosis group

Zi = 0: case in a good prognosis group

The propensity score of each case was computed from the collected clinicopathological fea-

tures using the “glm” function (generalized linear model) and the “predict” function, both of

which are part of the basic R package “stats” (version 4.4.0).

GLM < � glmðPrognosis � Ageþ Gender þ � � � ; data ¼ dataframeÞ

dataframe$PropensityScore < � predictðGLM; type ¼ }response}Þ

Cases in the group with the smaller number of patients (in this study, the poor prognosis

group) were sorted by their propensity scores. The sorting was done from smallest to

largest propensity score, and, for each case, a paired case with most similar propensity score

was selected from the good prognosis group. If the absolute value of difference between two

propensity scores was less than 0.2, the case pair was included and the matched case

removed from future matching rounds. If the absolute value of difference was greater

than 0.2, the original case was excluded and the matched case retained for next matching

rounds. This process resulted in the creation of two extracted groups that had the same

number of cases without duplicates, and the number of cases was smaller than the original

dataset.
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Results

Prognostic proteomic biomarkers of CRC

The proteomic marker dataset of CRC cohort consisted of 367 cases in the good prognosis

group and 60 cases in the poor prognosis group (Table 1). Propensity scores were computed

for each case, and the resulting distributions of the propensity scores are shown in histograms

Fig 1. Flow chart of propensity score matching in this study. It is crucial that the number of cases in group A is not larger than in group B. In this study,

group A meant the good prognosis group, and group B meant the poor prognosis group in both datasets.

https://doi.org/10.1371/journal.pone.0302109.g001
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and density plots (Fig 2). After PSM, group differences of confounding factors, such as age,

gender, TNM stage, lymphatic invasion positivity, and perineural invasion positivity, were

eliminated. Two paired groups of 58 cases each were created after PSM, a significant reduction

in case numbers in both the good and poor prognosis groups when compared to the original

data before PSM (Table 1).

Comparisons of protein marker expression as measured by IHC scores between the good

and poor prognosis groups before and after PSM are shown in Table 2. In the analysis before

PSM, three protein biomarkers (SLC7A5, SLC3A2, and STAT1) showed statistically significant

differences between the good and poor prognosis groups. However, only STAT1 showed sig-

nificant difference between the two groups after cohorts were minimized for confounding var-

iables by PSM.

To validate the above findings, we also conducted random forest analyses on the dataset to

identify significant prognostic factors (Fig 3). In addition to clinicopathological features, sev-

eral markers such as STAT1, NNMT, SLC3A2, and MCM6 were found to be significant prog-

nostic factors based on both minimal depth and variable importance rankings. Except for

clinicopathological features such as lymphatic invasion and TNM stage, STAT1 was the most

significant prognostic factor based on both types of rankings from random forest analysis.

Prognostic transcriptomic biomarkers of CRC

The TCGA’s CRC RNA-seq dataset consisted of 130 cases in the good prognosis group and 33

cases in the poor prognosis group (Table 3). The propensity score of each case was calculated,

Table 1. Clinicopathological features of the proteomic CRC cohort before and after PSM.

Before PSM After PSM

Good prognosis (N = 367) Poor prognosis (N = 60) p-value Good prognosis (N = 58) Poor prognosis (N = 58) p-value

Age (mean) 64.0 56.4 < 0.001 55.3 56.8 0.604

Gender 0.01889 0.3426

Male 175 39 32 38

Female 192 21 26 20

Location 0.1291 0.3426

Right 183 23 20 23

Left 184 37 38 35

TNM staging (mean) 1.72 2.35 < 0.001 2.31 2.29 0.9087

Mismatch repair status 0.2982 0.5995

Present 87 10 7 10

Absent 280 50 51 48

Histology 0.8768 1

Mucinous 25 5 5 5

Not mucinous 342 55 53 53

Tumor differentiation (mean) 2.02 2.08 0.2159 2.07 2.09 0.8171

Lymphatic invasion < 0.001 1

Positive 64 27 26 25

Negative 303 33 32 33

Perineural invasion < 0.001 1

Positive 18 15 13 13

Negative 349 45 45 45

Bold: p <0.05, statistically significant

https://doi.org/10.1371/journal.pone.0302109.t001
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and the distributions of these scores were shown in histograms and density plots (Fig 4).

Before PSM, the good and poor prognosis groups were significantly impacted by six confound-

ing clinicopathological features, including TNM staging, mucinous histology, residual tumor

status, venous invasion, lymphatic invasion, and perineural invasion. These confounding fea-

tures were successfully eliminated by PSM, resulting in two paired groups of 28 cases each

with no significant differentiating clinical factors (Table 3).

Without PSM implementation, total mRNA sequencing of the original 130 good prognosis

cases and 33 poor prognosis cases yielded 13,294 genes (21.9% of all) with counts per million

(CPM) greater than 15. Differential gene expression analysis identified 402 genes with false

discovery rate less than 0.05, i.e., significantly differentially expressed between the good and

Fig 2. Distribution of propensity scores of the IHC CRC dataset.

https://doi.org/10.1371/journal.pone.0302109.g002
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poor prognosis cases. They included 373 upregulated and 29 downregulated genes associated

with poor prognosis.

After PSM and reducing the cases to only 28 in each group, differential expression analysis

identified 12,460 genes (20.5% of all) with CPM greater than 15. 122 differential genes were

observed with false discovery rate less than 0.05. The 122 significant genes included 109 upre-

gulated and 13 downregulated genes associated with poor prognosis.

Comparing the results before and after PSM, 29 significantly differentially expressed genes

were only identified after PSM, while 93 significant genes were identified both without and

with PSM analysis (Fig 5). The 29 newly uncovered CRC outcome-differential genes are listed

in Table 4. Additionally, the 93 genes selected in common across both comparisons are pro-

vided as S2 Table.

Among these 29 genes identified only after PSM are numerous well-known cancer-related

markers, e.g., ERBB2, MALAT1, or MUC5AC. A literature search revealed that at least 15 of

these markers have been suggested as potential diagnostic or predictive markers for CRC (see

refences listed for each potential marker in Table 4). More extensive investigation of these

markers and their roles in CRC will be warranted in future studies.

Discussion

Propensity score matching (PSM) is a powerful statistical tool for controlling confounding fac-

tors in analyses of complex omics biomarker cohorts. In this study, we demonstrated a PSM

strategy for creating two well-balanced groups that mimic the original study cohort but with

significantly fewer cases or patients required while eliminating outcome-confounding clinical

differences between the original cohorts. We created a stepwise matching protocol in which

the cases were matched from the one with the lowest to the highest propensity score (Fig 1).

This ascending sort should be better than a descending sort. As seen in our two datasets, cases

with lower propensity scores are easier to match (Figs 2 and 4). If a descending sort were used,

the paired case would consistently have a lower propensity score, and the covariates would be

more likely to remain after matching. Therefore, we predicted that an ascending sort would

result in a better matching outcome.

Table 2. Comparison of protein marker expression between groups before and after PSM.

Before PSM After PSM

Good prognosis (N = 367) Poor prognosis (N = 60) p-value Good prognosis (N = 58) Poor prognosis (N = 58) p-value

NNMT 35.4 37.1 0.5295 38.1 37.3 0.8212

GALNT6 54.6 50.5 0.349 47.8 51 0.5961

SLC7A5 84.1 60.7 0.005109 72 62.7 0.3822

SLC3A2 88.1 60 0.005121 60.5 62.1 0.9039

IGF2BP3 97.3 96.6 0.9275 106 96.9 0.4854

MCM6 13.8 19.3 0.1322 19.2 18.9 0.9473

SERPIN B5 86.7 70.2 0.06452 77.6 70.9 0.555

STAT1 57.1 25.3 < 0.001 59.1 26.2 0.002791

NAMPT 91.5 89.8 0.8424 100.2 89.1 0.356

P4HA1 95.8 108.2 0.1576 115.5 108.1 0.5195

LTBP2 (cytoplasm) positive 136 26 0.4323 18 26 0.1804

LTBP2 (stroma) positive 79 12 0.9223 14 11 0.6515

DDX21 81 9 0.2827 10 8 0.7976

Bold: p <0.05, statistically significant

https://doi.org/10.1371/journal.pone.0302109.t002
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Fig 3. Random forest rankings of prognostic factors in the CRC proteomic marker dataset. (A) Ranking of variable importance (VIMP). The blue bars

represent positive values of VIMP, indicating that the corresponding factor is positively associated with prognostic prediction. While the red bars represent

negative values of VIMP, indicating that the factor is negatively associated with prognostic prediction. (B) Ranking of minimal depth. The small minimal

depth indicates that the factor plays an important role in prognostic prediction. The vertical dashed line indicates the minimal depth threshold where smaller

minimal depth values indicate higher importance and larger indicate lower importance as calculated by the “gg_minimal_depth” function of the

“ggRandomForests” R package (version 4.7–1.1). (C) The combination of variable importance (VIMP) and minimal depth. The blue dots represent positive

values of VIMP, while red dots represent negative values of VIMP. The threshold represented by the vertical red dashed line indicates VIMP = 0. The threshold

represented by the horizontal red dashed line is equal to (B).

https://doi.org/10.1371/journal.pone.0302109.g003
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PSM is a cost-effective analytical method for omics data analyses and biomarker discovery.

Obtaining large omics expression dataset is typically expensive, so cost is often a significant

concern for research. By implementing PSM before the experimental process, high-quality

case series can be created from a much smaller number of cases. This approach not only pro-

vides higher-quality analytical results but also lowers research costs. Additionally, PSM enables

direct comparisons between patients. In past omics data analyses, the common method of

comparison was between cancer and normal tissue to uncover cancer biomarkers. However,

this method might not be appropriate for detecting certain cancer mechanisms, such as treat-

ment response or drug resistance. PSM enables comparisons between patients, which can help

identify these mechanisms directly.

In addition to the benefit of minimizing cohort size, PSM enabled us to discover several,

potentially important markers for colorectal cancer. From the proteomic marker cohort, PSM

affirmed the prognostic value of STAT1 in CRC that we have reported previously [30], and the

conclusion was further independently solidified by random forest analysis in this study. From

the CRC transcriptome cohort, PSM allowed us to identify several well-known prognostic fac-

tors that might have been missed in traditional differential expression analysis due to con-

founding factors, e.g., ERBB2 (HER2), MALAT1, and MUC5AC.

ERBB2 (also known as HER2, neu, and NGL) encodes a transmembrane glycoprotein

belonging to the epidermal growth factor receptor family [31–33]. ERBB2 is one of the most

extensively studied molecules in cancer research [34], particularly in breast cancer [35, 36].

Table 3. Clinicopathological features of the CRC RNA–seq dataset before and after PSM.

Before PSM After PSM

Good prognosis (N = 130) Poor prognosis (N = 33) p-value Good prognosis (N = 28) Poor prognosis (N = 28) p-value

Age (mean) 65.3 68.3 0.2154 69.3 67.4 0.5481

Gender 0.976 1

Male 72 19 17 16

Female 58 14 11 12

TNM staging (mean) 2.23 3.15 < 0.001 3.0 3.0 1

Mismatch repair loss 0.2156 -

Present 10 0 0 0

Absent/unknown 120 33 28 28

Histology 0.0096 1

Mucinous 9 8 6 7

Not mucinous 121 25 22 21

Residual tumor status < 0.001 0.7748

No 88 10 8 10

Other/unknown 42 23 20 18

Venous invasion 0.010 1

Positive 22 13 10 9

Negative/unknown 108 20 18 19

Lymphatic invasion 0.013 0.7844

Positive 32 16 10 12

Negative/unknown 98 17 18 16

Perineural invasion 0.033 1

Positive 9 7 4 3

Negative/unknown 121 26 24 25

Bold: p <0.05, statistically significant

https://doi.org/10.1371/journal.pone.0302109.t003
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Overexpression of ERBB2 in cancer cells has been linked to metastasis, poor response to can-

cer treatment, and poor prognosis. In our study, the mRNA abundance of ERBB2 was found

to be significantly higher in the poor-prognosis group by post-PSM analysis. However, the sig-

nificance of this difference was not identifiable without PSM.

MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is one of the first iden-

tified cancer-associated long noncoding RNAs. MALAT1 was originally described as a prog-

nostic marker of lung cancer metastasis. Upregulated MALAT1 has been observed in various

cancers, including CRC, and is associated with cancer metastasis, invasion, and poor prognosis

[37–39]. In this study, despite previous reports linking upregulated MALAT1 to poor progno-

sis, we observed a significant downregulation of MALAT1 mRNA abundance in the poor

Fig 4. Distribution of propensity scores of the RNA–seq CRC dataset.

https://doi.org/10.1371/journal.pone.0302109.g004
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Fig 5. (A–B) RNA–seq volcano plot comparing good prognosis group vs. poor prognosis group. Green dots (N = 93)

represent genes that are significant in both pre–and post–PSM comparison between the good–and poor–prognosis

groups. Blue dots (N = 217) represent genes that are significant only in the pre–PSM comparison between the good–

and poor–prognosis groups. Red dots (N = 29) represent genes that are significant only in the post–PSM comparison

between the good–and poor–prognosis groups. Grey dots (N = 12,121) represent genes that did not show significant

differences. (C) The Venn diagram of significant genes before and after PSM. The blue circle represents before PSM,

and the yellow represents after PSM.

https://doi.org/10.1371/journal.pone.0302109.g005
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prognosis group after PSM. It is worth noting that our study includes a high proportion of

advanced-stage cases, with 35.7% of cases in TNM stage IV and 33.9% in stage III. Previous

investigations into the expression level of MALAT1 have mainly focused on early-stage

patients, and there are limited reports on the expression of MALAT1 in advanced stage

patients.

MUC5AC is one of the mucins and a high molecular weight glycoprotein. While it is not

expressed in normal colonic mucosa, it is expressed during CRC progression [40, 41]. How-

ever, the function of dysregulated MUC5AC expression has not been well characterized. A

meta-analysis by Li et al. found that a high level of MUC5AC was associated with an improved

prognosis [42]. Consistent with this, the mRNA abundance of MUC5AC was significantly

decreased in the poor-prognosis group in our study. It is possible that MUC5AC plays a dis-

ease-modifying function in some CRC patients.

PSM also allowed us to discover several lesser studied or previously unknown biomarkers

of CRC. For example, a MYH7B coding variant was discovered as one of the eight novel vari-

ants associated with CRC risk in a Swedish population from genome-wide association studies

of 1,515 CRC patients and 12,108 controls [43]. MYH7B association with CRC risk was also

reported in a gene expression prediction model of a large cohort of CRC cases that included

Table 4. Genes significantly associated with CRC prognosis uncovered only by PSM.

Gene Description Evidence as CRC biomarker?

MTND1P23 MT-ND1 pseudogene 23 [15]

AFAP1-AS1 AFAP1 antisense RNA 1 [16]

LEFTY2 left-right determination factor 2

SCARA5 scavenger receptor class A member 5 [17]

CADM3 cell adhesion molecule 3 [18]

MALRD1 MAM and LDL receptor class A domain containing 1

ABCA8 ATP binding cassette subfamily A member 8

ANPEP alanyl aminopeptidase, membrane [19]

GREM2 gremlin 2, DAN family BMP antagonist

CHRDL1 chordin like 1

CILP cartilage intermediate layer protein

STMN2 stathmin 2

LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 [20]

RGMA repulsive guidance molecule BMP co-receptor a [21]

TUBB2B tubulin beta 2B class IIb

LIFR LIF receptor subunit alpha [22]

LRRN2 leucine rich repeat neuronal 2 [23]

SPARCL1 SPARC like 1 [24]

ERBB2 (HER2) erb-b2 receptor tyrosine kinase 2 [25]

MALAT1 metastasis associated lung adenocarcinoma transcript 1

PCDH19 protocadherin 19

HSPA6 heat shock protein family A (Hsp70) member 6

HCAR2 hydroxycarboxylic acid receptor 2

MYH7B myosin heavy chain 7B [26]

EPHB6 EPH receptor B6 [27]

MUC5AC mucin 5AC, oligomeric mucus/gel-forming [28]

CPS1 carbamoyl-phosphate synthase 1 [29]

ITLN2 intelectin 2

RNU4-2 RNA, U4 small nuclear 2

https://doi.org/10.1371/journal.pone.0302109.t004
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58,131 CRC cases and 67,347 controls of European ancestry [26]. By applying PSM, we identi-

fied the significance of MYH7B in CRC from a much smaller cohort than these two studies.

Although further research is needed to confirm many of the potential new markers identified

in our study, our results demonstrate the applicability and effectiveness of PSM for omics data

analyses.

PSM analysis has some well-known limitations. It is crucial to list all possible confounding

features without omission because the confounding factors that PSM can eliminate are only

the ones that are already known. If unknown confounding features exist, the PSM analysis

may not work correctly [44]. Additionally, PSM reduces the number of cases, and the result of

post-PSM analysis may contain type 2 errors [45, 46]. In the differential expression analysis of

RNA-seq dataset, this explains why there were significantly fewer genes in the analysis after

PSM (122 genes after PSM vs. 402 genes before PSM). There is a possibility of overlooking

some significant genes that should be focused on due to type 2 errors. This problem could be

addressed by collecting a greater number of cases at the beginning. Using 2-to-1 matching in

PSM can indeed be a useful arrangement to minimize the problem of type 2 errors [47, 48]. In

this approach, two cases with most similar propensity scores are matched to one case in the

opposite group. This can help to increase the number of cases while still maintaining balance

in the covariates between the two groups. For the CRC proteomic marker dataset, we used this

approach to match a good prognosis group of 104 cases to a poor prognosis group of 52 cases

(S1 Fig, S2 and S3 Tables) with overall results very similar to 1-to-1 PSM. This arrangement

can be useful in some datasets where increasing the number of cases is important while main-

taining a balance of covariates.

Conclusion

Propensity score matching (PSM) is a valuable and cost-effective method in cohort studies and

omics data analyses as it allows researchers to create comparable groups with homogenized

backgrounds using fewer cases. By reducing the impact of confounding factors, PSM can

improve the accuracy and reliability of biomarker discovery.
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