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Abstract

Hazardous chemical vehicles are specialized vehicles used for transporting flammable

gases, medical waste, and liquid chemicals, among other dangerous chemical substances.

During their transportation, there are risks of fire, explosion, and leakage of hazardous

materials, posing serious threats to human safety and the environment. To mitigate these

possible hazards and decrease their probability, this study proposes a lightweight object

detection method for hazardous chemical vehicles based on the YOLOv7-tiny model.The

method first introduces a lightweight feature extraction structure, E-GhostV2 network, into

the trunk and neck of the model to achieve effective feature extraction while reducing the

burden of the model. Additionally, the PConv is used in the model’s backbone to effectively

reduce redundant computations and memory access, thereby enhancing efficiency and fea-

ture extraction capabilities. Furthermore, to address the problem of performance degrada-

tion caused by overemphasizing high-quality samples, the model adopts the WIoU loss

function, which balances the training effect of high-quality and low-quality samples, enhanc-

ing the model’s robustness and generalization performance. Experimental results demon-

strate that the improved model achieves satisfactory detection accuracy while reducing the

number of model parameters, providing robust support for theoretical research and practical

applications in the field of hazardous chemical vehicle object detection.

Introduction

With the rapid economic development in China, there has been a continuous increase in the

circulation of hazardous materials across various sectors, particularly in key areas such as

energy, raw materials, and consumer goods. According to the latest statistical data, the daily

transportation volume of hazardous chemicals in China has exceeded 1 million tons, with an

annual total transportation volume surpassing 400 million tons [1]. This highlights the integral

role of hazardous chemical transportation in China’s economic system [2]. The widespread pro-

duction and use of hazardous chemicals have added complexity to their transportation
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activities, with hazardous chemical vehicles playing a crucial role in transporting these sub-

stances from production sites to end users, involving extensive logistics networks and transpor-

tation systems. However, as the number of hazardous chemical vehicles on the roads continues

to rise, there is an increasingly urgent demand for their safety management and monitoring.

During the transportation of hazardous chemical vehicles, there are inherent risks, includ-

ing fire, explosions, and the leakage of hazardous substances [3]. These risks not only pose a

direct threat to human health but also have the potential to cause harm to the environment.

Therefore, real-time monitoring of hazardous chemical vehicles becomes a crucial means to

ensure traffic safety and safeguard the lives and properties of the people. Real-time monitoring

not only aids in preventing accidents but also enables the early detection of potential issues,

allowing for timely measures to be taken to minimize the impact of accidents on the environ-

ment and individuals. In this context, there is an urgent need for an efficient and reliable mon-

itoring system to ensure the safe transportation of hazardous chemical vehicles, thereby

maintaining societal stability and promoting sustainable development.

With the rapid advancement of artificial intelligence technology, target detection algo-

rithms based on deep learning have made remarkable progress in the field of hazardous chemi-

cal vehicle detection [4]. However, this field still faces a series of significant challenges, with

real-time performance and accuracy being the most prominent issues. Hazardous Chemical

vehicles typically navigate through complex and dynamic road environments, susceptible to

various interference factors such as other vehicles, pedestrians, and road signs. These factors

not only complicate target detection but also impose high demands on the real-time capabili-

ties of detection algorithms. In scenarios with high traffic density and complex environments,

ensuring that detection algorithms can timely and accurately identify hazardous chemical

vehicles is an urgent requirement for ensuring road transport safety. Therefore, addressing the

challenges of real-time performance and accuracy becomes a crucial factor in driving forward

the technology for detecting hazardous chemical vehicles. Only through in-depth research and

innovative algorithm development, overcoming these challenges, can we establish an efficient

and reliable monitoring system for hazardous chemical vehicles in real-world road scenarios,

contributing to traffic safety and public security. In this process, close integration of advanced

deep learning technologies with practical requirements is essential to meet the complexity and

high demands of hazardous chemical vehicle detection.

To address the challenges of insufficient real-time performance and accuracy in hazardous

chemical vehicle detection, the single-stage YOLO algorithm proves to be a more ideal target

detection method. Among them, YOLOv7-Tiny stands out as a lightweight version of the

YOLOv7 target detection algorithm [5], possessing advantages in speed and efficiency. How-

ever, concerning the task of hazardous chemical vehicle detection, YOLOv7-Tiny has some

limitations, such as lower detection accuracy and difficulty in deployment on end devices.

Therefore, we have undertaken a series of improvements to YOLOv7-Tiny to overcome the

existing limitations. The specific contributions of this paper are as follows:

1. Firstly, by introducing a lightweight feature extraction structure, the E-GhostV2 network,

aims to reduce the burden on the model while achieving effective feature extraction. This

improved lightweight provides strong support for the deployment of the model on end

devices, which in turn enhances its applicability in real-world scenarios. This innovation

not only helps reduce the computational requirements of the model during deployment but

also provides a viable solution for real-time detection in complex environments and on-end

devices.

2. Secondly, by introducing partial convolutions to enhance the original model, it becomes

possible to effectively reduce computational redundancy and the number of memory
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accesses. The introduction of partial convolutions enables the model to more precisely cap-

ture critical features, thereby improving detection accuracy in complex scenarios. This

innovative design not only makes the model more efficient but also strengthens its robust-

ness in hazardous chemical vehicle detection tasks.

3. Finally, the WIoU loss function is introduced to balance the training effect of high-quality

samples and low-quality samples, which effectively solves the problem that the regression

frames cannot be accurately matched due to sample quality imbalance during the detection

of hazardous chemical vehicles. This strategy of balancing high and low-quality samples

helps to make the model more robust and better adapted to the challenges in real environ-

ments, which further ensures that the model can perform the task of detecting dangerous

chemical vehicles robustly and efficiently in real applications.

Related work

Traditional detection methods

Traditional vehicle detection methods include various approaches such as image processing-

based methods [6], feature extraction, classifier-based methods, template matching-based

methods, and machine learning-based methods.

For instance, Tao et al. proposed a car detection method for low-resolution ship images

that utilized body boundaries, front windshield boundaries, and shadows as key features.

Although it worked well for vertical and slightly tilted viewpoints, its detection capability was

limited for large degrees of tilt, leading to constraints in handling varying viewing angles [7].

Bougharriou et al. introduced a HOG vehicle detection method using linear SVM classifiers

with oriented gradient feature descriptors and histograms. While this method showed promis-

ing results in vehicle detection, it suffered from low system performance, lacking real-time

capability and robustness [8]. Wei et al. proposed a new image strip feature for vehicle detec-

tion, employing an integral image-based feature extraction method and a complexity-aware

criterion of the RealBoost framework. This method improved efficiency while maintaining

accuracy. However, compared to complex descriptors like HOG and covariance descriptors,

the image strip feature discarded some statistical information, affecting its discriminative abil-

ity [9].

In summary, traditional vehicle detection methods have limitations, including sensitivity to

changes in viewing angle, challenges in handling complex backgrounds and occluded targets,

low real-time performance, and reduced accuracy in recognition.

Deep learning-based detection methods

Deep learning-based target detection models [10] can be categorized into two main types: two-

stage target detection and one-stage target detection. Two-stage detection algorithms, such as

R-CNN [11], Fast R-CNN [12], Faster R-CNN [13], and Mask RCNN [14], first extract candi-

date regions and then perform classification and bounding box regression. These methods

achieve high accuracy but are relatively slow in processing speed. On the other hand, one-stage

detection algorithms, like the YOLO (You Only Look Once) family [15] and SSD [16], predict

target location and class directly through a single network, providing real-time and fast detec-

tion capabilities.

Kuang et al. developed a deep learning-based highway vehicle detection method that uti-

lizes a single-shot multi-box target detector (SSD) to mark vehicles in highway videos. They

trained the vehicle detector using SSD and tested the onboard detector for vehicle detection
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[17]. Manana et al. introduced a preprocessed Faster R-CNN for road vehicle detection,

incorporating Sobel edge operators and Hough transform-based preprocessing lane pipe-

lines for lane detection. This improved the training and detection speed of the model [18].

Piedad et al. introduced a vehicle counting system based on deep learning with Mask

R-CNN. They compared its output to the conventional approach of manually recording

past vehicle data, demonstrating higher accuracy in classifying and quantifying automo-

bile-type vehicles using the developed tool [19]. Bie et al. proposed an improved lightweight

vehicle detection algorithm based on YOLOv5. The algorithm combines depth separable

convolutions and the C3Ghost module, replacing the original C3 module, aiming to reduce

model parameters and enhance detection speed [20]. Murthy et al. introduced LD-CNNs, a

lightweight deep convolutional neural network detection model. The detection algorithm

incorporates a multi-condition constraint generative adversarial network named

MC-GAN, which efficiently generates samples, significantly reducing the model’s computa-

tional cost and improving detection accuracy [21]. Talaat, F.M. and ZainEldin, H. intro-

duced a novel approach for fire detection in smart cities utilizing the YOLOv8 Smart Fire

Detection System (SFDS). SFDS leverages deep learning to detect fire-specific features in

real-time, aiming to enhance accuracy and reduce false alarms compared to traditional

methods. The proposed framework integrates Fog and Cloud computing, along with the

IoT layer, for real-time data collection and processing, ensuring faster response times and

mitigating risks. SFDS demonstrates state-of-the-art performance with a high precision

rate of 97.1% for all classes. The proposed approach holds potential applications in fire

safety management, forest fire monitoring, and intelligent security systems [22]. Chen et al.

designed a novel convolutional algorithm using group convolutions and introduced new

criteria to determine the effective range of groups. Based on these new design criteria, they

developed a lightweight detection network called DenseLightNet. The detector designed

using this network achieved a threefold increase in operational speed compared to YoloV3,

with a smaller model size [23]. Li et al. proposed a 3D object detector named 6DoF-3D,

which adopts an efficient and accurate single-stage LiDAR-based detection approach. The

network structure includes the CSPDarknet53 backbone, multi-scale feature fusion neck,

and detection head. By converting 3D point clouds into pseudo-images and employing a

novel encoding strategy, this model successfully reduces the computational cost of the net-

work [24].

Although the above deep learning-based vehicle detection methods have achieved good

results, they are still prone to issues like missed detections and false detections in the presence

of target occlusion and complex scenes. Additionally, large models are unsuitable for mobile

deployment and fail to meet real-time demands.

Description of the problem

Detecting hazardous material vehicles is of significant importance in enhancing safety and

emergency response. However, it faces challenges such as complex backgrounds, small-sized

targets, diverse categories, and real-time requirements. Overcoming these limitations requires

continuous improvement of algorithms and technologies to achieve more accurate and effi-

cient detection of hazardous material vehicles. Therefore, this paper aims to propose a light-

weight and efficient object detection algorithm to address these challenges and further

enhance the level of hazardous material vehicle detection. The effectiveness of the algorithm is

experimentally validated on three different datasets, using various evaluation metrics to deter-

mine the model’s performance under different scenarios.
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Datastes

The experimental dataset used in this paper is the hazardous chemical vehicle dataset [25]

(open access link https://www.kaggle.com/datasets/yucuiyingcuiyingyu/dataset-for-plos-one),

encompassing four categories of vehicle targets: large trucks, oil trucks, manned buses, and

tiny cars. The dataset comprises 4363 images, which were divided into training, testing, and

validation sets with a ratio of 6:2:2. Specifically, 2617 images were allocated for model training,

873 images for model testing, and another 873 images for model validation. A partial image of

the Hazardous Materials Vehicle dataset is shown in Fig 1.

The Cars Detection dataset is a comprehensive dataset showcasing various vehicles, includ-

ing five different categories: “Ambulance,” “Bus,” “Car,” “Motorcycle,” and “Truck.” This data-

set not only includes small-sized motorcycles but also features large-sized trucks, allowing

detection models to face different real-world challenges. Additionally, the dataset captures

vehicles under various environmental conditions, lighting scenarios, and viewpoints, reflecting

the complexity of object detection tasks in practical applications(open access link ). The Traffic

Detection dataset includes vehicle images captured from over 100 cities and rural areas, total-

ing over 11,000 images. It comprises six categories: “Bike”, “Auto”, “Car”, “Truck”, “Bus”, and

“Other Vehicles” (Rickshaw, Van, Cycle, etc.). This dataset covers diverse lighting conditions,

such as day and night, various weather conditions, different distances, and viewpoints, provid-

ing a comprehensive test of the model’s detection performance under complex conditions

(open access link ).

Evaluation indicators

In this paper, several modeling evaluation metrics are employed, including Precision (P),

Recall (R), Intersection over Union (IoU), and Mean Average Precision (mAP). To clarify the

definitions of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative

(FN), TP is the number of positive samples correctly identified as positive, TN is the number

of negative samples correctly identified as negative, FP is the number of negative samples

incorrectly identified as positive, and FN is the number of positive samples incorrectly identi-

fied as negative.

Precision (P) refers to the proportion of correctly identified positive samples among all pre-

dicted positive samples. This study specifically denotes the proportion of correctly identified

hazardous chemical vehicles among all predicted targets recognized as hazardous chemical

vehicles. A higher precision indicates better detection performance of the model. The

Fig 1. Display of selected datasets. (a)(b)(c)shows a selection of images from the Dangerous Materials Vehicles

dataset. Reprinted from [] under a CC BY license, with permission from [Pengcheng Zhu], original copyright [2023].

https://doi.org/10.1371/journal.pone.0299959.g001
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calculation formula is as follows:

P ¼
TP

TP þ FP
ð1Þ

Recall (R) refers to the proportion of correctly identified positive samples among all actual

positive samples. In this study, it specifically denotes the proportion of actual hazardous chem-

ical vehicle targets that are correctly classified as hazardous chemical vehicles. In object detec-

tion tasks, recall evaluates whether the model can comprehensively capture all targets in the

image without missing any actual targets. A high recall indicates that the model can effectively

find most targets, reducing the likelihood of false negatives (missed detections). The calcula-

tion formula is as follows:

R ¼
TP

TP þ FN
ð2Þ

Intersection over Union (IoU) refers to the ratio of the intersection area to the union area

between the Bbox(predicted bounding box) and the Tbox (ground truth bounding box). It pro-

vides a quantitative measure to assess the prediction accuracy of the model. A higher IoU indi-

cates more accurate predictions by the model. The calculation formula is as follows:

IoU ¼
Bbox \ Tbox
Bbox [ Tbox

ð3Þ

Mean average precision (mAP) is calculated by combining IoU, precision, recall, and the

confusion matrix, making it one of the most crucial metrics in object detection [26]. It repre-

sents the average precision across multiple classes, with values ranging from [0, 1], where

higher values indicate better performance. mAP@0.5 calculates the Average Precision for each

class using IoU set to 0.5 and then averages across all classes.mAP@.5: .95 represents the aver-

age over different thresholds (from 0.5 to 0.95 with a step size of 0.05). The formula for calcula-

tion is as follows:

mAP ¼
1

classnumber
Pclassnumber

1
AP ð4Þ

Algorithm design

This paper proposes an improved hazardous chemical vehicle detection algorithm model,

G-YOLO, whose model framework is illustrated in Fig 2. The design of this model aims to

overcome challenges faced by traditional object detection models in hazardous chemical vehi-

cle detection tasks, with a focus on improving detection accuracy and real-time performance.

The proposed model enhances the detection accuracy of hazardous chemical vehicles in

complex and dense scenarios by integrating the lightweight E-GhostV2 network into the back-

bone and neck. This integration ensures computational efficiency while enabling deployment

on end devices and improving real-time performance. Moreover, the utilization of PConv in

the backbone significantly reduces computational redundancy and memory accesses, leading

to faster and more accurate detection of hazardous chemical vehicles, while minimizing the

risk of model leakage and misdetection. Additionally, the WIoU loss function is applied to bal-

ance the impact of high-quality and low-quality samples during training, enabling the model

to rely more on anchor frame features for precise prediction, adapt better to diverse shapes
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and positions of hazardous chemical vehicle targets, and improve detection accuracy, particu-

larly for small-sized and occluded targets.

Lightweight feature extraction network E-GhostV2

Traditional models for hazardous chemical vehicle detection are typically complex and large,

requiring significant computational resources and memory, making them challenging to

deploy effectively on mobile devices. Simultaneously, capturing the spatial relationships

between pixels of hazardous chemical vehicles at long distances in complex backgrounds is a

challenging task. In complex backgrounds, there may be numerous interfering objects and

occlusions, increasing the difficulty of detecting and locating hazardous chemicals and

vehicles.

The Ghost module proposed by GhostNet is a lightweight and efficient convolutional mod-

ule [27]. It generates more diverse feature maps by utilizing inexpensive linear operations,

effectively reducing the parameters and computational load of convolutional layers without

changing the output feature map size and channel size. However, the convolution operation

can only capture local information in the window region, limiting the improvement in model

performance. Introducing the Decoupled Fully Connected Attention (DFC attention) mecha-

nism in convolution can overcome this limitation. It enhances the long-range dependency of

feature maps by performing fully connected operations horizontally and vertically on the fea-

ture maps, thereby improving the detection performance of the model [28]. The GhostNetV2

network is constructed by stacking Ghost modules and the Decoupled Fully Connected Atten-

tion mechanism. Its design achieves a good balance between lightweight and high perfor-

mance, providing strong support for efficient deployment of the model in resource-

constrained environments.

Leveraging the structural characteristics of GhostNetV2, we designed a lightweight feature

extraction network called E-GhostV2. Introducing the E-GhostV2 network into the YOLOv7--

Tiny object detection network model allows for effective feature extraction while reducing the

model’s burden. The schematic diagram of the E-GhostV2 network is illustrated in Fig 3.

The GhostV2Bottleneck consists of two Ghost modules and one DFC attention mechanism,

as depicted in Fig 4. The first Ghost module aims to expand the number of feature channels,

while the second Ghost module generates the output features by reducing the channel count.

The advantage of this design is the effective decoupling of the model’s expressive power and

Fig 2. G-YOLO modeling framework.

https://doi.org/10.1371/journal.pone.0299959.g002
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computational complexity, addressing potential overfitting issues during training and insuffi-

cient generalization during testing. The DFC attention mechanism is introduced to capture

long-range correlations between different spatial position pixels. The DFC attention mecha-

nism operates in parallel with the first Ghost module to enhance features, and the second

Ghost module receives the enhanced features to generate output features, further boosting

model performance. This structural design contributes to maintaining model performance

while enhancing its generalization ability. Below is a detailed introduction to the Ghost module

and DFC attention mechanism and their functionalities.

The Ghost module is a lightweight convolutional neural module that effectively generates

more feature maps with fewer parameters(as shown in Fig 5). Given the input features X = RH
× W × C(H,W, and C denote the height, width, and number of channels of the feature map,

respectively), the Ghost module divides the output channel into two parts. First, the input fea-

tures X undergo a 1 × 1 pointwise convolution to obtain a portion of the output featuresY0.
Subsequently, this is used as input to generate another set of features through a 3 × 3 depthwise

convolution. Finally, the outputs from these two parts are concatenated to obtain the ultimate

output, as computed in Eqs (5) and (6):

Y 0 ¼ X ∗ F11 ð5Þ

Y ¼ ConcatðY 0;Y 0 ∗ FdÞ ð6Þ

Fig 4. GhostV2Bottleneck.

https://doi.org/10.1371/journal.pone.0299959.g004

Fig 3. E-GhostV2 network diagram.

https://doi.org/10.1371/journal.pone.0299959.g003

PLOS ONE A YOLOv7-based target detection algorithm for lightweight hazardous chemical vehicles

PLOS ONE | https://doi.org/10.1371/journal.pone.0299959 April 24, 2024 8 / 23

https://doi.org/10.1371/journal.pone.0299959.g004
https://doi.org/10.1371/journal.pone.0299959.g003
https://doi.org/10.1371/journal.pone.0299959


In the equations mentioned above,Y 0 2 RH�W�C0out , and * denotes the convolution operation.

F11 denotes the 1*1 pointwise convolution, Concat denotes the splicing operation, Fd repre-

sents the 3 × 3 depthwise convolution, and Y 2 RH�W�Cout denotes the final output features.

The Ghost module, compared to regular convolution modules with the same input and output

feature map quantities, successfully achieves a significant reduction in parameters and compu-

tations. However, this inevitably leads to a decrease in its feature representation capability. In

the Ghost module, only a portion of features is input into the 3 × 3 depthwise convolution to

capture spatial features, while the rest of the features undergo a 1 × 1-pointwise convolution

operation to reduce computational complexity. The relationship between spatial pixels is cru-

cial for accurate recognition. However, pointwise convolution operations do not handle the

spatial features of the input tensor; they only perform convolution operations on channels.

Therefore, this limits the module’s ability to capture spatial information, hindering further

performance improvement.

The DFC attention module is employed to enhance the output features of the Ghost mod-

ule, thereby strengthening the model’s ability to capture distant information between different

spatial pixels. Specifically, the DFC attention mechanism designs a fully connected layer with

fixed weights to generate an attention map with a global receptive field. Firstly, the given input

Z 2 RH × W × C is considered asH ×W tokens, denoted as Z 2 {Z11, Z12, . . ., ZHW}. Next, it is

decomposed into two fully connected layers along the horizontal and vertical directions,

respectively. This decomposition allows the model to effectively perceive long-distance depen-

dencies, as represented in the following formulas:

ahv
0 ¼
PH

h0¼1
FHh;h0w ∗Zh0w; h ¼ 1; 2; :::;H;w ¼ 1; 2; :::;W ð7Þ

ahv ¼
PW

h0¼1
FWh;h0w ∗ ahv0; h ¼ 1; 2; :::;H;w ¼ 1; 2; :::;W ð8Þ

Where FW and FH represent the learning weights. The output αhv0 represents the attention

along the vertical direction, while αhv represents the fusion of the attention along both hori-

zontal and vertical directions, yielding the complete attention output. After applying Eqs (7)

and (8), the DFC attention mechanism is obtained, as illustrated in Fig 6.

Fig 5. Ghost module.

https://doi.org/10.1371/journal.pone.0299959.g005

PLOS ONE A YOLOv7-based target detection algorithm for lightweight hazardous chemical vehicles

PLOS ONE | https://doi.org/10.1371/journal.pone.0299959 April 24, 2024 9 / 23

https://doi.org/10.1371/journal.pone.0299959.g005
https://doi.org/10.1371/journal.pone.0299959


Partial convolution

In traditional target detection tasks for hazardous chemical vehicles, the overheads of compu-

tation and memory access tend to have an impact on the model accuracy. If the latency exceeds

the requirements of a specific application scenario, the problem of wrong detection and missed

detection may occur. Meanwhile, in dealing with large-scale dense vehicles or real-time sce-

narios, if the model is unable to meet the required high throughput requirements, it will lead

to a reduction in the efficiency of the model in the training and inference phases, which will

affect the model’s accuracy for hazardous chemical vehicles. To solve this problem, we use

PConv to improve the network so that the hazardous chemical vehicle detection model has

higher efficiency and better feature extraction capability, thus improving the accuracy and pre-

cision of detection.

To address this issue, the paper introduces Partial Convolution (PConv) to replace some of

the regular convolutions in the backbone of the YOLOv7-Tiny model, optimizing the network

to enhance the efficiency and feature extraction capability of the hazardous chemical vehicle

detection model. As shown in Fig 7, the spatial feature extraction difference between PConv

and regular Conv lies in the fact that partial convolution operates only on a subset of contigu-

ous channels to extract features and concatenate them with the remaining channels. This

approach maintains the same number of channels in input and output feature maps while

reducing computational and memory access costs [29]. Through this method, partial convolu-

tion can more effectively utilize information in the feature maps, thereby improving the detec-

tion efficiency and accuracy of the hazardous chemical vehicle detection model.

The algorithmic implementation of partial convolution is outlined in Table 1. In steps 1

and 2, the dimensions after segmentation and the dimensions before segmentation are accu-

rately determined, providing the model with more flexible feature learning capabilities. In step

4, by invoking the split function, the input feature map x is segmented along dimension 1,

resulting in outputs x1 and x2, representing the portions requiring convolution operations

and those not requiring convolution operations, respectively. Next, in step 5, a 3 × 3 convolu-

tion is applied to x1 to extract features. Finally, in step 6, the concatenated function is called to

concatenate the convolved x1 with x2, yielding the complete output feature.

Fig 6. Decoupling fully connected attention.

https://doi.org/10.1371/journal.pone.0299959.g006

Fig 7. Comparison between normal convolution and partial convolution.

https://doi.org/10.1371/journal.pone.0299959.g007
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Through the above process, we have successfully implemented the algorithm of partial con-

volution. This algorithm flexibly utilizes segmentation, convolution, and concatenation steps,

effectively preserving the integrity of input feature map information while extracting crucial

features. It has significantly improved the detection efficiency and accuracy of the hazardous

chemical vehicle detection model. This innovative approach holds great significance in

addressing challenges in scenarios with large-scale and dense traffic or real-time environ-

ments, providing an effective solution for the hazardous chemical vehicle detection field.

Loss functions

The YOLOv7-Tiny algorithm utilizes the CIoU (Complete Intersection over Union) bounding

box regression loss function, including penalties for aspect ratios. However, when the pre-

dicted bounding box’s aspect ratio matches that of the ground truth bounding box, the CIoU

loss function becomes ineffective, resulting in a lack of stability in the model. In hazardous

chemical vehicle detection tasks, training data inevitably contains low-quality samples due to

geometric factors such as distance and aspect ratios, which can degrade the model’s generaliza-

tion capability. Bounding Box Regression (BBR) plays a crucial role in hazardous chemical

vehicle detection tasks, and the definition of its loss function is essential for improving model

performance. Traditional BBR methods typically focus on enhancing fitting capabilities on

high-quality samples. However, an excessive emphasis on high-quality samples may lead to

neglecting the impact on low-quality samples, thereby reducing the accuracy of object localiza-

tion on low-quality samples.

To address this issue, this study introduces an improved Weighted IoU (WIoU) bounding

box loss function with a dynamically non-monotonic focusing mechanism. This enhanced fea-

ture ensures that the loss function remains stable and effective even when the aspect ratio of

the predicted bounding box matches that of the ground truth bounding box. The dynamically

non-monotonic focusing mechanism enables the model to better adapt to various scenes and

object shapes, thereby improving the accuracy and stability of the YOLOv7-Tiny algorithm

model in object detection.

Specifically, this paper adopts WIoU-v1, aiming to balance the training effects of different

quality samples through a dynamic modulation mechanism. By reducing the training inter-

vention on high-quality samples and lowering the penalty for geometric factors, the model

relies more on the anchor box itself rather than contextual features for prediction. This strategy

enhances the robustness and generalization performance of the model, enabling it to better

Table 1. Algorithmic process of partial convolution.

Algorithm 1: Partial Conv

Input: Input feature map x; Number of input channels Cin; Number of output channels Cout.
Output: Output feature map out.
1: Calculate the portion for the convolution operation: dim − conv = dim/n; // n is set to 4 in this experiment, dim is

1;

2: Calculate the portion that does not require convolution operation: dim − untouched = dim—dim − conv;
3: Call the split Concat method: Function forward − split − Concat(x);

4: Split the input x along dimension 1 to obtain x1 and x2: x1, x2 = split(x, [dim − conv, dim − untouched], dim = 1);

5: Apply a 3 × 3 convolution to the segmented part x1: x1 = partial − conv3(x1);

6: Concatenate the convolved part x1 with the untouched part x2 along dimension 1 to obtain the final output out;
7: out = Concat((x1, x2), 1);

8: return out

https://doi.org/10.1371/journal.pone.0299959.t001
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adapt to hazardous material vehicle targets of different shapes and positions, ultimately

improving the detection accuracy. The definition of the WIoU loss function is as follows:

LWIoUv1 ¼ RWIoULIoU ð9Þ

LIoU ¼ 1 �
Bbox \ Tbox
Bbox [ Tbox

ð10Þ

RWIoU ¼ exp
ðx � xgtÞ

2
þ ðy � ygtÞ

2

ðW2
g þH2

g Þ
∗

 !

ð11Þ

Whereas from Eq (11), it can be observed that the range of RWIoU is [1, e), aiming to signifi-

cantly enhance the LIoU of ordinary quality anchor boxes. Meanwhile, in Eq (10), LIoU (Loss

Intersection over Union) takes values in the range [0, 1]. Relative to RWIoU, the design of LIoU
aims to significantly decrease the RWIoU of high-quality anchor boxes, especially when there is

a high overlap rate between the predicted box and the ground truth box, and the distance

between their center coordinates is small [30]. When there is an overlap between Bbox (pre-

dicted box) and Tbox (ground truth box), LIoU focuses on the distance between their center

points. This adjustment of the loss allows it to prioritize the accurate location of the target, not

solely relying on the overlap. This helps the model better adapt to accurately predict the target

boundary. Here, x and y represent the coordinates of the center point of the predicted box, xgt
and ygt are the coordinates of the center point of the ground truth box,Wg and Hg represent

the dimensions of the minimum bounding box. To avoid gradient hindrance in convergence,

the superscript * indicates the separation ofWg andHg from the computation graph, effectively

eliminating factors hindering convergence. For detailed parameter meanings, refer to Fig 8.

As the WIoU loss function is dynamic, allowing for the dynamic adjustment of gradient

gain allocation strategy based on the current situation at each moment, it effectively addresses

the issue of sample quality imbalance preventing accurate matching of regression boxes.

Therefore, this paper adopts the WIoU loss function to replace the original CIoU in the net-

work, resolving the problem caused by the imbalance in sample quality.

Fig 8. Intersection and juxtaposition of anchor frame and target frame.

https://doi.org/10.1371/journal.pone.0299959.g008
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Experiments and discussion

Experimental environment and parameter settings

For the experiments in this paper, we conducted on a Windows 10-based computer equipped

with an NVIDIA Tesla V100 SXM2 graphics card boasting 16 GB of memory. The PyTorch

deep learning framework, version 1.8.0, was selected as the development environment, and

CUDA 10.2.89 was utilized to accelerate the training process. All models were trained from

scratch without the use of any pre-trained models. Additionally, Python interpreter version 3.8

along with the SGD optimizer were employed to adjust the model parameters. Table 2 presents

specific settings of key experimental parameters.

Data preprocessing

To improve the generalization ability and robustness of the model, we have used the mosaic

technique to enhance the original data. The mosaic technique is an image data enhancement

operation that transforms the image by dividing the original image into small blocks and

recombining them. Each small piece is stitched together to form generate a new image sample

after operations such as panning, scaling, cropping, stitching, and transforming hue, bright-

ness, and saturation. This operation simulates visual changes in the real world, such as rota-

tion, scaling, and translation of objects, enabling the model to obtain more information from

the original image and improving the model’s ability to generalize to different scenes. Taking

the hazardous chemical vehicle dataset used in this paper as an example, the mosaic technique

is shown schematically in Fig 9.

By applying the mosaic technique, it is possible to increase the diversity of the dataset, and

it helps the model to better cope with the task of target detection of hazardous chemical vehi-

cles in various visual variations and complex scenarios.

Experimental results and analysis

Analysis of training results. The YOLOv7-tiny model and the G-YOLO model were

trained on the hazardous materials vehicle dataset, and the training results were initially

Table 2. Experimental parameter configuration.

Batch size Epoch Ir0 Weight decay Momentum Input size

32 100 0.01 0.0005 0.937 640

https://doi.org/10.1371/journal.pone.0299959.t002

Fig 9. Flow chart of mosaic technology. Reprinted from [] under a CC BY license, with permission from [Pengcheng

Zhu], original copyright [2023].

https://doi.org/10.1371/journal.pone.0299959.g009
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evaluated using Precision, Recall, mAP@.5, and mAP@.5: .95 as metrics, and the comparison

curves of the training results are shown in Figs 10 and 11.

As can be seen from Fig 10, the G-YOLO model outperforms the traditional YOLOv7-Tiny

model on both the recall curve and the precision curve. From the recall curve, it can be seen

that the G-YOLO model can identify more positive cases, i.e., more hazardous vehicles, under

the same conditions. The observation of the precision curve shows that under the same condi-

tions, the G-YOLO model can predict more true positive samples, i.e., a higher proportion of

positive examples in the prediction results. This further proves the effectiveness of the

G-YOLO model in detecting hazardous materials vehicles.

In order to further assess the validity of the G-YOLO model, mAP@.5 and mAP@.5: .95 of

the model are analyzed in this paper, as shown in Fig 11.

The experimental results demonstrate the significant advantages of the G-YOLO model

over the conventional YOLOv7-Tiny on two key evaluation metrics, namely mAP@.5 and

mAP@.5: .95. First, through a detailed analysis of mAP@.5, we observe that G-YOLO achieves

a higher level of detection accuracy on the Hazardous Chemical Vehicle dataset. This not only

indicates that G-YOLO can recognize targets more accurately, but also achieves a superior per-

formance under a relatively relaxed IoU threshold. This is crucial to ensure the credibility and

accuracy of target detection results, especially when dealing with difficult scenarios such as

changing viewing angles, complex backgrounds, and occlusions. Meanwhile, by evaluating

Fig 10. Training results of YOLOv7-tiny model and G-YOLO model on hazardous materials vehicle dataset. (a)

Precision Curves Comparison; (b) Recall Curves Comparison.

https://doi.org/10.1371/journal.pone.0299959.g010

Fig 11. Training results of YOLOv7-tiny model and G-YOLO model on hazardous materials vehicle dataset. (a)

mAP@.5 Curves Comparison; (b) mAP@.5: .95 Curves Comparison.

https://doi.org/10.1371/journal.pone.0299959.g011
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mAP@.5: .95, we note that G-YOLO also achieves significant performance improvements at

higher IoU threshold ranges. This indicates that the G-YOLO model has a stronger generaliza-

tion ability for high-precision target detection and can maintain efficient detection accuracy

under more demanding matching conditions. This is of great practical significance for applica-

tions that require high detection accuracy in some real-world scenarios, especially in areas

such as hazardous materials vehicle monitoring.

In addition, this study also conducted comparative experiments on four vehicles before and

after the improvement of mAP@.5. The results of the experiments are shown in Fig 12.

Based on the mAP@.5 comparison plot in Fig 12, we observe that the G-YOLO model has

significantly improved the detection performance of the G-YOLO model in each vehicle cate-

gory relative to the YOLOv7-Tiny model on the Hazardous Chemical Vehicle dataset, with all

three vehicle detection tasks except the Bigcar category presenting higher mAP@.5. This indi-

cates that the G-YOLO model is more accurate and robust in the hazardous materials vehicle

detection task. Thus, G-YOLO not only outperforms the benchmark model in terms of overall

performance but also achieves higher accuracy in specific categories of detection.

Reasonableness validation of WIoU loss function selection. In this paper, to justify the

selection of WIoU as the loss function, we conducted multiple comparison experiments

between WIoU and other typical loss functions, such as SIoU, CIoU, EIoU, and GIoU, using

the dataset presented in this study. The experimental results are summarized in Table 3.

The WIoU loss function, in contrast to several other loss functions, demonstrates higher

mAP@.5 and mAP@.5: .95 values. This indicates that the model is more inclined to learn the

association between the anchor frame and the target, relying more confidently on the anchor

frame information for target detection. Consequently, the model exhibits improved robustness

in the presence of various geometric variations and possesses a better generalization ability to

adapt to hazardous material (hazmat) vehicle targets of different shapes and locations.

Ablation experiments. To validate the effectiveness of the proposed improvement

method, we conducted a series of ablation experiments for comparative analysis, as shown in

Fig 12. mAP@.5 comparison chart for various vehicle categories. Reprinted from [] under a CC BY license, with

permission from [Pengcheng Zhu], original copyright [2023].

https://doi.org/10.1371/journal.pone.0299959.g012
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Table 4. The experiments were performed on the same dataset used in this paper, and to

ensure accuracy and comparability, we used identical parameter settings. The table below pres-

ents the performance of the improved model and the YOLOv7-tiny model across various

metrics.

As can be seen from Table 4, the G-YOLO algorithm achieves significant improvements in

all evaluation metrics. group A experiments show that replacing the CIoU loss function of the

original model with the WIoU loss function leads to a 1.75% improvement in mAP@.5: .95

along with an 11.76% improvement in FPS, indicating that the introduction of the WIoU loss

function effectively solves the problem of solving the target localization problem that is caused

by blindly emphasizing high-quality samples. Group B experiments use partial convolution to

replace part of the regular convolution of the YOLOv7-Tiny network backbone, which

increases the number of parameters in the model, but the mAP@.5: .95 and precision of the

model increase by 2.27% and 3.52%, respectively, and the FPS of the model improves by

15.15%, which indicates that the partial convolution not only improves the feature extraction

capability of the model effectively but also improves the FPS of the model. improves the feature

extraction ability of the model, but also successfully reduces the computational redundancy

and the number of memory accesses, which significantly improves the detection efficiency of

the model. The experiments in group C use the E-GhostV2 network introduced to the original

model’s trunk and neck, which not only reduces the number of the model’s parameters by

5.64% but also improves the model’s detection mAP and precision to a certain extent. This

demonstrates that the E-GhostV2 network can better capture the dependencies between pixels

of long-range spatial locations of hazardous materials vehicles and improve the detection per-

formance of the model while maintaining the light weight.

The last set of experiments shows the training results of the G-YOLO algorithm model on

the dataset, and the G-YOLO model performs well in multiple sets of experiments, reaching a

mAP@.5 of 81.5%, which is an improvement of 4.22% compared to the previous one. The aver-

age accuracy at mAP@.5: .95 achieved an improvement of 6.98%. These results indicate that

the improved algorithm achieves better performance on the target detection task. At the same

time, the number of parameters of the improved model decreased by 4.15%. This means that

Table 3. Comparison of multiple target detection experiments.

Loss Functions mAP@.5 mAP@.5:.95

CIoU 78.0 56.3

EIoU 78.0 57.3

SIoU 77.1 57.3

GIoU 76.5 56.3

WIoU 78.3 58.0

https://doi.org/10.1371/journal.pone.0299959.t003

Table 4. Comparison of ablation experiment results of models on hazardous chemical vehicle dataset.

Models WIoU PConv E-GhostV2 Precision Recall mAP@.5 mAP@.5:.95 Para/M FPS

YOLOv7 − tiny 85.2 69.2 78.2 57.3 6.03 263.16

A ✓ 84.6 70.9 78.8 58.3 6.03 294.12

B ✓ 88.2 67.8 78.5 58.6 6.11 303.03

C ✓ 90.2 66.3 79.2 60.7 5.69 250.00

G − YOLO ✓ ✓ ✓ 83.8 74.4 81.5 61.3 5.78 256.42

https://doi.org/10.1371/journal.pone.0299959.t004
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the model becomes more lightweight with lower storage and computation costs while main-

taining higher performance. This is important for deploying and applying the model in

resource-constrained environments.

To verify the effectiveness of the improved module proposed in this paper and the generali-

zation ability of the improved model, we conducted ablation experiments on the Cars Detec-

tion dataset and the Traffic Detection dataset, and the experimental results are shown in

Table 5.

From Table 5, it can be seen that the G-YOLO model on the Cars Detection dataset has

some degree of improvement in precision, recall, and mAP, which are 43.1%, 25.2%, 51.8%,

and 92.7% respectively. Meanwhile, the model improves by 9.7% and 2.6% in precision and

mAP@.5 on the Traffic Detection dataset, respectively.

Not only that, the introduction of different modules also enhances the detection results to

different degrees. Specifically, in Group A experiments, the introduction of the WIoU loss

function improves the precision of the YOLOv-Tiny model by 18.6% and 6.3% on the two

datasets, which further verifies the ability of WIoU to effectively solve the problem that the

regression frames cannot be accurately matched due to the imbalance in sample quality. In

Group B experiments, the introduction of partial convolution improves the preciseness of the

original model on the two datasets. The introduction of partial convolution improves the

mAP@.5 of the original model on the two datasets by 4.0% and 3.7%, respectively, while the

mAP@.5: .95 also achieves an improvement of 13.0% and 4.6%, respectively, verifying that the

introduction of this module can greatly improve the model’s ability of feature extraction. In

Group C experiments, the introduction of E-GhostV2 does not improve the mAP@.5 of the

Traffic Detection dataset, but the performance on the Cars Detection dataset is good, which

improves the model’s precision, mAP@.5 and mAP@.5: .95 by 22.0%, 25.5% and 55.3%,

respectively, and reduces the number of parameters by 5.5%. This further validates that the

introduction of E-GhostV2 gives the model the effect of improving the model’s detection accu-

racy despite the decrease in the number of parameters.

In summary, the comparison experiments between the YOLOv7-Tiny model and the

G-YOLO model on three different datasets, respectively, not only verified the effectiveness of

the addition of each module in improving the model detection effect but also verified that the

improved model has a good generalization ability. This emphasizes the robustness of the

improved model in different scenarios and lays the foundation for its generalization in practi-

cal applications.

Table 5. The effects of different modules in YOLOv7-Tiny for the cars detection dataset and traffic detection dataset.

Datasets Models WIoU PConv E-GhostV2 Precision Recall mAP@.5 mAP@.5:.95

CarsDetection YOLOv7-tiny 29.5 41.2 27.4 12.3

A ✓ 35.0 35.8 27.0 14.2

B ✓ 30.5 34.3 28.5 13.9

C ✓ 36.0 38.6 34.4 19.1

G-YOLO ✓ ✓ ✓ 42.2 51.6 41.6 23.7

TrafficDetection YOLOv7-tiny 51.7 36.9 38.0 23.9

A ✓ 55.0 37.1 39.1 24.9

B ✓ 51.0 38.4 39.4 25.0

C ✓ 47.5 36.8 36.2 21.0

G-YOLO ✓ ✓ ✓ 56.7 34.2 39.0 22.5

https://doi.org/10.1371/journal.pone.0299959.t005
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Comparison of visualization results. To visually demonstrate the detection performance

of the G-YOLO algorithm model, validation was conducted on the validation sets of the Haz-

ardous Chemical Vehicles dataset, the Cars Detection dataset, and the Traffic Detection data-

set, comparing the original YOLOv7-Tiny model with the G-YOLO model. The validation

examples are presented below.

By observing Fig 13, the differences between the G-YOLO model and the YOLOv7-Tiny

model can be intuitively compared. We selected the Hazardous Chemical Vehicles dataset in

real-world scenarios and demonstrated the detection results in scenarios with missed detec-

tions and dense scenes. Specifically, through detailed performance metric analysis (as shown

in Table 4), the G-YOLO model exhibits higher accuracy and lower miss detection rate. As

shown in Fig 13, in dense scenes, the G-YOLO model can accurately label vehicle information,

effectively avoiding potential missed detection scenarios that may occur with the original

model.

Figs 14 and 15 depict validation examples of the YOLOv7-Tiny model and the G-YOLO

algorithm model on the Cars Detection dataset and Traffic Detection dataset, respectively.

Important insights can be gained through the observation of Fig 14. From the detection image

on the far left, it is evident that G-YOLO successfully detected the Motorcycle target that was

missed by the original model. Additionally, in other effective images, situations where the

Fig 13. Validation instances of YOLOv7-tiny model and G-YOLO model on hazardous materials dataset. (a)

shows the validation instances of the YOLOv7-tiny model; (b) shows the validation instances of the G-YOLO model.

Reprinted from [] under a CC BY license, with permission from [Pengcheng Zhu], original copyright [2023].

https://doi.org/10.1371/journal.pone.0299959.g013
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original model generated incorrect detections due to background interference can be

observed. However, the enhanced network model successfully overcame these challenges,

effectively identifying targets even in the presence of complex background interference. This

further demonstrates the outstanding performance of the proposed improved model in han-

dling complex backgrounds and target missed detections.

Fig 15, the images gradually decrease in brightness from left to right, leading to an increas-

ing impact on the detection model. Meanwhile, there are numerous smaller targets in the

images, further increasing the likelihood of missed detections for both the original and

improved models. However, through a comparative observation of the images, it is found that

the improved model exhibits a lower rate of missed detections compared to the original model

and achieves a significant improvement in detection accuracy. This indicates that the proposed

Fig 14. Validation instances of YOLOv7-tiny model and G-YOLO model on traffic detection dataset. (a) illustrates

the validation instances of the YOLOv7-tiny model; (b) illustrates the validation instances of the G-YOLO model.

https://doi.org/10.1371/journal.pone.0299959.g014

Fig 15. Validation instances of YOLOv7-tiny model and G-YOLO model on cars detection dataset. (a) illustrates

the validation instances of the YOLOv7-tiny model; (b) illustrates the validation instances of the G-YOLO model.

https://doi.org/10.1371/journal.pone.0299959.g015
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improved model has more robust performance in scenarios involving low brightness and

small targets.

Comparison of multiple object detection experiments. To validate the outstanding per-

formance of the G-YOLO model, this study comprehensively examined three lightweight

models based on the YOLOv7-Tiny model, including MobileOne-YOLOv7-Tiny, MobileNet-

v3-YOLOv7-Tiny, and ShuffleNetV2-YOLOv7-Tiny [31–33]. Additionally, a comparison was

made with two single-stage object detection models, namely SSD and YOLOX [34], and a two-

stage object detection model, Faster R-CNN. Furthermore, the latest lightweight models,

YOLOv8n, and its improved version Yolov8n-RepHGNetV2 [35], were included for compre-

hensive experimental comparison. The following sections will present the comparative results

of multiple object detection experiments.Table 6 shows the comparison of experimental results

of various target detection models.

The experimental results show a significant advantage in detection accuracy for the

G-YOLO detection algorithm. In the experiments, the G-YOLO model achieved mAP@.5 and

mAP@.5: 95 values of 81.5% and 61.3%, respectively. Compared to the YOLOv7-Tiny model,

this represents an improvement of 4.22% and 6.98%, while reducing the number of parameters

by 4.15%. This indicates that the G-YOLO model effectively enhances detection accuracy

while reducing the model’s size, making it more suitable for edge applications. When com-

pared to classical models such as SSD and Faster-RCNN, as well as several recent lightweight

models (MobileNet-YOLOv7-Tiny, MobileNetv3-YOLOv7-Tiny, ShuffleNetV2-YOLOv7--

Tiny, Yolov8n, and YOLOv8n-RepHGNetV2), the G-YOLO model outperforms them in the

detection of dangerous chemical vehicles. It achieves high precision and real-time objectives,

further validating the outstanding performance of the G-YOLO algorithm in the field of object

detection.

Conclusion

Dangerous chemical vehicles in road transportation pose extremely high risks. Real-time and

accurate detection of these vehicles can effectively identify traffic accidents and prompt timely

responses, thereby preventing casualties and unnecessary property losses. To address the chal-

lenges of low detection accuracy and weak real-time performance in traditional methods, this

paper proposes a novel detection algorithm. Firstly, the lightweight E-GhostV2 network is

integrated into the YOLOv7-Tiny architecture, optimizing its backbone and neck. This

improvement aims to accurately capture distant spatial dependencies between pixels of haz-

ardous substance vehicles, especially in complex backgrounds, significantly improving the

model’s detection accuracy. Subsequently, a fast and efficient PConv is introduced into the

Table 6. Comparison of multiple target detection experiments.

Models mAP@.5 Recall Para/M

SSD 64.5 59.8 26.29

YOLOX 71.8 65.8 54.21

FasterR − CNN 42.6 46.7 137.10

MobileOne − YOLOv7 − tiny 59.3 36.6 7.30

ShuffleNetv2 − YOLOv7 − tiny 69.0 63.7 4.31

MobileNetv3 − YOLOv7 − tiny 72.5 67.6 4.18

YOLOv8n 80.4 73.0 3.16

Yolov8n − RepHGNetV2 79.5 71.7 2.50

G − YOLO 81.5 74.4 5.78

https://doi.org/10.1371/journal.pone.0299959.t006
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model’s backbone. This strategy reduces computational redundancy, lowers memory access,

and enhances the model’s operational efficiency and feature extraction capabilities. Addition-

ally, to address the problem of decreased target localization performance due to excessive

emphasis on high-quality samples, this paper adopts the WIoU loss function, further enhanc-

ing the model’s detection capabilities. Experimental results show that the G-YOLO model not

only reduces the number of parameters but also correctly identifies and accurately locates dan-

gerous chemical vehicles in complex scenes. This research takes a crucial step towards improv-

ing the accuracy of lightweight models in object recognition, potentially enhancing

performance in low-power devices for precise vehicle detection tasks in complex scenarios.

The findings of this study have practical implications for target detection in real-world scenar-

ios with performance-constrained devices. Therefore, maintaining a balance between improv-

ing detection accuracy and model complexity is crucial.

Future work will focus on developing more efficient target detection model algorithms to

further extend the depth of this research. Specifically, efforts will be concentrated on enhanc-

ing the model’s performance in handling challenging complex backgrounds to address the

confusion caused by backgrounds. Additionally, optimization of the model’s detection effec-

tiveness for smaller targets will be pursued to meet the demand for high-precision detection of

small targets in practical scenarios. Future research directions also include further improving

the real-time performance of the model to adapt to the requirements of various real-world

application scenarios. This will contribute to better applying our research outcomes to real-

world scenarios and driving the development of target detection technology across various

domains.
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