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Abstract

Accurate forecasting of PM2.5 concentrations serves as a critical tool for mitigating air pollu-

tion. This study introduces a novel hybrid prediction model, termed MIC-CEEMDAN-CNN-

BiGRU, for short-term forecasting of PM2.5 concentrations using a 24-hour historical data

window. Utilizing the Maximal Information Coefficient (MIC) for feature selection, the model

integrates Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

(CEEMDAN), Convolutional Neural Network (CNN), and Bidirectional Recurrent Gated

Neural Network (BiGRU) to optimize predictive accuracy. We used 2016 PM2.5 monitoring

data from Beijing, China as the empirical basis of this study and compared the model with

several deep learning frameworks. RNN, LSTM, GRU, and other hybrid models based on

GRU, respectively. The experimental results show that the prediction results of the hybrid

model proposed in this question are more accurate than those of other models, and the R2

of the hybrid model proposed in this paper improves the R2 by nearly 5 percentage points

compared with that of the single model; reduces the MAE by nearly 5 percentage points;

and reduces the RMSE by nearly 11 percentage points. The results show that the hybrid

prediction model proposed in this study is more accurate than other models in predicting

PM2.5.

Introduction

Despite the rapid advancements in global science and technology, the worldwide environment

faces degradation, with air pollution emerging as a prominent concern. PM2.5, a notable air

pollutant, originates from both natural sources—such as aeolian dust, volcanic eruptions, for-

est fires, sea salt, pollen, and microbial activities—and anthropogenic activities. Notably,

human-induced emissions remain the predominant contributor to PM2.5 levels. These emis-

sions also release gaseous pollutants, which can transform into PM2.5 via complex chemical

reactions. Consequently, rising PM2.5 concentrations degrade air quality annually. This degra-

dation not only diminishes human visual acuity, resulting in challenges like vehicular
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accidents, but prolonged exposure to elevated PM2.5 levels also jeopardizes respiratory and

cardiovascular health [1, 2]. Thus, the accurate prediction of PM2.5 concentrations is pivotal

for effective air pollution mitigation and public health advisories, enabling individuals to make

informed travel decisions, minimize PM2.5-related health risks, and safeguard against extreme

weather events [3, 4].

Predicting PM2.5 concentrations is fundamentally a time-series forecasting challenge,

wherein historical and current data inform future PM2.5 levels [5]. The intricacy of such pre-

dictions arises from the PM2.5 data being nonlinear and nonstationary due to various external

influencers [6–8]. Research methodologies span traditional time series modeling, machine

learning, and deep learning.

Earlier studies favored time series-centric models like the autoregressive sliding average

(ARMA) and the autoregressive moving average differential equation (ARIMA) for forecasting

PM2.5 concentrations [9]. However, these models often falter in handling non-linear target

series, leading to unsatisfactory predictions. Shallow machine-learning networks, such as arti-

ficial neural networks, grey neural network models, and radial basis function neural networks,

have shown promise in modeling complex non-linear time-series relationships. Yet, their sim-

plistic structures introduce issues like local minima entrapment for BP neural networks and

gradient challenges for recurrent neural networks [10]. Deep learning, meanwhile, has exhib-

ited prowess in managing the nonlinear complexities inherent in such time series. Luo et al.

[11] employed both deep learning and machine learning in an image-based approach to

enhance the detection of PM2.5. They developed an end-to-end model combining a convolu-

tional neural network with a gradient boosting machine. Meanwhile, Li et al. [12] introduced

the AC-LSTM model, a fusion of one-dimensional Convolutional Neural Network (CNN),

Long Short-Term Memory Network (LSTM), and Attention-Based Network. This model

incorporates air pollutant concentrations, meteorological data, and PM2.5 levels from nearby

monitoring stations as input. It harnesses the CNN-LSTM network to assimilate multivariate

time series data on air quality, focusing on their spatiotemporal interrelations. The attention

mechanism gauges the impact of past states on future PM2.5 concentrations, refining predic-

tive precision through an attention-based hierarchy. In another study, Li et al. [13] introduced

a gated cell model integrated with reinforcement learning, specifically the SAE-GRU method.

Here, the sparse autoencoders(SAE) distils low-dimensional features of PM2.5 data, while the

gated recurrent units(GRU) refines subseries prediction. Zhao et al. [14], on the other hand,

presented a spatiotemporal air quality prediction model that leverages abundant environmen-

tal data and an LSTM neural network for future air quality forecasts.

While deep learning networks possess the theoretical capability to model complex, non-lin-

ear time-series data, their performance is constrained by limitations such as training data vol-

ume, network size, and the stochastic and non-smooth nature of PM2.5 concentration series.

To address this, the data is preprocessed through empirical mode decomposition (EMD),

which decomposes the irregular time-series into multiple intrinsic modal functions (IMFs)

and a residual component (RES). Notably, EMD obviates the need for a priori basis functions,

instead employing an a posteriori approach that adapts to changing data characteristics [15].

Despite its advantages, EMD suffers from modal aliasing. To mitigate this, our study employs

complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN).

In atmospheric science, PM2.5 emanates from both primary and secondary sources, with

the latter including chemical reactions that yield PM2.5 as a byproduct. Consequently, gases

such as NO2, SO2, and O3 play a significant role in PM2.5 concentration [16]. Furthermore,

PM2.5 levels are influenced by local climatic conditions [17] as well as air quality and meteoro-

logical factors [18, 19]. As such, optimizing prediction models may necessitate feature selection
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focused on variables with a high degree of correlation to PM2.5 levels, thereby mitigating the

impact of irrelevant variables [20, 21].

In the hybrid model presented herein, maximal information coefficients (MICs) are

employed to identify features most correlated with PM2.5. These features and historical PM2.5

time-series data, which are inherently non-stationary, are decomposed into eigenmode func-

tions and a residual via CEEMDAN. These processed elements are integrated into a hybrid

neural network alongside filtered feature data, facilitating model training and prediction. Sub-

sequently, the individual predictions are aggregated for short-term PM2.5 concentration fore-

casting. The model architecture is delineated in Fig 1.

The key contributions of this study are as follows:

1. The use of MIC allows for capturing non-linear correlations between PM2.5 concentrations

and both meteorological and atmospheric factors, enhancing predictive accuracy.

2. CEEMDAN-based decomposition circumvents the need for parameter tuning in wavelet

analysis and alleviates modal aliasing seen in traditional EMD methods, yielding a more

accurate data representation.

3. The hybrid model amalgamates the strengths of various algorithms, honing the precision of

the predictions.

Data processing

The experimental dataset utilized in this study was obtained from the environmental cloud of

Nanjing Yunchuang Big Data Technology Co., LTD. We accessed hourly meteorological rec-

ords (comprising weather conditions, air temperature, felt temperature, air pressure, humidity,

rainfall, wind direction, and wind speed) and hourly air quality monitoring data (PM10, CO,

SO2, NOx, O3) for Beijing, spanning from January 1, 2016 to December 31, 2016. The air qual-

ity monitoring data refers to the hourly data from 12 monitoring locations, resulting in a total

of 8,784 records for each monitoring point, data from one of these monitoring sites was

selected for this study though some data are missing due to uncontrollable factors. Missing

Fig 1. Hybrid model structure diagram.

https://doi.org/10.1371/journal.pone.0299603.g001
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data is mainly missing meteorological data, including missing meteorological data on a certain

day and hour or missing wind direction data on a certain day and hour. If the entire meteoro-

logical data of a certain hour on a certain day is missing, the data is deleted. If the wind direc-

tion data of a certain hour on a certain day is missing, the linear interpolation method is used

to complete the data. The mathematical principle governing this approach is described in Eq

(1), wherein the missing value at a specific time (x) is substituted by its corresponding value at

point F(x). The dataset is a time-series with 13 features related to air quality and meteorological

factors, totaling 8784 instances at hourly intervals. For our experiments, we partitioned the

data into two sets: 70% for training and 30% for testing.

FðxÞ ¼ axþ b ð1Þ

Methodology

Feature selection

Air quality and meteorological parameters critically influence the dispersion of air pollutants.

Rigorous assessment of these parameters is fundamental for accurate PM2.5 concentration

forecasting. In our current investigation, we employed the MIC to ascertain relationships

between individual pollutant attributes and PM2.5 levels. The MIC represents an innovative

technique for identifying nonlinear correlations amidst variables, characterized by its expan-

sive applicability, computational efficiency, and remarkable robustness. Fundamentally, MIC

discretizes the interplay of two variables within a bidimensional framework visualized via a

scatter plot. This space is segmented into defined intervals across the X and Y axes, situating

scatter points within their respective grid cells. This method effectively addresses the mutual

information joint likelihood challenges. MIC values oscillate between 0 and 1, with ascending

values signifying intensified correlations.

The computation of the MIC proceeds as follows:

(1) For given variables i and j, a scatterplot grid of X and Y in column a and row b is estab-

lished to calculate the mutual information (MI). The MI between two variables x and y is

defined as per Eq (2), where p(x,y) represents the joint probability distribution of x and y.

MIðx; yÞ ¼
Z

pðx; yÞlog
2

pðx; yÞ
pðxÞpðyÞ

dxdy ð2Þ

(2) Subsequent to the MI calculation, a normalization process is conducted.

(3) The MIC value is then determined by selecting the maximum MI value across different

scales.

micðx; yÞ ¼ max
a∗b<B

MIðx; yÞ
minða; bÞ

ð3Þ

In the above, a and b represent the number of divisions in the x and y directions of the lat-

tice, respectively. B is a variable whose magnitude approximates the 0.6 power of the data

volume.

Fig 2 elucidates the interrelationships between thirteen salient air quality and meteorologi-

cal parameters. Further, Fig 3 quantifies the association magnitude of individual features with

PM2.5. Notably, AQI, CO, and PM10 manifest the most pronounced affiliations with PM2.5,

while parameters like air temperature, body temperature, barometric pressure, and rainfall
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exhibit marginal influence, underscoring their diminished role in modulating PM2.5 varia-

tions. The data foundation of our analysis stems from Beijing’s meteorological records for the

entirety of 2016. Given Beijing’s geographical position in northern China, which is typically

marked by limited precipitation, one can deduce that the influence of rainfall on PM2.5 con-

centrations is comparatively negligible. This observation underscores the pertinence of the fea-

ture set chosen via the MIC method.

A threshold of 0.15 was established, informed by the geographical context of the dataset

and the median income indicator for each feature. By juxtaposing MIC values against this

threshold, as illustrated in Fig 4, eight salient features emerged: PM2.5, AQI, CO, PM10, SO2,

O3, NO2 and relative humidity, all of which are detailed in Table 1.

Data decomposition

The time series data manifests distinctive attributes such as long-term trends, cyclical patterns,

and seasonal shifts, culminating in pronounced data volatility. An example of this can be seen

in Fig 5, depicting the hourly PM2.5 concentrations spanning 1 January to 31 December 2016

in Beijing. Notably, this particular year was selected for investigation. A visual analysis of Fig 5

highlights that the waveform distribution is heterogeneous, with the series showcasing sub-

stantial variances and a lack of continuity.

Historically, strategies for decomposing time series have been formulated to distill multi-

dimensional insights and ascertain the ramifications of diverse factors on the series. In light of

this, our study leverages the CEEMDAN technique, CEEMDAN can avoid modal mixing con-

ditions during the decomposition process, tailored for parsing non-stationary time series into

multiple stationary counterparts. Mode mixing refers to the phenomenon where different

intrinsic mode functions (IMFs) extracted by EMD contain mixed information from different

Fig 2. Correlation heat map.

https://doi.org/10.1371/journal.pone.0299603.g002
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scales and frequencies, leading to inaccurate decomposition results. In EEMD, mode mixing is

a common issue that can affect the accuracy of the decomposition. CEEMDAN addresses this

problem by introducing an adaptive noise component that helps to reduce mode mixing and

Fig 3. Feature correlation diagram.

https://doi.org/10.1371/journal.pone.0299603.g003

Fig 4. Feature threshold comparison chart.

https://doi.org/10.1371/journal.pone.0299603.g004
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improve the accuracy of the decomposition. This adaptive noise component is added to the

original signal to create an ensemble of signals, which are then decomposed using EMD. The

adaptive noise component helps to separate the mixed information and improve the decompo-

sition results by reducing mode mixing. CEEMDAN differs from EEMD in terms of mode

mixing by including an adaptive noise component to reduce mode mixing and improve the

accuracy of the decomposition.

The detailed principles and sequential steps of the decomposition process are outlined below:

(1) Gaussian white noise is incorporated into the signal targeted for decomposition, y(t), gen-

erating a novel signal, y(t)+(−1)q εvj(t), where q = 1,2. Subsequently, EMD decomposition

of this newly formed signal, inclusive of Gaussian white noise, is performed to yield the

first-order intrinsic modal component, C1.

EðyðtÞ þ ð� 1Þ
qεvjðtÞÞ ¼ Cj

1ðtÞ þ rj ð4Þ

(2) The first eigenmode component of the CEEMDAN decomposition is ascertained by aver-

aging the N modal components derived from the EMD decomposition.

C1ðtÞ ¼
1

N

XN

j¼1

C1

jðtÞ ð5Þ

Table 1. MIC values for each feature and PM2.5 concentration.

Features MIC Value

Relative Humidity 0.19

AQI 0.87

PM10 0.45

NO2 0.30

SO2 0.19

O3 0.17

CO 0.57

PM2.5 1.00

https://doi.org/10.1371/journal.pone.0299603.t001

Fig 5. Time series plot of PM2.5 concentration.

https://doi.org/10.1371/journal.pone.0299603.g005
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(3) The original signal’s residue is obtained by subtracting the first eigenmode function.

r1ðtÞ ¼ yðtÞ � C1ðtÞ ð6Þ

(4) Positive and negative paired Gaussian white noise is integrated into r1(t) to generate a new

signal. This signal then serves as a substrate for a subsequent round of EMD decomposition,

resulting in the first-order modal component, D1. Consequently, the second eigenmode

component of the CEEMDAN decomposition is derived.

C2ðtÞ ¼
1

N

XN

j¼1

D1
jðtÞ ð7Þ

(5) The residuals from the initial stage are subtracted from the second modal component.

r2ðtÞ ¼ r1ðtÞ � C2ðtÞ ð8Þ

(6) The aforementioned steps are iteratively repeated until the residual signal manifests as a

monotonic function, at which point further decomposition is infeasible, signaling the ter-

mination of the algorithm. At this juncture, the total count of intrinsic modal components

procured is denoted as K. The original signal, y(t), is then decomposed as delineated in

Eq 9.

yðtÞ ¼
XK

k¼1

CkðtÞ þ rkðtÞ ð9Þ

In this equation, Ei(•) represents the i-th eigenmode component post-EMD decomposition,

while the i-th eigenmode component following CEEMDAN decomposition is denoted as

CiðtÞ. Vj signifies the j-th Gaussian white noise signal, conforming to a standard normal distri-

bution, where j = 1,2,3,� � �,N represents the instances of white noise incorporation. ε symbol-

izes the Gaussian noise weight coefficient, and y(t) signifies the signal targeted for

decomposition.

In the course of time series refinement, the PM2.5 concentration time series undergoes

decomposition via the CEEMDAN algorithm. This decomposition yields 12 IMFs and a single

residual, as illustrated in Fig 6. Each IMF encapsulates a smooth time series of PM2.5 concen-

tration across distinct frequency domains, with no overlap occurring between any two IMFs.

The IMFs decomposed by CEEMDAN represent the inherent patterns or features of the origi-

nal signal on different time scales. Each IMF represents an oscillation or change in the original

signal on a particular time scale. These IMFs can be interpreted as different frequency compo-

nents in the data, thus providing information about the intrinsic structure and change patterns

of the data. In CEEMDAN, due to the introduction of an adaptive noise component, the

decomposed IMFs are more robust and better able to capture the true patterns in the data

compared to conventional EMD. Therefore, the IMF decomposed by CEEMDAN can more

accurately reflect the oscillation characteristics and change patterns of the data. The original

series can be reconstituted by aggregating all the IMFs along with the final residual

component.
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CNN model

Numerous neural networks have proven successful in the realm of deep learning, among

which CNNs are particularly noteworthy due to their capacity for feature extraction and

weight sharing. CNNs can be classified into three lattice structures: one-dimensional, two-

dimensional, and three-dimensional CNNs, each serving unique functions. One-dimensional

CNNs are primarily harnessed for sequence data processing, making them apt for the method-

ology adopted in this study. Conversely, two-dimensional CNNs are typically employed for

image recognition tasks, while three-dimensional CNNs are predominantly used for video rec-

ognition. Thus, in this study, we leverage one-dimensional CNNs. These networks exhibit

exceptional efficacy in text time series analysis, as they can adjust the size and orientation of

the convolutional kernel based on the data and text dimensions, enabling a deep exploration

of the samples. The primary process of a one-dimensional CNN is depicted in Fig 7.

The fundamental components of the CNN comprise the convolutional layer, pooling layer,

and fully connected layer. Within the convolutional layer, a convolutional kernel is used to

execute convolutional operations on the processed data, extracting features and generating the

corresponding feature maps. The pooling layer serves to reduce the model’s complexity,

enabling simpler and quicker computations, while preserving essential data features. The fully

connected layer maps the preceding layers to their respective positions, enhancing the overall

integrity of the model’s structure.

GRU model

In the data processing stage, Recurrent Neural Networks (RNN) may face the challenge of gra-

dient explosion due to the large amount of data and the long duration of the sequence [22, 23].

In 1997, Horchreiter and Schmidhuber proposed a special type of Recurrent Neural Network

Fig 6. Sequential decomposition of PM2.5 concentrations.

https://doi.org/10.1371/journal.pone.0299603.g006
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(RNN) called LSTM. The network is a modified structure of simple RNN and solves the prob-

lem of gradient explosion and gradient vanishing that occurs in the traditional RNN.LSTM

network processing series uses three basic gates: input gate forget gate and output gate. LSTM

has the ability to learn long-term dependencies from the input sequence data. The LSTM net-

work uses three basic gates: input gate, forget gate, and output gate. LSTM has the ability to

learn long-term dependencies from input sequence data [24, 25]. Compared with LSTM, GRU

usually has fewer parameters, so it can speed up the training time and reduce the computa-

tional complexity; GRU’s performance in capturing dependencies in long sequences in a short

period of time is not comparable to that of LSTM, and GRU is usually easier to train than

LSTM, especially when dealing with smaller datasets or limited computational resources.

Combining these factors, we choose GRU as our prediction model. Fig 8 shows the schematic

diagram of GRU.

The GRU model is characterized by two gates: the update gate and the reset gate. The reset

gate integrates the new input with prior memory, as detailed in Eq (10):

rt ¼ sðWr � ½ht� 1; xt�Þ ð10Þ

The update gate modulates the influence of the information from the preceding time step

on the current step, effectively dictating the retention and propagation of past data. This gate

primarily updates the model’s memory, as formulated in Eq (11):

zt ¼ sðWr � ½ht� 1; xt�Þ ð11Þ

Here, σ signifies the activation function, while WT and WZ represent the weight matrix. ht

−1 denotes the preceding state, and xt signifies the current input value.

Fig 7. CNN model diagram.

https://doi.org/10.1371/journal.pone.0299603.g007

Fig 8. GRU network structure diagram.

https://doi.org/10.1371/journal.pone.0299603.g008
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BiGRU model

In the training of time-series data, the GRU employs unidirectional forward propagation, con-

straining its capability to fully elucidate the intricate relationships among target features. By

contrast, the Bidirectional GRU (BiGRU) mitigates this constraint by utilizing both forward

and reverse temporal propagations, thereby enabling an exhaustive examination of feature

interdependencies. Specifically, the BiGRU architecture integrates a forward and a backward

propagation layer; the former processes the sequence in a temporal manner, while the latter

does so in reverse. This dual-layer configuration enhances the model’s effectiveness in predict-

ing time-series data, as illustrated in Fig 9.

At time step t, the combined output from the BiGRU computational unit is given by:

h
!

t ¼ sðWF1xt þWF2 h
!

t� 1 þ bÞ ð12Þ

h
 

t ¼ sðWB1xt þWB2 h
 

t� 1 þ bÞ ð13Þ

yt ¼ h
!

t þ h
 

t ð14Þ

Here, ht
!

denotes the forward propagation, while ht
 

signifies the backward propagation.

The vector associated with the output layer is represented by yt. Additionally, W serves as the

weight matrix, and b corresponds to the bias vector.

CNN-BiGRU model

In the present study, we introduce a hybrid model architecture, illustrated in Fig 10, designed

for predictive analysis of hourly PM2.5 concentrations. The model ingests a dataset comprising

eigenvalues obtained from the preceding 24-hour window as input variables. This framework

marks a significant departure from our prior single-network strategy, enhancing prediction

accuracy through a two-pronged computational approach.

The optimal values of the model we set according to the parameters of previous papers, so

some of them are set according to the empirical values. The front-end of the model employs

the CNN for sophisticated feature extraction. its parameters are delineated in Table 2. Follow-

ing this, the extracted features are fed into the BiGRU module situated at the back-end,

Fig 9. BiGRU framework diagram.

https://doi.org/10.1371/journal.pone.0299603.g009
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responsible for time-dependent PM2.5 concentration forecasting. The model is constructed as

a two-layer deep neural network, its parameters are delineated in Table 3.

To mitigate the risk of overfitting, we incorporate a dropout technique with a dropout rate

of 0.1, effectively nullifying approximately 10% of the neurons in each hidden layer during the

training phase. As for the activation function, the model employs Scaled Exponential Linear

Units (SELU) owing to its superior convergence properties and effectiveness in addressing the

vanishing gradient issue.

Experiments

Data

CEEMDAN decomposition and seasonality and periodicity are related, the year is divided into

spring, summer, autumn, and winter, and air quality is better in the seasons, such as spring

and summer, CEEMDAN decomposition out of the time series will be relatively less, because

the air pollutants are relatively more average, so the decomposition out of the IMF will be less;

if it is the autumn and winter seasons, air quality is not good, the air quality value is more vari-

able, then the IMF decomposed by CEMDAN will be relatively less. By the same token, time

series with smoother periodicity will decompose less IMF, and time series with larger periodic

fluctuation will decompose more IMF. So in this study, the data uses a full year’s worth of data,

with both smooth and unsteady time periods. The data for this study was sourced from the

Environmental Cloud of Nanjing YunChuang Big Data Technology Co., and includes hourly

Fig 10. Hybrid modelling framework diagram.

https://doi.org/10.1371/journal.pone.0299603.g010

Table 2. CNN model parameter list.

Parameter names The set value

kernel_size 3

MaxPooling 2

Num_layers 2

Activation Function relu

DropOut 0.1

Stride 1

filters 24

https://doi.org/10.1371/journal.pone.0299603.t002
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meteorological (AQI, air temperature, body temperature, barometric pressure, humidity, rain-

fall, wind speed) and air quality (PM2.5, PM10,. . .) data from Beijing, collected between Janu-

ary 1 and December 31, 2016. The dataset is time-series with 13 features related to air quality

and meteorological factors, totaling 8784 instances at hourly intervals. For our experiments,

we partitioned the data into two sets: 70% for training and 30% for testing, the following figure

shows the distribution of data. Any missing data were imputed using linear interpolation.The

exact distribution is shown in Fig 11.

Evaluation indicators

This study employs three evaluation metrics: root mean square error (RMSE), mean absolute

error (MAE), and R-squared (R2). RMSE quantifies the discrepancy between observed and

true values, while MAE offers robustness against outliers. Lower RMSE and MAE values

Table 3. BiGRU Neural model parameter list.

Parameter names The set value

Activation Function selu

Loss Function MSE+L2

Optimization algorithm Adam

Epochs 200

Hidden_size 128

DropOut 0.1

Batch_size 128

Num_layers 2

Output_size 1

Input_size 24

https://doi.org/10.1371/journal.pone.0299603.t003

Fig 11. Map of the distribution of data sets.

https://doi.org/10.1371/journal.pone.0299603.g011
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indicate less deviation in the model’s predictions. Conversely, a higher R2 value signifies a bet-

ter fit of the predictive model. The equations for these metrics are provided as Eqs (15)–(17).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðyi � yiÞ

2

r

ð15Þ

MAE ¼
1

n

Xn

i¼1
jyi � yij ð16Þ

R2 ¼ 1 �

Xn

i¼1
ðyi � ŷiÞ

2

Xn

i¼1
ðyi � yiÞ

2
ð17Þ

In this context, yi represents the observed empirical value, ŷ i stands for the model’s pre-

dicted value, and y i signifies the arithmetic mean of the observed empirical values.

Ablation experiment

Ablation of neural networks is an experimental method to test the effect of certain parts of a

neural network on the overall performance by gradually removing them. It can help to under-

stand the functions and roles of different parts of a neural network and how much they con-

tribute to the overall performance. Through ablation experiments, critical parts of a neural

network can be identified to better understand how the neural network works and can provide

guidance for improving the design and training of the neural network.

The ablation experiments in this study mainly focus on GRU, because GRU is easier to

train than LSTM, and the training time of the GRU model is shorter, which is more efficient

for short-time prediction performance, and avoids the shortcomings of the RNN model which

is easy to gradient disappearance and gradient explosion. In this study, a total of seven models

are designed for GRU ablation experiments, namely GRU, MIC-GRU, MIC-CNN-GRU,

MIC-CNN-BIGRU, MIC-CEEMDAN-GRU, MIC-CEEMDAN-CNN-GRU and MIC-CEEM-

DAN-CNN-BiGRU proposed in this study. To ensure that the experiments are rational, the

individual parameters of each model and module are the same. The comparison of each model

for the ablation experiment is shown in Fig 12 below:

The calculated values of the error for each model of the ablation experiment can be seen in

the next snippet Analysis of results, which contains not only the above seven models, but also a

comparison of RNN and LSTM related models.

Analysis of results

In this investigation, the final prediction results are derived from the aggregation of predicted

values from each component, as outlined in Eq 18. Fig 13 presents the prediction results for

each eigenmode function and residual, following the decomposition of the PM2.5 concentra-

tion time series using the MIC-CEEMDAN-CNN-BiGRU model. The actual PM2.5 values are

represented in blue, while the predicted values from the proposed model are displayed in yel-

low. As can be seen from the lower Fig, there is a close alignment between the predicted and

actual values across nearly all components.

y ¼
Xn

i¼1

CkðtÞ
0

þ rk
0

ðtÞ ð18Þ
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In this formulation, y serves as the ultimate predictive value, n quantifies the number of

instances of CkðtÞ within the test set decomposition, and both CkðtÞ0 and rk 0ðtÞ constitute the

predicted values specifically designated for the test set.

The training process of a neural network model is designed to adjust the parameters of the

model by learning the patterns and features of the input data to enable the model to accurately

predict or classify new data. The training set accuracy measures how well the model performs

on the training data, while the test set accuracy measures how well the model performs on

never-before-seen data. Training set accuracy is used to assess how well the model fits the

training data, while test set accuracy is used to assess the model’s generalization ability, how

well the model can predict new data. Monitoring the training set and test set accuracies can

help us understand how well the model is performing and can guide us in making adjustments

and optimizations to the model. The training and testing process of the hybrid model in this

paper is shown in Figs 14 and 15:

To validate the proposed method’s feasibility and accuracy, ten comparative prediction

models were designed, encompassing RNN, MIC-RNN, LSTM, MIC-LSTM, GRU, MIC-GRU,

MIC-CNN-GRU, MIC-CNN-BiGRU, MIC-CEEMDAN-GRU, and MIC-CEEMDAN-CNN-

GRU. All experiments were executed in a standardized environment. Model performance

was assessed via three key metrics: MAE,RMSE, and R2, with findings summarized in Table 4.

It can be seen from Fig 16 that the results of the hybrid prediction model proposed in this

paper are better than those predicted by the other models, based on the comparison of the val-

ues of the three indicators evaluated. The difference between the hybrid model of this paper

Fig 12. Comparison of ablation experimental models.

https://doi.org/10.1371/journal.pone.0299603.g012
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Fig 13. Decomposition prediction charts.

https://doi.org/10.1371/journal.pone.0299603.g013
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and other hybrid models can be significantly seen in Fig 17. The plots in Fig 17 are arranged in

order from left to right and from top to bottom to represent RNN, MIC-RNN, LSTM,

MIC-LSTM,GRU,MIC-GRU,MIC-CNN-GRU,MIC-CNN-BIGRU,MIC-CEEMDAN-GRU,

MIC-CEEMDAN-CNN-GRU, MIC-CEEMDAN-CNN-BiGRU.

Conclusion

In this study, we rigorously examined the correlation between air quality factors, meteorologi-

cal characteristics, and PM2.5 concentration, emphasizing the time series’ non-stationarity

and its prediction implications. We introduced a novel model, MIC-CEEMDAN-CNN-Bi-

GRU, which synergizes feature selection, data decomposition, and an integrated neural

Fig 14. Training test loss plot.

https://doi.org/10.1371/journal.pone.0299603.g014

Fig 15. Training test accuracy plot.

https://doi.org/10.1371/journal.pone.0299603.g015

PLOS ONE Short-term prediction of PM2.5 concentration by hybrid neural network based on sequence decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0299603 May 10, 2024 17 / 21

https://doi.org/10.1371/journal.pone.0299603.g014
https://doi.org/10.1371/journal.pone.0299603.g015
https://doi.org/10.1371/journal.pone.0299603


network, to predict short-term PM2.5 concentrations. Experimental evidence indicates that

this hybrid model notably improves the accuracy of PM2.5 predictions, potentially serving as a

robust tool for discerning concentration trends at specific monitoring sites, underscoring its

practical value. The practical implications of PM2.5 prediction are manifold. For environmen-

tal protection, the prediction of PM2.5 concentration can help the environmental protection

department monitor the air quality and take timely measures to control pollution and protect

Table 4. Evaluation index of the prediction results.

Models Evaluation index

MAE RMSE R2

RNN 14.70 25.01 0.942

MIC-RNN 14.00 24.24 0.945

LSTM 12.75 26.22 0.935

MIC-LSTM 12.54 22.71 0.951

GRU 12.25 23.78 0.947

MIC-GRU 12.15 22.20 0.954

MIC-CNN-GRU 7.08 16.61 0.974

MIC-CNN-BIGRU 8.05 15.61 0.977

MIC-CEEMDAN-GRU 6.95 13.60 0.983

MIC-CEEMDAN-CNN-GRU 2.76 3.79 0.998

MIC-CEEMDAN-CNN-BiGRU 2.16 2.54 0.999

https://doi.org/10.1371/journal.pone.0299603.t004

Fig 16. Indicators for the assessment of models.

https://doi.org/10.1371/journal.pone.0299603.g016
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Fig 17. Comparison of model predictions.

https://doi.org/10.1371/journal.pone.0299603.g017
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the environment; for public health, the prediction of PM2.5 can remind the public in advance

to reduce outdoor activities and take protective measures to protect public health; for urban

planning, the prediction of PM2.5 can help the urban planners to assess the impact of air qual-

ity on urban residents and guide urban planning. For urban planning, PM2.5 prediction can

help urban planners assess the impact of air quality on urban residents, guide urban planning,

and rationally plan industrial and residential areas, so as to reduce PM2.5 emissions and

improve the urban environment.

However, this study’s model also presents constraints in its predictive capacity. Firstly, it

focuses on PM2.5 concentration predictions at a single location within a distinct city, over-

looking potential interconnections between multiple city-wide sites. For a holistic understand-

ing, amalgamating data from all city monitoring sites is pivotal to unearth inter-site

correlations. Such a comprehensive approach could yield more precise city-wide PM2.5 con-

centration predictions. Second, this research does not incorporate spatial characteristics of

PM2.5, limiting the interpretation of model predictive variations across regions. Future

endeavors should incorporate multimodal data to bolster prediction precision. Finally, the

experimental results were not analysed qualitatively, which is easy to ignore and a weak issue

for us and will be investigated as a later research direction.
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