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Abstract

Insulin secretion from pancreatic β-cells is integral in maintaining the delicate equilibrium of

blood glucose levels. Calcium is known to be a key regulator and triggers the release of insu-

lin. This sub-cellular process can be monitored and tracked through live-cell imaging and

subsequent cell segmentation, registration, tracking, and analysis of the calcium level in

each cell. Current methods of analysis typically require the manual outlining of β-cells,

involve multiple software packages, and necessitate multiple researchers—all of which tend

to introduce biases. Utilizing deep learning algorithms, we have therefore created a pipeline

to automatically segment and track thousands of cells, which greatly reduces the time

required to gather and analyze a large number of sub-cellular images and improve accuracy.

Tracking cells over a time-series image stack also allows researchers to isolate specific cal-

cium spiking patterns and spatially identify those of interest, creating an efficient and user-

friendly analysis tool. Using our automated pipeline, a previous dataset used to evaluate

changes in calcium spiking activity in β-cells post-electric field stimulation was reanalyzed.

Changes in spiking activity were found to be underestimated previously with manual seg-

mentation. Moreover, the machine learning pipeline provides a powerful and rapid computa-

tional approach to examine, for example, how calcium signaling is regulated by intracellular

interactions.

Introduction

Insulin-secreting β-cells comprise the primary portion of groups of endocrine cells residing in

the pancreas known as the Islets of Langerhans, making up approximately 50–70% [1–4].

Their role in the process of glycemic regulation has made them an ongoing source of study for

Diabetes Mellitus. Type I Diabetes, specifically, is an autoimmune disorder characterized by

the decreased secretion of insulin due to the destruction of β-cells. Complications from diabe-

tes include micro- and macrovascular disorders such as thrombosis, atherosclerosis, and
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declines in cognitive function [5]. Two ongoing challenges to the treatment and/or cure of

Type I Diabetes involve the reduced population of β-cells and the autoimmune attack within

the body [6]. The main function of β-cells is the production and secretion of insulin. The

release of this hormone is triggered by an increase in ATP [7] as the blood becomes oversatu-

rated with glucose. As intense research efforts continue to explore this disease, many of the

mechanisms behind insulin secretion are yet to be fully understood.

Insulin secretion is strongly correlated and regulated by calcium signaling. Glucose plays a

large role in the stimulus of Ca2+ movement in the mitochondria, endoplasmic reticulum,

nucleus, cytosol, and other areas of the cell and increases the level of cytosolic Ca2+ [8]. Addi-

tionally, an influx of Ca2+ through voltage-gated channels impacts insulin exocytosis and

secretion. Insulin secretion patterns are typically studied by following the movement of Ca2+

oscillations (or spikes) in β-cells [9]. For example, membrane-permeable and high affinity cal-

cium-sensitive fluorophores can be loaded into the cells. Upon binding free Ca2+ ion, fluores-

cent signals are generated and emitted when excited by an appropriate external light source.

This process has been routinely captured in real-time subcellular imaging and allowed the

investigator to track intracellular calcium levels. While the Ca2+ dynamics in individual cells

has been monitored and tracked [10], challenges remain to examine the Ca2+ responses in

each cell, especially in clusters of cells that are more physiologically representative of islets. Cal-

culating control calcium activity provides a threshold that can be used to quantify significant

changes in oscillations due to different forms of stimulation [11]. There is still much unknown

regarding the effects of different stimuli on cell spiking activity, changes due to cell-cell inter-

actions, and how insulin secretion fluctuates based on temporal or spatial variables. Moreover,

measuring fluorescent intensities of individual cells that are clustered and/or overlap remains

a daunting problem during image analysis. Efficient, accurate, and automated computational

pipelines to determine potential cell-to-cell communication through Ca2+ oscillations are

expected to enhance the current understanding of endocrine cell behaviors.

Automated image analysis tools are continually being developed and made readily available

to investigators. Technological advancements have both decreased the time required to per-

form wet lab experiments and enabled researchers to obtain more sophisticated data. Open-

source software such as ImageJ [12] and its updated architecture, Fiji [13], have been widely

utilized for the evaluation of biological images. Fiji’s plugin, Trackmate [14], can further be

used for the tracking of individual cells. Multiple other tracking procedures have been written

in Python for specific research needs [15–17]. These tools are among many that can be com-

bined with customized algorithms for enhanced biological research.

Segmentation is an important tool that allows researchers to computationally identify

regions of interest (ROIs) and analyze them using different methodologies [12]. Manual seg-

mentation has in the past been a standard protocol. However, it is time intensive and often

subject to human errors and biases (S1 Fig) [18,19]. Typically, analysis of fluorescent images

begins by outlining each specific cell to measure fluorescent intensities that might fluctuate

with time. With the need for batch analysis of imaging data becoming more prevalent, an auto-

mated analysis tool is required to efficiently identify cells through a time-series image stack

and eventually predict and validate physiological responses (e.g., insulin secretion). Hand seg-

mentation remains a strong measure of evaluation for overall training accuracy, but automated

methods are quickly being established as the new primary method of imaging analysis [20].

In recent years, many tools have been developed to continue improving automated segmen-

tation of cellular microscopy images including watershed algorithms, pre-processing tech-

niques, deep learning methods such as Convolutional Neural Network architectures, and

combinations of multiple techniques [21–27]. Before the wide use of deep learning, novel seg-

mentation techniques involved differentiating cells from the background through
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thresholding, masking general cell outlines through complex mathematical operations, rede-

fining cell shapes with the watershed algorithm, incorporation of active contours to identify

rounded cell shapes, or a combination of various methods to create a more accurate segmenta-

tion of clustered cells [28–31]. While these previous techniques are still applicable and useful

in conjunction with newer methods, the incorporation of deep neural networks has been able

to overcome common issues such as heterogenous distribution of the fluorescent markers for

watershed and uniform shapes making masking difficult. Deep learning-based methods are

able to utilize large hand annotated data sets to accurately segment cells without relying on

predefined shapes, distinct cell boundaries, or an evenly distributed cell culture with minimal

clustering [32–36]. 3D segmentation of sub-organelles within islets has allowed for more defin-

itive quantification of intracellular interactions [37,38]. More novel deep learning networks,

such as Cellpose, aim to create generalist models that increase flexibility of image analysis by

training with a variety of cell types.

Cellpose [32] is a generalist, deep-learning algorithm designed for accurate segmentation of

a wide variation of cell types. Its model is optimal for different types of biological research

including 2D and 3D image sets, phase-contrast, and fluorescence microscopy as it provides

segmentation without the need for retraining [32]. A variety of pre-trained models, named the

‘model zoo’, allows researchers to find the best segmentation styles for their image based on

the large pre-segmented data sets (Cellpose, TissueNet, and LiveCell). The algorithm is user-

friendly and customizable for specific experimental needs, and its newest updates offer

human-in-the-loop pipelines and methods for retraining [39]. Since its inception, several stud-

ies have already utilized its model. Saad et al. [40] developed a procedure using Cellpose and

Fiji to characterize ice crystals, and Hoeren et al. [41] adapted Cellpose into their pipeline ana-

lyzing cells adhering to PMP-ECMO membranes as an alternative segmentation process to

Fiji. Reinbigler et al. [42] modified the model’s base framework and used it in conjunction

with QuPath [43] to create a pipeline for the segmentation of Hematoxylin-Eosin (HE) stained

histopathological whole slide images of myofibers. Waisman et al. [44] similarly used Cellpose

for myofiber segmentation, outputting the images to ImageJ for ROI analysis. Fisch et al. [45]

incorporated StarDist [33] for nuclear segmentation and Cellpose for nuclear segmentation in

their automated workflow for the analysis of host-pathogen interactions. While Cellpose is a

powerful tool, improvements are needed to obtain an end-to-end pipeline as segmentation is

simply the first step of a long analysis process. BetaBuddy allows for complete analysis of

image sets by automatically linking ROIs across frames, tracking fluorescence intensity,

extracting cellular data (size, shape, intensity, etc.), and conducting initial statistical tests.

Our aim in this study was to develop and apply computational methods to obtain a faster,

more accurate and in-depth analysis of calcium signaling in β-cells. We have developed a pipe-

line intended to decrease the time required for batch analysis of large image datasets and cre-

ated a series of algorithms to automatically detect and calculate significant changes in

fluorescent intensities.

Materials and methods

Our primary goal is to create an automated system that outlines cell boundaries (segmenta-

tion) and track β-cells over a sequence of different time points (Fig 1). The system includes

and performs statistical analyses on the calcium intensity patterns from individual cells. The

completed pipeline can be used through a Jupyter Notebook and all package dependencies are

described in the GitHub repository. Referred to as the BetaBuddy GitHub, it also contains

installation and usage instructions for inexperienced programmers to easily follow and create

a more accessible tool for all researchers to implement in their experimental procedures. The
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Fig 1. Pipeline flow chart. (a) Original Ca2+ microscopy images of β-cells (20x objective) converted to TIFF file from

the Nikon-specific format. (b) A composite image is made by identifying the maximum value of each pixel location

from the image stack. The resulting image is the brightest pixel out of all images in the stack, ensuring each cell is fully

fluorescing in one image. This will allow for a more accurate segmentation without dropout due to non-fluorescing

cells. (c) Composite Fluo-8 stained β-cell image and DAPI stain of nuclei of β-cells showing only the nuclei of each cell

merged with both images in a separate channel, assisting in a more accurate segmentation. Detailed description of

Cellpose is outlined in the next section. (d) ROI mask after composite segmentation and overlayed predicted outlines

from after Cellpose segmentation. (e) Mask of segmented composite image is merged with all images in the image

stack. Due to this step only image stacks with exceptionally minimal movement should be used. (f) Visualization of

tracks created after registration and tracking. This figure includes the original fluorescent image, mask image, ROI

outlines, and predicted tracks cells followed throughout the imaging process. (g-i) Statistical analysis is incorporated to

generate automated results, which can be compared with manually analyzed results (see Fig 6 below).

https://doi.org/10.1371/journal.pone.0299549.g001
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automated pipeline is expected to improve the accuracy of data and decrease the overall time

necessary for future studies. The entire procedure was run using an NVIDIA DGX A100 High

Memory GPU Supercomputer, containing 8 NVIDIA A100 high memory graphics cards with

80GB of GPU RAM each for a total of 640GB of GPU RAM for training large Deep Bayesian

model architectures. The system also has 2 TB of HBM2 RAM and 128 AMD EPYC CPU

Cores, and it connects to the internet via 10 GB/S connection. The process from image conver-

sion, segmentation, tracking, and finally statistical analysis was successfully performed with 1

GPU, 12 CPUs, and 32GB of memory allocated.

Calcium imaging and deep learning-based segmentation

The images used in our automated pipeline were sourced from previous experimental images

that monitored and recorded Ca2+ dynamics in real-time [46]. Mouse derived βTC-6 insuli-

noma cells were cultured and allowed to grow for several days. A calcium indicator dye (Fluo-

8) was used to measure changes in intracellular calcium levels. The cells were stained with

0.8 μM Fluo-8, and 1 drop/mL Nucblue to visualize the nuclei, for 30 min at 37˚C and loaded

onto a custom-designed electric field exposure chamber [46]. Non-invasive electric field stim-

ulation (EFS; 15 min exposure) was chosen to manipulate the voltage-gated calcium channels

and therefore modulate intracellular Ca2+ dynamics. A Nikon microscope was used to image

the cells at 5 s intervals over a period of 2 min before and after EFS. This method provided a

baseline and changes in the intracellular Ca2+ levels were measured. Data for such experiments

consisted of stacked 2048x2048 pixel image sets of 25 frames before and after EFS. In total, 56

image stacks were analyzed. The Fluo-8 fluorescent image data sets consisted of pre- and post-

exposure images of non-invasive 1 to 3 V/cm EFS. The analysis pipeline was used to analyze

approximately 9–10 image sets for each experimental condition. Pre-exposure cells served as

their own control.

Once the cells are imaged, multiple single or stacked images can be imported directly to the

script and begin segmentation after format conversion. The Java library, Bio-Formats, is first

used to convert the Nikon-specific file types to TIFF for ease of use in Linux ImageJ macro func-

tions. The stack of images is then made into a single composite image with every pixel repre-

senting the maximum value of its pixel location. The final image will have the largest pixel value

from all images in the stack. This was done due to the oscillating nature of Ca2+ signaling caus-

ing cells to be completely dark in certain frames. By creating an image with only the brightest

pixels, we are able to ensure all cells able to uptake the fluorescence Ca2+ tag will be segmented

and negate the issue of ROI drop-out caused by cells not fluorescing in all frames. Due to the

clustering and static, non-migratory nature of β-cells, one mask image was determined suffi-

cient in assisting segmentation for all frames. The composite image is then merged with an

image of only the nuclei (labeled with DAPI) from the first frame of the exposure period (Fig

1C). It was determined that adding a DAPI channel greatly improved the segmentation process.

A validated deep learning-based generalist cellular segmentation algorithm, Cellpose, is

used to automatically outline the boundary of each cell and create an ROI with user-defined

parameters [32]. Users may specify if their images contain a DAPI channel, which channel

contains the entire cell, the Cellpose model for segmentation, and thresholds. These parame-

ters can be tested on one image to ensure quality segmentation. The generalist algorithm has a

better performance with the addition of a DAPI channel due to the clustering nature of β-cells

and difficulty differentiating neighboring cells with only one calcium indicator dye. After seg-

mentation, an image defining the ROI of every cell is saved. The ‘mask’ image differentiates

cells by assigning every ROI a different grayscale color (Fig 1D). The unique color can be used

as a label during cell registration and tracking.
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The mask image is replicated and merged with each frame of the original image stack with-

out the DAPI channel in order to analyze the correct fluorescent intensity. Merging is per-

formed by sorting the newly made mask image stack and original image stack into two

different color channels (Fig 1E). This format will allow for the Fiji plugin, TrackMate, to

begin cell registration by identifying the ROIs labeled in the channel containing the mask

images [47]. The cell track detector analyzes the mask channel and registers every uniquely

colored shape as a cell. Due to limitations of hand segmentation, including time of analysis

and difficulty identifying cell boundaries across frames, 56–185 cells were identified in each

trial. Manual segmentation is an established method of analysis in the field, and it is common

practice to label a representative sample of cells that can be tracked over time for consistency

(S1 Fig). As the automated pipeline is able to segment and register nearly every cell within the

experimental population, 70–680 cells were labeled in each trial using BetaBuddy.

Next, each cell is linked across multiple frames, creating a “track” (Fig 1F). Lastly, fluorescent

intensity for each frame in a cell’s track is obtained by referencing the first channel, which holds

the original fluorescent image. The intensity values are taken from within the cell’s complemen-

tary ROI. This process is completely automated using ImageJ’s macro and python scripting fea-

tures. This step will create an XML file that can be loaded into TrackMate and create a

visualization of the tracks produced. Lastly, a CSV file is saved containing fluorescent intensity

values, area, and spatial coordinate positions by grouping each cell into a “Track ID” over time.

Background subtraction

Initially, the raw data CSV created after registration and tracking are very saturated with exter-

nal background noise (Fig 2A). Fluorescent images typically have background noise associated

with excessive dye or thermal electronic fluctuation. Therefore, raw data should undergo a

background subtraction process. To obtain a well-distributed sample of background intensi-

ties, 100 pixel locations outside of the ROIs are randomly selected from the original image

stack. The randomly selected pixel is compared to the mask image stack to ensure the pixel

intensity has a value of 0, verifying it is not within an ROI.

Evaluation of all acquired data is analyzed through a procedure written in R and called

upon through a terminal command in the Jupyter Notebook. The working directory is set to

the user’s current operating space, and the CSV files containing the raw tracking information

and background points are automatically imported. First, the average of all 100 randomly sam-

pled background pixels is calculated for each unique frame. This mean value is then merged

into the cell tracking information to create a singular data set. The average background inten-

sity for each time point is then subtracted from the mean intensity of each cell within that

frame. Next, to establish individual baseline activity, mean intensities were normalized specific

to each individual cell.

Normalization

Calcium intensities were normalized to account for different dye loading conditions that can

be attributed to variations in cell size, cluster size, and potential differences in how each cell

takes up the dye. This process allowed us to examine changes in fluorescent intensity in a way

that could be fairly compared across all data points (Fig 2B). Normalization was performed by

obtaining a “baseline” individual to each cell. In keeping with the original experiment’s meth-

odology, a change in fluorescent intensity�10% was notated as spiking activity [46]. We kept

this 10% threshold for the purpose of comparing the accuracy of either manual or automated

data analysis of calcium dynamics in β-cells. To find a baseline for each cell, the number of

data points until each specific Track ID reached a change of�10% from its first recorded

PLOS ONE BetaBuddy: An end-to-end computer vision pipeline for analysis of calcium fluorescence dynamics in β-cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0299549 March 15, 2024 6 / 16

https://doi.org/10.1371/journal.pone.0299549


intensity was calculated, and the mean of these first n points was divided from each back-

ground-subtracted intensity within the group. If a cell never reached an intensity level greater

than 10% of its first value, then its baseline was determined using the mean intensity of all

recorded data points for that cell.

Spike determination

The purpose of this experiment was to repeat the analysis of spiking activity within the original

data set that utilized hand segmentation methods. Our goal was to determine if there was any

significant loss of data in the original methodology. For the automated analysis, we defined a

calcium spike using the 10% threshold, as previously stated. The percent change in normalized

intensity from its previous value was calculated for each βTC-6 cell. Based on the value

changes, a spike was defined in two ways: either (a) the sum of the cumulative percent changes

Fig 2. Intensity of experimental data. Each line represents an individual cell and its fluorescent intensity tracked over a period of 2 minutes. (a) Initial data is

saturated with background noise. (b) Raw intensity values undergo background subtraction and normalization for a more accurate depiction of calcium

activity.

https://doi.org/10.1371/journal.pone.0299549.g002

PLOS ONE BetaBuddy: An end-to-end computer vision pipeline for analysis of calcium fluorescence dynamics in β-cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0299549 March 15, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0299549.g002
https://doi.org/10.1371/journal.pone.0299549


between two peaks was� 10% or (b) the percent change from the data point immediately pre-

ceding any peak in intensity was� 10% (Fig 3).

Using these parameters, we quantified each instance individual cells spiked over the course

of the imaging period before and after external stimulation. Mean activity for each trial was

calculated from the aggregate of all spikes within the population.

Results

Statistical analysis

Prior to statistical tests, outliers for singular trials were detected using a standard Z score.

Track IDs with any intensity values greater than a Z score of 3.0 or less than -3.0 were automat-

ically removed. Mean spiking activity was calculated as the total number of spikes recorded for

each trial divided by total number of cells over time.

Fig 4 illustrates one experiment using 1 V/cm stimulation. Normalized calcium activity was

plotted from -2 to 0 min (i.e., control before EFS was applied) and from 0 to 2 min following

15 min EFS. Calcium recording during 15 min EFS was not performed to minimize fluoro-

phore degradation and/or bleaching.

Fig 3. Calcium spike determination. Computational methods were used to automatically designate calcium spikes at a 10% threshold. This threshold was met

through either (a) the sum of percent changes between two designated peaks or (b) a singular percent change of� 10% immediately preceding a defined peak.

The line graph represents fluctuations in fluorescent intensity over time for a single cell in a trial.

https://doi.org/10.1371/journal.pone.0299549.g003
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A two-tailed paired t test was performed to evaluate significant changes in the calcium sig-

naling of the β-cells in response to EFS of 1 to 3 V/cm. The numbers of spikes calculated

through the automated pipeline were plotted and compared with published results (Fig 5).

Results obtained through automated methods validated the findings previously recorded

using manual analysis. EFS of 1 and 2 V/cm significantly increased the calcium spiking activity

compared to their respective controls. There was no significant increase in calcium activity

found at 3 V/cm. In further comparison of the manual vs. automated analysis, it was noted

that the number of calcium spikes calculated using hand segmentation were underestimated

by ~40% in all control and experimental conditions with respect to their counterparts in the

automated results. This trend is indicative of systematic errors that may have been caused by

human biases. For example, one factor that could account for the discrepancy in these calcula-

tions could be attributed to a limited number of ROIs in the manual segmentation (Fig 6).

ROI identification is often constrained with manual segmentation practices. Images may

only have active cells and/or cells with clear boundaries registered due to visual impairment

and time constraints. Which ROIs are identified can also be a source of bias. Thus, calculations

of spiking activity may only be sourced from a limited number of cells. In contrast, automated

segmentation using BetaBuddy resulted in near complete registration of all cells present within

each frame.

Discussion

The application of electric field stimulation to βTC-6 cells was found to successfully increase

calcium spiking activity. This indicates that EFS within 1 to 2 V/cm serves as a potentially ben-

eficial treatment for pre-conditioning β-cells for enhanced insulin secretion. It is interesting to

Fig 4. Signaling changes post EFS stimulation. Variations in activity, including changes in the fluorescent intensity and spiking frequency, increased

significantly following a 15 min exposure to 1 V/cm EFS. (a) Fluorescent activity prior to stimulation. (b) Fluorescent activity post EFS.

https://doi.org/10.1371/journal.pone.0299549.g004
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note that a larger EFS (3 V/cm) did not induce statistically significant changes in the calcium

spiking determined either by hand or by automated pipeline. We speculate that, since the

induced electrical potential depends on the cluster size, larger EFS causes non-negligible and

perhaps irreversible changes in the cell membrane potential. Generally, automated analysis

found greater overall spiking activity in the βTC-6 cells. While it remains to be further eluci-

dated whether one-time treatment with EFS is sufficient to pre-condition pancreatic cells, it

does offer a non-biologic approach to regulate insulin secretion and/or trafficking.

Furthermore, results that were previously reported using manual segmentation (see Fig 5)

were compared with those determined by BetaBuddy. Both sets of results were comparable,

suggesting analysis by hand was able to quantify the calcium dynamics in β-cells but underesti-

mated the calcium spiking rate. Automated segmentation thus appears to be a viable and more

accurate method for obtaining reliable results without the tedious and laborious practices.

Development of the BetaBuddy pipeline therefore enables us to predict the optimal application

of exogenous stimuli that can be validated experimentally and provides a pathway to fully uti-

lize the machine learning-based discoveries in the β-cell physiology. One novel method of data

processing includes isolating active cells from the general population. Quantification of spikes

from individual cells provides specialized data that allows us to track the active population

between the control and experimental sets (S2 Fig). Active cells can be defined as any cell that

spikes at least once during an imaging period (see Fig 7). These groups can be compared prior

to and following external stimuli to determine any notable changes in calcium activity.

There are many methods through which insulin and Ca2+ activity can be stimulated. Phar-

macological stimulation has been shown to increase calcium activity through drugs such as tol-

butamide, which closes the KATP channels of the β-cells [48,49]. In addition to EFS, non-

invasive stimulation can occur through applications such as photobiomodulation (PBM) ther-

apy [7]. Using this pipeline, the direct comparison of changes in calcium dynamics between

different stimuli can now readily be explored.

Fig 5. Comparison of results. The number of calcium spikes determined by hand are shown in the left panel. Using the same images, the results from the

automated analysis are shown in the right panel. * denotes p< 0.05 and ** p< 0.01 using a two-tailed paired t-test.

https://doi.org/10.1371/journal.pone.0299549.g005
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Future work

We plan to continue expanding the accessibility of our pipeline. A cleaner, more interactive

user interface within the Jupyter Notebook is being developed along with an Anaconda pack-

age for researchers to easily create an environment with all the necessary packages pre-

installed. Additionally, we are developing more user-friendly options for running different

data analyses. This includes options for various statistical tests depending on researcher prefer-

ence and the types of biological questions being asked. With these new features, users will be

able to run desired tests within the pipeline along with having access to both the raw and nor-

malized data.

We intend to use this improved process to first reanalyze a previously hand-segmented data

set exploring the effects of PBM therapy on the Ca2+ oscillations in β- and α-cells [7]. PBM is

believed to increase insulin and glucagon secretion through accelerated ATP synthesis caused

absorption of near-infrared light by the cytochrome c oxidase enzyme in the mitochondria

[50–52]. We will also be developing β/α-cell co-cultures to explore how calcium activity is

affected through intercellular modulation and determine any changes in signaling responses

post-PBM.

In future studies, spatially resolved interpretation of data offers an alternative to traditional

statistical methods of analyzing calcium signals. Cell-specific spatial and fluorescent intensity

Fig 6. Manual vs Automated ROI identification. The total number of ROIs identified using manual and automated segmentation can be compared. The

percent change between the two methods is displayed for each trial. The difference in labeled ROIs between the two segmentation methods ranged from 25–

291% per trial.

https://doi.org/10.1371/journal.pone.0299549.g006
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data can be utilized, for example, to evaluate varying levels of insulin secretion in given loca-

tions (Fig 6). For example, β-cell location and population within an islet has been shown to

strongly impact the overall islet dynamics [53]. Researchers can use these methods to not only

look at current spiking patterns, but also begin to analyze how calcium signaling is affected by

intercellular interactions.

Questions regarding calcium spiking frequency and cell-to-cell interaction through calcium

propagation are now feasible for detailed analysis. This is perhaps one of the major advantages

that were made possible by the development of automated segmentation and data evaluation.

For example, intercellular communication often relies on calcium waves through gap junctions

[54–56]. Since EFS we used in this work does not penetrate the cell, it may be hypothesized

that the outer cells in a cluster of cells are likely affected by the EFS and generate calcium activ-

ities first. Through calcium intercellular communication, the inner cells in the cluster are

affected at a later time. However, the cluster is collectively activated by EFS that leads to an

increase in insulin production. Experiments are underway to validate this hypothesis and the

results will again be used to train the model to recognize the calcium-dependent cell-to-cell

communication that may be relevant to the islet physiology.

Conclusions

Our current pipeline successfully isolates β-cells, tracks calcium signaling patterns over time,

and produces preliminary data values that can be used in future statistical analyses. Automated

segmentation reduces biases and decreases time required for analysis compared with manual

segmentation. With this information, we are able to pinpoint individual cells with the most

biologically significant spiking patterns. Additionally, individual calcium activities can be

monitored over time, offering critical spatial and temporal information.

Fig 7. Spatial visualization. a) Cartesian coordinates were used to visualize the locations of spiking cells. Only cells currently spiking are outlined at a given

time. The cells highlighted in red color, for example, exhibit calcium spiking activity at t = 25 s. The visual analysis does not correlate to the actual size of cell

clusters. b) The generated spatial data can be used to trace back and identify cells of interest in the original experimental images.

https://doi.org/10.1371/journal.pone.0299549.g007
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BetaBuddy has a multitude of benefits for potential research. Its customizable platform

allows it to be adapted for use with multiple cell types. Its base structure has already been uti-

lized for the automated analysis of mouse brain endothelial cells (MBECs) and human mesen-

chymal stem cells (hMSCs). Furthermore, the pipeline is designed in a way that researchers

from diverse backgrounds can use it regardless of past coding experience.

This first analysis serves as a reliable test case for BetaBuddy’s ability to batch analyze data.

From here we will seek to apply the developed pipeline to evaluating other forms of stimuli

(e.g. chemical/physical). Information obtained from this data may greatly assist in treatments

for Type I Diabetes. The first step to developing a more quantifiable method for determining

viable cells is obtaining a better understanding of the calcium dynamics of both β- and α-cells.

Co-culturing these cell types together will provide insight into how different forms of stimula-

tion might improve cell viability in an in vivo setting. Moreover, our automated pipeline can

decrease evaluation times for multiple treatment alternatives and even serve as a drug repur-

posing tool.

Supporting information

S1 Fig. Manual vs. Automated segmentation. Deep learning algorithms have been found to

greatly improve segmentation accuracy. (a) Previous hand segmentation methods often under-

segmented the total ROIs present, often ignoring highly clustered areas. (b) Our automated

system comprising merging DAPI with the targeted fluorescein channel, segmentation, and

subsequent ROI tracking was able to consistently identify more cells at a higher accuracy and

track localized signals.

(TIF)

S2 Fig. Effects of EFS on active cell population. Each point represents the number of active

cells within a specific trial. Active cells were defined as any cell that spiked at least once during

the trial’s imaging period. The change in population following EFS stimulation can be tracked

across each connecting line. The mean, upper quartile, and lower quartile of the active popula-

tions pre- and post-EFS are represented with their respective boxplots.

(TIFF)
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25. Akram SU, Kannala J, Eklund L, Heikkilä J. Cell Segmentation Proposal Network for Microscopy Image

Analysis. In: Carneiro G, Mateus D, Peter L, Bradley A, Tavares JMRS, Belagiannis V, et al., editors.

Deep Learning and Data Labeling for Medical Applications. Cham: Springer International Publishing;

2016. p. 21–9.

26. Ahmed Raza S. E., Cheung L., Epstein D., Pelengaris S., Khan M., Rajpoot N. M. MIMO-Net: A multi-

input multi-output convolutional neural network for cell segmentation in fluorescence microscopy

images. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). 2017. p.

337–40.

27. Eschweiler D., Spina T. V., Choudhury R. C., Meyerowitz E., Cunha A., Stegmaier J. CNN-Based Pre-

processing to Optimize Watershed-Based Cell Segmentation in 3D Confocal Microscopy Images. In:

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 2019. p. 223–7.

28. Sharif J. M., Miswan M. F., Ngadi M. A., Salam M. S. H., bin Abdul Jamil M. M. Red blood cell segmenta-

tion using masking and watershed algorithm: A preliminary study. In: 2012 International Conference on

Biomedical Engineering (ICoBE). 2012. p. 258–62.

29. Koyuncu CF, Arslan S, Durmaz I, Cetin-Atalay R, Gunduz-Demir C. Smart Markers for Watershed-

Based Cell Segmentation. PLOS ONE. 2012 Nov 12; 7(11):e48664. https://doi.org/10.1371/journal.

pone.0048664 PMID: 23152792

30. Zimmer C., Labruyere E., Meas-Yedid V., Guillen N., J. -C. Olivo-Marin. Segmentation and tracking of

migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing.

IEEE Trans Med Imaging. 2002 Oct; 21(10):1212–21. https://doi.org/10.1109/TMI.2002.806292 PMID:

12585703

31. Ersoy I., Palaniappan K. Multi-feature contour evolution for automatic live cell segmentation in time

lapse imagery. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society. 2008. p. 371–4.

32. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: A generalist algorithm for cellular segmenta-

tion. Nat Methods. 2021 Jan 1; 18(1):100–6. https://doi.org/10.1038/s41592-020-01018-x PMID:

33318659

33. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex Polygons. In: Frangi AF,
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