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Abstract

Urbanization has led to accelerated traffic congestion, posing a significant obstacle to urban

development. Traditional traffic signal scheduling methods are often inefficient and cumber-

some, resulting in unnecessary waiting times for vehicles and pedestrians, exacerbating the

traffic situation. To address this issue, this article proposes a dynamic traffic signal schedul-

ing system based on an improved greedy algorithm. Unlike conventional approaches, we

introduce a reward function and a cost model to ensure fair scheduling plans. A constraint

function is also established, and the traffic signal scheduling is iterated through the feasible

matrix using the greedy algorithm to simplify the decision-making process and enhance

solution efficiency. Moreover, an emergency module is integrated to prioritize special emer-

gency vehicles, reducing their response time during emergencies. To validate the effective-

ness of our dynamic traffic signal scheduling system, we conducted simulation experiments

using the Simulation of Urban Mobility (SUMO) traffic simulation suite and the SUMO traffic

control interface Traci. The results indicate that our system significantly improves intersec-

tion throughput and adapts well to various traffic conditions, effectively resolving urban traf-

fic congestion while ensuring fair scheduling plans.

Introduction

Background and purpose

The number of motor vehicles is steadily increasing, particularly during peak commuting peri-

ods, leading to a rise in urban congestion. This congestion not only causes inconvenience to

travelers but also contributes to increased fuel consumption and higher emissions of car

exhaust [1]. Such air pollution poses serious health risks to residents [2] and conflicts with the

principles of ecological civilization construction.

Conventional traffic light scheduling, with a fixed duration and fixed sequence, often results

in the frustrating occurrence of “green light for vehicles-free” reducing the road capacity and

wasting valuable time for people. This phenomenon, commonly known as “empty green

lights” exacerbates traffic congestion by allowing traffic signals to turn green even when no

vehicles are waiting to proceed. Consequently, valuable green light time is squandered,
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exacerbating the overall traffic flow inefficiency. Additionally, “empty green lights” can lead to

unnecessary casualties as emergency vehicles, such as ambulances and fire trucks, are unable

to reach their destinations promptly.

Given the prevalence of congested roads, traffic police frequently resort to manually adjust-

ing the duration of traffic signals. However, this approach is slow to respond and inefficient.

Consequently, traditional traffic light scheduling is no longer suitable for today’s diverse traffic

conditions.

In recent years, the rapid development of big data and artificial intelligence has significantly

improved the efficiency and stability of road traffic signal scheduling systems. Currently, the

primary traffic light scheduling system still relies on extending and shortening the signal tim-

ing based on fixed sequences. However, this approach often leads to the occurrence of “empty

green lights” wasting valuable traffic resources. Literature review

This article proposes a dynamic signal light scheduling system that utilizes an improved

greedy algorithm to change the fixed sequence. By employing image recognition and signal

transmission [3,4], traffic conditions at intersections are collected, and the optimization of

traffic conditions is formulated as a problem. The problem is then divided into several time

intervals, and reward, cost, and constraint functions are defined [5,6]. Based on whether the

routes conflict, the best scheduling plan is selected. Furthermore, this system fully considers

the actions of special emergency vehicles, such as ambulances and fire trucks, to ensure their

timely response.

To validate the effectiveness of the dynamic signal light scheduling system in simulating

road traffic flow, the Simulation of Urban Mobility (SUMO) traffic simulation suite, along

with the SUMO Traffic Control Interface (Traci), is utilized for simulation and evaluation.

The paper is structured as follows: Section II describes the current state of research in signal

scheduling. Section III describes the scheduling environment and the simulation model used

for algorithm verification. Section IV presents the principles of the modified greedy algorithm

for the dynamic signal light scheduling system with changing fixed order. Section V discusses

the results and provides an analysis. Section VI outlines future work and potential develop-

ments. Finally, Section VII offers a summary.

Literature review

Signal dispatch

Road traffic lights have evolved significantly, moving away from the traditional fixed signal

timing mode to embrace the more intelligent signal timing mode. In recent years, artificial

intelligence (AI) has emerged as a promising solution for traffic signal control. Researchers

have explored various AI-based approaches, such as fuzzy theory [7,8], fuzzy neural networks

[9], and fuzzy control models [10,11], to design signal control schemes.

Additionally, reinforcement learning has been applied to learn optimal signal control strat-

egies [12–14]. The advanced Reinforced AIM (adv.RAIM) system, employing end-to-end

Multi-Agent Deep Reinforcement Learning (MADRL), presents a novel paradigm for Autono-

mous Intersection Management (AIM) [15]. Its notable advantages over traditional traffic

light control methods underscore its potential to revolutionize signal scheduling systems,

offering improved adaptability and efficiency in traffic management. Van Der Pol investigated

traffic signal coordination using a DQN, employing a testbed with a right-angle intersection

and turn prohibitions. Simulation of Urban MObility (SUMO) was used for simulation, utiliz-

ing vehicle location from image data for the state, and selecting signal combinations as actions.

The reward, a weighted average, considered vehicle delay, waiting time, stops, and signal

changes [16]. Genders and Razavi optimized traffic signals using a DQN with a deep CNN.
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The testbed had a right-angle intersection with four lanes in each approach. SUMO simulated the

scenario, extracting vehicle positions from images. The reward was based on the change in cumu-

lative vehicle delay [17]. Evolutionary algorithms (EAs), including genetic algorithms and particle

swarm optimization [18–23], have also been utilized for static timing optimization problems.

As shown in Table 1, several traffic signal control systems, such as TRANSYT [24,25] and

SCOOT [26] in the United Kingdom, SCATS in Australia [25,27], RHODES and OPAC in the

United States [28,29], the CRONOS system in France [30], and the SPOT system in Italy [31],

have been studied and developed worldwide.

According to the operational situation, traffic signal controllers can be classified into two

categories: timing signal controllers and adaptive signal controllers [7]. Timing signal control-

lers have fixed cycle lengths and green light splitting, while adaptive signal controllers can be

adjusted dynamically, making the latter more effective in traffic control [33]. Despite the

advances in various methods, designing effective and efficient urban traffic signal control sys-

tems still poses challenges.

Discrimination of research

Adaptive traffic signal control systems employ two primary strategies to optimize traffic flow

at intersections and road segments: adjusting fixed signal durations and altering the fixed

Table 1. Comparison of traffic signal control between modern and contemporary times [32].

Control

system

Area Time Principle Advantages and Disadvantages

TRANSYT

SYSTEM

United

Kingdom

1969 Using the hill climbing algorithm to optimize the green time

ratio and phase difference for timing settings of the signal

system, under stable traffic flow conditions.

Advantage: A timed operating system is easy to use and

does not require complex operations.

Disadvantage: The traffic signal cycle must be consistent,

and the implementation environment must be too

idealized.

SCOOT

SYSTEM

United

Kingdom

1979 Installing vehicle detectors at intersections can allow for real-

time acquisition of vehicle entry and exit times and intervals on

the road. This method can be used to adjust the timing of traffic

signals, thereby reducing the average waiting time at the

intersection.

Advantage: The system has the characteristics of fast

response, strong stability, and low error rate.

Disadvantage: Due to the high complexity and sudden

changes in traffic, there may be some challenges.

SCATS

SYSTEM

Australia 1969

Around

Setting up vehicle detectors at the stopping points of

intersections is an adaptive control scheme that optimizes

timing plans by integrating system parameter information.

Advantage: It does not require complex traffic models and

has comprehensiveness.

Disadvantage: The solution design is limited, and the

system reliability is low.

RHODES

SYSTEM

United

States

1996 Develop a transportation prediction model to forecast and

simulate traffic conditions in advance, to coordinate the timing

and phasing of signals. Simultaneously, optimize scheduling by

monitoring traffic flow in all directions.

Advantage: This solution has strong predictive ability and

stability.

Disadvantage: In the case of high traffic volume, prediction

becomes more difficult and complex.

OPAC

SYSTEM

United

States

1983 Coordinating the road traffic signal system in a decentralized

intersection network can alleviate information overload in

centralized networks while taking into account the dynamic

environment of traffic patterns.

Advantage: The signal controller has excellent

coordination and processing capabilities.

Disadvantage: The communication rate is low, and the

control algorithm is more complex.

CRONOS

SYSTEM

France 1996 Using heuristic methods to find the minimum local delay based

on intersection queue length and vehicle occupancy rate, to

improve the control performance of real-time urban traffic

control systems.

Advantage: Strong global optimization ability, which can

significantly shorten the total delay time.

Disadvantage: The implementation environment is

complex, and the switching frequency is low in complex

situations.

SPOT

SYSTEM

Italy 1985 The city’s traffic optimization control system is a macro traffic

model based on historical data, which implements a bus priority

strategy by introducing the concept of weights.

Advantage: Based on historical data, it has good

predictability; public transportation efficiency can be

improved through bus priority strategies.

Disadvantage: It requires sufficient collection and analysis

of historical data, and the system implementation

complexity is high.

https://doi.org/10.1371/journal.pone.0298417.t001
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sequence of signals. Fixed-duration systems, such as traditional traffic signal control, are suit-

able for situations where traffic flow remains relatively constant. These systems allocate green

signal time based on preset intervals, providing stability but lacking adaptability to changing

conditions. In contrast, adaptive systems like SCOOT and SCATS dynamically adjust signal

durations and phase sequences in real-time, responding to the evolving traffic environment.

The advantages of fixed-duration systems lie in their simplicity and controllability, making

them suitable for relatively stable traffic patterns. However, in urban areas with fluctuating and

dynamic traffic volumes, adaptive systems demonstrate clear advantages. These systems opti-

mize traffic flow by adjusting signal timings based on real-time data, potentially reducing con-

gestion and enhancing overall commuting experiences. Nevertheless, they may entail higher

technical support and maintenance costs.

Therefore, to strike a balance between cost considerations and scheduling efficiency, we are

inclined to focus our research solely on altering fixed-sequence signal scheduling systems. This

approach retains a degree of system simplicity and controllability while adapting to fluctuating

traffic flow by flexibly adjusting the sequence of signal timings. Compared to fixed-duration

systems, this method may offer enhanced performance in urban areas with variable and

dynamic traffic volumes.

By concentrating on adjusting the fixed sequence of signals, we aim to reduce technical sup-

port and maintenance costs while preserving the flexibility of the scheduling system as much

as possible. This balance may be particularly suitable for urban traffic management, where sen-

sitivity to real-time changes is crucial, but economic considerations must be carefully weighed.

Through an in-depth exploration of altering fixed-sequence signal scheduling systems, we

hope to identify a cost-effective and flexible solution to meet the demands of urban traffic

efficiently.

Related work

Scheduling environment and conditions

To control all signal lights at an intersection and achieve global traffic signal scheduling, it is

crucial to detect the traffic flow in each lane accurately. For vehicle detection, we propose the

installation of a camera in each direction on the traffic light pole to monitor and integrate real-

time traffic flow at the intersection. However, for pedestrians, relying solely on cameras may

not yield optimal results due to challenges such as overlapping pedestrians, greenery, and

building obstructions. Therefore, we need to explore more effective detection methods for

pedestrian flow.

Currently, we employ a pedestrian crosswalk button on the traffic light pole, which is a

widely used approach in the United States [34]. This button serves multiple purposes: it facili-

tates traffic signal scheduling at intersections and ensures pedestrian safety while crossing the

road. However, to accommodate special emergency vehicles, we propose equipping them with

remote control devices that can communicate with emergency signal receivers installed in traf-

fic signal lights, allowing for priority emergency scheduling. This measure aims to expedite the

passage of emergency vehicles during critical situations.

Simulation model building

SUMO is an excellent traffic simulation software widely used in traffic planning, management,

and intelligent transportation systems [35,36]. It offers several advantages: 1) it is open source,

allowing users to utilize, modify, and distribute it freely; 2) it is flexible and capable of simulat-

ing various road traffic scenarios, automatically adhering to the regulations of the “Traffic

Safety Law of the People’s Republic of China” for vehicle acceleration and deceleration; 3) It

PLOS ONE A dynamic traffic signal scheduling system

PLOS ONE | https://doi.org/10.1371/journal.pone.0298417 March 15, 2024 4 / 22

https://doi.org/10.1371/journal.pone.0298417


provides a user-friendly interface, detailed documentation, Python API, and command-line

tools, as well as various formats of simulation data for easy analysis and system validation; 4) it

is extendable, allowing users to customize algorithms, models, and write plugins to enhance its

functionality.

Based on these advantages, we selected the open-source traffic simulation software SUMO

as the simulation model for our dynamic traffic signal scheduling system. We created a map

featuring a four-way intersection with three lanes (left turn, right turn, and straight) and one

pedestrian lane in each direction, resulting in a total of sixteen routes in the road network

requiring traffic control.

In Fig 1, the blue area represents the region where real intersection cameras detect vehicles.

These cameras monitor this area to gather information about the presence and movement of

vehicles, allowing for efficient traffic signal control. For pedestrians, the intersection itself pro-

vides pedestrian information, and their movements are monitored within the intersection area

to ensure their safety.

As for special emergency vehicles, such as ambulances, they are designated with a cross dis-

played on their body above Fig 1. These vehicles have the characteristic of ignoring red lights,

enabling them to pass through the intersection without stopping when necessary, ensuring a

swift response during emergencies. Additionally, the green elliptical object in Fig 1 symbolizes

a pedestrian, indicating their presence within the monitored area.

In SUMO, the default traffic signal control relies on traditional static scheduling. However,

we utilize Traci as a third-party library for Python, which serves as an interface connecting

Python scripts to the traffic simulation software SUMO. This integration allows us to access

real-time parameters from the simulation and control it accordingly.

During each simulation, we gather vehicle and pedestrian information, which would typi-

cally be obtained from cameras and buttons in real-life scenarios, through Traci. Leveraging

Fig 1. SUMO simulation of the intersection.

https://doi.org/10.1371/journal.pone.0298417.g001
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this data, we apply an improved greedy algorithm-based dynamic traffic signal control algo-

rithm to generate the current optimal traffic signal control scheme. By using Traci and imple-

menting the dynamic traffic signal control algorithm, we can effectively enhance the SUMO

simulation to reflect real-world traffic conditions more accurately, enabling us to evaluate the

performance of our proposed approach and optimize traffic signal timings based on the

dynamic flow of vehicles and pedestrians.

System principle

Dynamic time-sequencing optimization problems necessitate real-time adaptation to changing

conditions, and one effective approach is through the application of greedy algorithms. Rooted

in local optimization, these algorithms make sequential, myopic choices at each step, aiming to

approximate the global optimum. This optimization challenge involves determining the most

efficient arrangement of elements over time, considering the evolving nature of the system.

Building upon the broader application of greedy algorithms in optimization problems

[37,38], our emphasis on dynamic time-sequencing optimization highlights the versatility of

this approach. Recognized for their locally optimal decision-making, greedy algorithms play a

pivotal role in resource-constrained scenarios, spanning time, space, and cost considerations.

This adaptability proves especially valuable in domains like sensor scheduling, where these

algorithms excel in minimizing estimation errors and enhancing overall system performance

[39]. In the context of production scheduling, the Iterated Greedy Algorithm has proven effi-

cient in resolving intricate problems [40]. Moreover, our focus on dynamic time-sequencing

optimization resonates in domains such as wind turbine positioning, where the integration of

the greedy algorithm with incremental calculation and iterative adjustments surpasses alterna-

tive methods, establishing itself as a highly effective strategy for optimal solutions [41]. This

underscores the relevance and efficacy of the greedy algorithm in addressing a spectrum of

optimization challenges.

To address the dynamic traffic light scheduling optimization problem, characterized by the

imperative to minimize traffic congestion and waiting times while enhancing overall traffic effi-

ciency, the application of the greedy algorithm proves instrumental [42]. Greedy algorithms,

renowned for their ability to make immediate, locally optimal decisions, exhibit a fast execution

that aligns seamlessly with the real-time demands of traffic management. Through the utiliza-

tion of greedy algorithms in this context, our approach significantly improves traffic efficiency

and reduces congestion, accomplishing the objectives of dynamic traffic light scheduling.

To further optimize traffic flow control, we propose introducing reward functions, cost

functions, and constraint functions to design more efficient greedy algorithms. Specifically, we

obtain information on the number of vehicles and pedestrians on the current road, establish

reward and cost functions to calculate the total loss value of each route, and define constraint

functions. The algorithm then selects the first route and iteratively schedules the signal lights

through the feasible matrix, dynamically adjusting the signal light status on each route to opti-

mize traffic flow. The utilization of greedy algorithms enables the division of the optimized

traffic flow into several periods, simplifying the decision-making process and significantly

improving solution efficiency. This approach facilitates the efficient and rapid transmission of

dynamic signal light scheduling decisions to signal light devices, as depicted in Fig 2.

Define the problem and subproblem breakdown

To find out the best signal scheduling scheme in the current time interval, we need the current

traffic situation at the intersection, and we take the average waiting time of vehicles and pedes-

trians in the period as the current traffic situation.
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We divide the optimization traffic flow problem into several time intervals and calculate the

optimal scheduling scheme for each interval. Decomposing the problem into smaller intervals

enhances the efficiency and accuracy of the solution, thereby maximizing traffic flow.

The greedy strategy is designed to assign green lights to the direction with the highest

vehicle traffic passing through the intersection at each time interval. The traffic light status

Fig 2. Structure diagram of dynamic signal light scheduling algorithm.

https://doi.org/10.1371/journal.pone.0298417.g002
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of the intersection is determined based on the detected traffic flow status at each intersection

(Fig 3).

Introduce reward, cost, and constraint functions

Taking into full consideration the disadvantages of the local optimal solution caused by the

greedy algorithm, the cost function can be employed to prevent a constant state of red lights in

specific lanes, reduce the standard deviation of the average vehicle waiting time, and

ensure fairness for both vehicles and pedestrians. The rules for setting the cost function are as

follows:

Pi ¼

0 No traffic on the road

1 The first traffic on the road

ðPi� 1 þ 1ÞPi� 1 otherwise

ð1Þ

8
><

>:

Thereinto, i is the route i at an intersection, Pi is the generation value assigned to each

route.

To determine the optimal state of the current traffic lights, we consider the reward value

associated with allowing traffic on specific routes, which represents the benefit of permitting

traffic flow on those roads. Set the reward function to be equal to the cost function, namely Ri

= Pi.
As shown in Fig 4, the intersection consists of four directions: east, west, south, and north,

which are controlled by corresponding traffic lights, resulting in a total of sixteen routes. These

routes encompass various movements, including West - Left, West - Direct, West - Right,

West - Pedestrian, South - Left, South - Direct, South - Right, South - Pedestrian, East - Left,

East - Direct, East - Right, East - Pedestrian, North - Left, North - Direct, North - Right, and

North - Pedestrian. Among these sixteen routes, some are independent of each other, while

others conflict with each other. To represent the relationship between routes, we define a

16*16 two-dimensional matrix A. If matrix[i][j] is 1, then route i is independent of route j. If

matrix[i][j] is 0, then route i conflicts with route j. If matrix[i][j] is -1, then route i and route j

are the same. Thus, we can initialize the independent matrix A according to the traffic rules.

Fig 3. Decompose the problem.

https://doi.org/10.1371/journal.pone.0298417.g003
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For the independent matrix A, we need to transform it as follows:

E½i�½j� ¼ A½i�½j�ð1; � 1! 0; 0! 1Þ

) E ¼

0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1

0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0

1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0

1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0

1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1

1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

Fig 4. Route independence and conflict.

https://doi.org/10.1371/journal.pone.0298417.g004
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Based on the reward function and the cost function, the cost value of the traffic on that road

can be calculated as Ci(i = 1,2,. . .,16). The cost value of each road Ci is calculated as follows:

Ci ¼
X16

i¼1

ðE½i�½j�Þ∗Pi ð3Þ

With reward value and cost value, the loss value for each road over the current period can

be calculated.

M ¼ Ci � Ri ð4Þ

At the same time, to solve the situation that different routes have the same loss value, we

introduce a constraint function �n, Set the value of the initial constraint function for each road

to 0. The value of the route constraint function that is not enabled in the nth dispatch is

increased by 1, and the value of the enabled road constraint function is reset to 0. The rules for

setting constraint functions are as follows.

εn ¼ 0; i route is enabled

εn ¼ εn� 1 þ 1; i route is not enabled
ð5Þ

(

Selecting the route with the minimum loss value M as the first path in the scheduling scheme.

Iterative update to achieve dynamic scheduling of traffic lights

Upon selecting the first route, continuous iterations are performed based on the current traffic

conditions. Traffic signal states for all directions are updated within fixed time intervals to

achieve the optimization of traffic flow.

As shown in the traffic section of Fig 5 above, after solving the first route using the greedy

strategy, we proceed to solve the remaining routes. To facilitate this process, we transform the

independent matrix A as follows to obtain the one-dimensional feasible array F:
S½i�½j� ¼ A½i�½j�ð� 1! 0; 1! 1; 0! 0Þ

) S ¼

0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0

1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1

1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1

0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1

1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0

1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1

1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1

1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1

0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0

1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1

0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0

0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0

1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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7
5

Fi ¼ S½i�

ð6Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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According to F the calculated cost value:

Cj ¼
X16

i¼1

ðE½i�½j�Þ∗Pi∗Fi

Mj ¼ Cj � Rj

ð7Þ

8
>><

>>:

After finding the second route with the least loss value, it is necessary to iteratively update

the variable F according to the following strategy for the nth iteration:

F ¼ S½i�∗S½j�; εn� 1 ) εn; Mn� 1 ) Mn

After iterating until the feasible array F is all 0, the scheduling is completed, and the optimal

traffic flow is found. The traffic conditions after the dispatch are shown in Fig 6 below, demon-

strating that the scheduling algorithm can effectively alleviate the traffic congestion problem.

Emergency module

We propose the introduction of an emergency module in the traffic light dispatch system to

prioritize the passage of special emergency vehicles, such as ambulances and police cars,

thereby enhancing the efficiency and safety of the city’s transportation system.

In the dynamic signal dispatch system’s emergency module, our primary objective is to

ensure traffic safety and prioritize public interest during emergencies. Different priorities can

be assigned to various vehicles and pedestrians in the traffic scheduling algorithm. During

emergencies, emergency service vehicles like police cars, ambulances, and fire engines are

granted the highest priority to ensure the uninterrupted execution of their critical tasks. Con-

sequently, we optimize the traffic scheduling mechanism based on the priority algorithm.

The vehicle type-based priority system is a traffic management approach that classifies vehi-

cles according to type and assigns traffic priority accordingly. This method categorizes vehicles

Fig 5. Congested intersection section.

https://doi.org/10.1371/journal.pone.0298417.g005

PLOS ONE A dynamic traffic signal scheduling system

PLOS ONE | https://doi.org/10.1371/journal.pone.0298417 March 15, 2024 11 / 22

https://doi.org/10.1371/journal.pone.0298417.g005
https://doi.org/10.1371/journal.pone.0298417


into two groups: emergency service vehicles and the rest of the vehicles. Emergency service

vehicles, such as ambulances, police cars, and fire engines, are granted top priority due to their

crucial role in responding to emergencies and ensuring rapid arrival at their destinations. The

rest of the vehicles, excluding emergency service vehicles, are assigned the second priority to

discourage private vehicle usage during peak periods.

Pi represents the priority of route i; if an emergency vehicle is present on route i, Pi = 1, oth-

erwise, Pi = 0. Mi represents the loss value on route i under normal scheduling. An emergency

scheduling Ei can be determined using a function:

Ei ¼
0; Pi ¼ 0

1; Pi ¼ 1 and Mi is theminimum
ð8Þ

(

In this function, the values of Pi and Mi determine the final emergency scheduling scheme

Ei = 1 indicates that route i is designated as an emergency passageway, while Ei = 0 means

route i is not designated as an emergency passageway. When an emergency vehicle is detected

on the road, the emergency module is immediately activated, indicating Pi = 1, prioritizing the

passage of route i. If multiple routes have Pi values equal to 1, the loss values Mi are compared,

and the route i with the smallest Mi value is selected, setting Ei = 1 as the first emergency

route. The process iterates, considering other routes with Mi = 1 until the feasible array F for

routes with loss value Mi = 1 is all 0. Then, routes without emergency vehicles are iterated.

When all initial routes have Ei = 0 indicating no emergency situation, the normal traffic light

scheduling module is executed.

By considering both the priority (Pi) and traffic route loss values (Mi), the model effectively

determines the emergency scheduling (Ei) for the roads, enabling rapid adjustments in traffic

flow during emergencies. Additionally, the model intelligently selects routes with the mini-

mum loss values when multiple roads face emergency situations, progressively managing other

Fig 6. Crossroads after dispatching.

https://doi.org/10.1371/journal.pone.0298417.g006
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routes to minimize traffic congestion and enhance efficiency. Its flexibility and adaptability are

commendable, allowing adjustments according to changing traffic conditions. Furthermore,

even in the absence of specific emergencies, the model seamlessly executes normal traffic light

scheduling, ensuring the smooth operation of the traffic system.

The improved greedy algorithm pseudocode

The improved greedy algorithm is implemented using the Python programming language and

PyCharm software. The code is shown in Algorithm 1.
Algorithm 1 The code of the improved greedy Algorithm
Input: emergency_vehicles_list, normal_vehicles_list, pedestrian_-
list, dispatch_interval
Output: Traffic Light Scheduling Scheme
1: Function TrafficLightScheduler(emergency_vehicles_list, normal_ve-
hicles_list, pedestrian_list, dispatch_interval):
2: traffic_light_matrix = InitializeTrafficLightMatrix()
3: Loop Forever:
4: selected_lights = []
5: total_loss = CalculateTotalLoss(traffic_light_matrix)
6: feasible_array = GenerateFeasibleArray(traffic_light_matrix)
7: constraint_value = CalculateConstraintValue
(traffic_light_matrix)
8: has_emergency_vehicle = CheckForEmergencyVehicles
(emergency_vehicles_list)
9: If has_emergency_vehicle:
10: HandleEmergencyVehiclePriority(traffic_light_matrix)
11: Else:
12: SelectNormalTrafficLights(traffic_light_matrix)
13: feasible_array = UpdateFeasibleArray(feasible_array)
14: If feasible_array is not empty:
15: new_selected_lights = OptimizeLightSelection(feasible_array)
16: selected_lights.extend(new_selected_lights)
17: WaitFor(dispatch_interval)
18: End Loop
19: Return selected_lights
20: End Function

Experiments and comparisons

To thoroughly validate the efficiency and superiority of our proposed scheduling system, we

conducted several sets of experiments to evaluate its performance in various aspects. Our eval-

uation involved analyzing the performance of both the traditional signal system and the

improved signal system under different configurations of traffic volumes and other attribute

values. The key metrics we focused on during the evaluation included the average waiting time

for vehicles and pedestrians, the standard deviation of waiting time, total fuel consumption,

and gas emissions. These metrics allowed us to assess the effectiveness of the improved traffic

system [43–45]. The experiments were divided into four parts, as outlined below.

To enhance the comprehensiveness of our evaluation and establish a comprehensive bench-

mark, we extended our analysis by incorporating a comparative study with a relatively

advanced Deep Q-network (DQN)-based signal scheduling system [46]. In this comparative

study, we considered the same sets of experiments conducted for the evaluation of our pro-

posed system. Additionally, we integrated the DQN-based signal scheduling system into the

experimental framework to gauge its performance across the same configurations of traffic

volumes and attribute values.
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Scheduling frequency

Different dispatching frequencies can influence the efficiency of dispatching, thereby affecting

the effectiveness of our improved traffic dispatching system. Therefore, we evaluated our traf-

fic system by adjusting the dispatching frequency from 10 seconds to 20 seconds to change the

signal once. The experimental results are shown in Fig 7.

From Fig 7, it is evident that within the dispatching time range of 10 to 20 seconds, the aver-

age vehicle waiting time shows a gradually increasing trend. However, the results of the

dynamic signal dispatching system are significantly lower than the traditional results. Specifi-

cally, from Fig 7(A), the dynamic signal dispatching system reduces the waiting time by an

average of 32.1%. Additionally, through the analysis of Fig 7(B), it is apparent that the dynamic

signal dispatching system also yields a noteworthy improvement in pedestrian waiting times.

Furthermore, our dynamic signal dispatching system, incorporating an improved greedy

algorithm, not only outperforms the traditional signal dispatching system but also demon-

strates a comparative advantage over the signal dispatching system utilizing the DQN algo-

rithm. It is noteworthy that, in the majority of cases, the standard deviations observed in

waiting times for signal dispatching systems employing the DQN algorithm surpass those asso-

ciated with our dynamic dispatch system implementing the improved greedy algorithm. This

suggests a level of robustness and consistency in our proposed dynamic signal dispatching

approach, indicating its potential advantages over alternative methods.

Fig 7. Average waiting time and standard deviation of vehicles (a) and pedestrians (b) before and after algorithms

implementation.

https://doi.org/10.1371/journal.pone.0298417.g007
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Considering real-life factors such as driver and pedestrian reaction times, vehicle accelera-

tion, and pedestrian walking speeds, we recommend selecting dynamic traffic dispatching

time of 18 seconds.

Vehicle-to-pedestrian ratio

In the second experiment, we considered different traffic volumes and pedestrian flows at the

intersection by changing the configuration of vehicles and pedestrians. We tested the adapt-

ability of our dynamic traffic signal scheduling system under different traffic conditions. The

scheduling time was set to 18s, the pedestrian count was set to 100, and the total simulation

time was set to 400s. We set the vehicle count for three directions to 50 each and changed the

number of vehicles in the other direction to change the vehicle-to-pedestrian ratio.

Compared to traditional traffic signal systems, Fig 8 shows that our dynamic traffic signal

scheduling system has strong optimization effects on different vehicle-to-pedestrian ratios.

The average waiting times for vehicles and pedestrians in our dynamic system were signifi-

cantly lower than those in traditional systems, and the standard deviations were generally

lower as well. These results demonstrate that our dynamic traffic signal scheduling system is

adaptable to different traffic conditions and can effectively handle the complex and varied traf-

fic scenarios encountered in modern intersections.

In scenarios with increasing disparities in traffic volume, our dynamic signal dispatching

system with an improved greedy algorithm outperforms the signal dispatching system with

DQN algorithm. The waiting time for vehicles in our dynamic system with the improved

greedy algorithm is notably less than that with the DQN algorithm, especially in extreme cases

Fig 8. Average waiting time and standard deviation of vehicles (a) and pedestrians (b) with different vehicles.

https://doi.org/10.1371/journal.pone.0298417.g008
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where the number of vehicles in one direction is 300. Moreover, the DQN algorithm lacks con-

sideration for pedestrians, resulting in suboptimal waiting time data for pedestrian traffic.

Fuel consumption and gas emissions

One of the primary objectives of traffic scheduling systems is to optimize traffic flow, reduce

traffic congestion, improve road utilization, and minimize unnecessary fuel consumption and

gas emissions. Therefore, in the third experiment, we utilized fuel consumption and gas emis-

sions as indicators to compare the total fuel consumption and gas emissions of traditional traf-

fic systems with our dynamic traffic signal scheduling system. By varying the configuration of

vehicle counts and conducting traffic simulations, we evaluated the system’s performance.

As shown in Figs 9 and 10, our dynamic signal dispatch system demonstrates remarkable

efficiency in reducing vehicle fuel consumption at signal road intersections. Compared to the

traditional transportation system, Table 2 reveals that, in the studied scenario, the dynamic sig-

nal light dispatching system reduced the total fuel consumption by an average of 17.481% and

gas emissions by an average of 18.456%. Additionally, when compared to a scheduling system

utilizing DQN algorithm, our dynamic signal light dispatching system achieved a further aver-

age reduction of 4.275% in total fuel consumption and 4.482% in gas emissions (see Table 2).

These findings demonstrate that the dynamic signal light dispatching system significantly

reduces fuel consumption and emissions. The system optimizes vehicle travel at intersections,

reduces vehicle wait times, and minimizes instances of signal lights turning on in vain, thus

leading to reduced fuel consumption and gas emissions.

Number of special emergency vehicles

We evaluate the emergency module of the improved dynamic traffic light dispatch system,

considering different special emergency vehicle configurations (using ambulances as an

Fig 9. Total fuel consumption under different vehicle configurations.

https://doi.org/10.1371/journal.pone.0298417.g009

PLOS ONE A dynamic traffic signal scheduling system

PLOS ONE | https://doi.org/10.1371/journal.pone.0298417 March 15, 2024 16 / 22

https://doi.org/10.1371/journal.pone.0298417.g009
https://doi.org/10.1371/journal.pone.0298417


example) to verify the superiority of our improved system in various emergencies. Because

there may be two special emergency vehicles at the same intersection, how to emergency dis-

patch is particularly critical. The experimental results are shown in Table 3 and Fig 11.

Here we set the scheduling time to 18 seconds. We can see that for special emergency vehi-

cles with different configurations, the average waiting time of special vehicles with our emer-

gency algorithm is significantly lower than that of traditional time scheduling methods, and our

emergency module can reduce the average waiting time of special emergency vehicles by 27.8%.

Therefore, our emergency modules are proven to be effective in various traffic situations, as

evidenced by the reduced waiting time for special emergency vehicles, even when different

configurations are considered.

Outlook and future work

Although the simulation process takes real-life situations into full account, there are always

inevitable errors in real-world scenarios that may not align perfectly with the data we simulate.

Fig 10. Gas emissions under different vehicle configurations.

https://doi.org/10.1371/journal.pone.0298417.g010

Table 2. Fuel consumption and emission rates are reduced under different vehicle configurations.

Number of

vehicles

Fuel consumption reduction rate

compared to conventional

Fuel consumption reduction rate

compared to DQN

Gas emission reduction rate

compared to conventional

Gas Emission Reduction Rate

compared to DQN

300 14.529% 1.470% 15.950% 2.779%

400 17.549% 3.091% 20.640% 1.778%

500 18.485% 5.030% 19.057% 3.578%

600 16.274% 4.638% 17.735% 4.694%

700 15.032% 5.114% 16.401% 5.108%

800 23.020% 6.307% 20.951% 8.955%

Average

reduction rate

17.481% 4.275% 18.456% 4.482%

https://doi.org/10.1371/journal.pone.0298417.t002
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Currently, computer vision detection technology is not perfect, and there is a certain degree

of error in detecting the number of vehicles. In our simulated SUMO environment, we assume

that the data recognized by the camera is unbiased, ensuring that the simulated traffic condi-

tions accurately represent real-world scenarios. Therefore, further research is needed to

improve the accuracy of visual detection for vehicle identification. Additionally, introducing

traffic flow prediction can help reduce the impact of data noise on traffic scheduling and

enhance the robustness of signal light scheduling systems.

The scheduling of traffic signals at a single intersection has limitations after all, such as sub-

optimal coordination with nearby intersections. In the future, we will extend the dynamic

Fig 11. Attendance efficiency under different ambulance configurations.

https://doi.org/10.1371/journal.pone.0298417.g011

Table 3. Traffic dispatch under different ambulance configurations.

Number of

ambulances

Average waiting time for ambulances not using a

dispatch system

Average waiting time for ambulances using a

dispatch system

Improve the efficiency of ambulance

attendance

1 2.50 2.31 7.600%

2 3.19 2.94 7.837%

3 7.41 3.80 48.718%

4 8.25 4.25 48.485%

5 7.20 6.00 16.667%

6 7.85 7.03 10.446%

7 9.71 8.43 13.182%

8 7.88 5.75 27.030%

9 6.78 6.36 6.195%

10 6.70 5.11 23.731%

https://doi.org/10.1371/journal.pone.0298417.t003
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signal scheduling algorithm based on an improved greedy algorithm from a single intersection

to a region. To overcome these limitations, we aim to extend the dynamic signal scheduling

algorithm from a single intersection to a regional level. This involves generating a complex

global traffic network through signal transmission, unified scheduling, and dynamic traffic

planning across multiple intersections. Strengthening the connection between intersections

will lead to significant reductions in travel time and improved comfort for vehicle travel.

Summary

In conclusion, urban traffic congestion can be alleviated by controlling traffic signals, but traf-

fic scheduling has always been a challenging problem. Unlike other traffic scheduling systems,

this article proposes a dynamic signal control system based on an improved greedy algorithm,

which changes the fixed sequence to solve the traffic signal scheduling problem and fully con-

siders the situation of special emergency vehicle dispatch.

We utilize the greedy algorithm to decompose the problem of optimizing traffic flow into

several periods, enabling efficient and effective decisions for each scheduling interval. Our

method introduces reward functions, cost functions, and constraint functions in each period

to ensure the feasibility of the scheduling plan. Through iterative updates based on the current

number of vehicles and pedestrians on the road, we obtain the final scheduling plan. Addition-

ally, the emergency module prioritizes emergency special vehicles and uses the improved

greedy algorithm to iteratively update and select the best emergency scheduling strategy.

Our simulation experiments using the SUMO traffic simulation software focus on four key

aspects for evaluation: scheduling frequency, the ratio of vehicles and pedestrians, fuel con-

sumption and gas emissions, and the number of special emergency vehicles. The thorough

data analysis demonstrates the effectiveness of our proposed algorithm in addressing various

traffic conditions at intersections and catering to special emergency vehicle dispatch scenarios.

In summary, our algorithm demonstrates effective performance in solving the traffic signal

scheduling problem under various traffic conditions at intersections while efficiently address-

ing the needs of special emergency vehicle dispatch.
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