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Abstract

Conducting ecological risk assessment of fragile ecological landscapes is a prerequisite for

building an ecological security pattern and a necessary consideration for sustainable devel-

opment. Engebei ecological demonstration zone is a typical ecologically fragile area located

in the Kubuqi Desert. To explore the ecological status of Engebei, an ecological risk assess-

ment model is used to assess its ecological risk, and the spatial correlation analysis is con-

ducted based on the Moran index. The optimal grain size is obtained through grain size

effect analysis, which is the foundation of landscape pattern analysis. The landscape eco-

logical risk assessment model is constructed by the landscape indexes. Based on the divi-

sion of small ecological risk zones, a spatial correlation analysis of ecological risks is

conducted on Engebei. Results manifest that: (1) Overall, from 2005 to 2021, its spatial dis-

tribution features of landscape ecological risk level are relatively-high and high in the middle,

and gradually reduce in the north-south direction, as shown below: the relatively-low eco-

logical risk areas are widely spread, and the overall risk index decrease from 0.1944 to

0.1940; the area of low and high-level ecological risk areas show a decreasing trend, which

decrease by 5.0102 km2 and 1.3132 km2 respectively; the area of relatively-low, middle,

and relatively-high-level ecological risk areas increase by 0.2655 km2, 3.7803 km2, and

2.4852 km2, respectively. (2) The ecological risk value is correlated positively with spatial

distribution, and the spatial aggregation forms are primarily low-low and high-high. (3) The

ecological risk values in Engebei have a significant spatial correlation, and the spatial distri-

bution shows a clustering effect, which is consistent with the spatial distribution. The study

has certain reference value for the development and comprehensive regulation of ecological

construction in Engebei, even in other ecologically fragile areas.

Introduction

The combined impact of human activities and the natural environment directly affects changes

in land cover. The alterations in regional land use have resulted in significant structural and

functional changes in the original land ecosystem, influenced by external factors and internal

succession [1]. Consequently, the ecological environment of the land has been greatly affected.
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Unreasonable land use methods and development intensity can cause damage to the regional

ecological environment, particularly in ecologically fragile areas. Therefore, conducting

research on the ecological risks associated with land use can help guide rational land planning,

ensure the security of the ecological environment, and even promote sustainable regional

development [2]. Regional ecological risk assessment is a field of study that focuses on analyz-

ing the potentially dangerous conditions caused by both human and natural factors within a

specific region [3]. This assessment utilizes interdisciplinary knowledge, including ecology,

geography, and environmental science, to predict and evaluate the extent of these risks. Pres-

ently, ecological risk assessment approaches primarily revolve around analyzing risk sources,

sinks, and landscape patterns [4, 5]. The ecological risk assessment, which is stemmed from

risk sources and sinks, is commonly conducted using the approach of ‘risk-source recognition,

receptor-analysis exposure, and danger evaluation’. By utilizing the ‘source-sink’ landscape

and ecological risk assessment theory, the analysis of regional ecology’s risk reflects the avail-

ability and consistency of the ‘source-sink’ landscape theory [6]. The assessment of ecological

risk based on landscape pattern directly describes and evaluates the regional ecological risk by

focusing on the landscape pattern. This assessment method has gained significant attention in

the field of landscape ecological risk assessment. For example, the ERI (Ecological Risk Index)

based on LULC (Land Use and Land Cover) can intuitively and systematically assess the eco-

logical risk of sub-Saharan Zanzibar [7]. The changes of some regional landscape elements can

be evaluated by the theory of landscape ecology [8]. The ecological risk assessment approach

can effectively depict the impact of land use change [9], and utilize landscape pattern indexes

to indicate the changes in land utilization caused by urban expansion [10]. In terms of model

construction, some researchers establish the ERA (Ecological Risk Assessment) model of sus-

ceptibility risk index relationship to evaluate the wetland ecological risk [11].

However, there have been limited studies conducted on the landscape ecological risk assess-

ment in ecologically fragile zones with significant human disturbance, such as the Engebei

mentioned in this study. The landscape pattern has the spatial grain characteristic of scale

dependence, and the appropriate scale can improve the accuracy of landscape ecological risk

assessment. On account of semi variogram [12], landscape pattern index [13], area informa-

tion loss evaluation model [14], and other methods or models, the optimal analysis scale of the

corresponding landscape can be effectively acquired.

The Kubuqi Desert, formerly referred to as the wilderness desert has undergone significant

changes since 1989. A particular area within the desert, known as the Engebei ecological dem-

onstration zone, exemplifies the ecological fragility of the region. Engebei was once a thriving

place with plentiful water abundant vegetation, and stunning scenery. Unfortunately, due to

worsening environment conditions and human activities, the land gradually transformed into

a deserted area. Suffering from desertification and water and soil loss for a long time, Engebei

had gradually become a sand sea. And its harsh natural conditions directly endangered the life

and production safety of the Yellow River and the surrounding herdsmen. In 1989, Some vol-

unteers went to Engebei for desertification control, opening the ecological construction there.

Under the decades of governance, the ecological environment of the region has undergone

apparent changes. Nowadays, it is also a demonstration base for biodiversity conservation and

green development in China and a pilot area for China’s low-carbon land. Therefore, it is

extremely important to obtain its ecological risk.

To this end, using the demonstration zone as an example, the research contents are: (a)

Based on obtaining the appropriate analysis scale for landscape research, small ecological risk

zones are divided for Engebei, becoming the foundation of the spatial correlation analysis of

landscape ecology risk. (b) The landscape index is selected to establish the landscape ecological

risk assessment model to carry out a related assessment [15] of the Engebei. (c) The spatial
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correlation analysis is conducted with GeoDa spatial analysis software, which analyzes the spa-

tial aggregation model of ecological risks in this region. Grasping the primary status of ecologi-

cal risk in Engebei can offer some reference foundation for scientific management and

ecological improvement of the zone. In addition, it provides a research basis for further under-

standing the ecological environment status within the demonstration area.

Material and methods

Study area

Engebei ecological demonstration zone (109˚1702000–109˚2800000E, 40˚1803000–40˚2602000N)

(Fig 1) is located on Dalad banner, Ordos city, Inner Mongolia Autonomous Region, China,

located in the south bank of the Yellow River and the middle section of the Kubuqi Desert,

with an area of roughly 200 km2. The terrain of the whole region is low in the north and east,

while high in the south and west. Engebei Valley runs through the demonstration area from

southwest to northeast and flows into Heilai Valley. Its aeolian sandy is the elemental soil type

there. Its plant type is dominated by sandy plants, some of which are woodlands and shrubs.

The zone is adjacent to the Yellow River. It has a typical temperate continental arid climate,

with an average annual temperature of about 7˚C and an average annual precipitation of 250–

300 mm.

Data source and processing

The spatial resolution of commonly used land use products is relatively small. In addition, the

study area in the study is small. Therefore, we use the Landsat satellite data with a higher

Fig 1. The study area: Engebei ecological demonstration zone. This figure is drawn using the shape files. The shape files are

obtained from Resource and Environment Science and Data Center: https://www.resdc.cn/.

https://doi.org/10.1371/journal.pone.0294584.g001
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spatial resolution to classify the land use types in this study. We choose data from the Geospa-

tial Data Cloud (https://www.gscloud.cn/), including four phases of remote sensing image data

which are Landsat5 TM data (July 5, 2005, July 10, 2010) and Landsat8 OLI_TIRS data (July

26, 2016, August 9, 2021), with a resolution of 30m. The average cloud cover is less than 5%,

and the data quality is good. Since the time span of the study is 17 years, a spectral based image

classification method, namely supervised classification, is chosen to classify land use types to

ensure data availability. The supervised classification method used is SVM (Support Vector

Machines). Meanwhile, considering the issue of different ground objects with the same spec-

trum in classification, transportation land is separated from construction land and classified

separately. Some remote sensing data is selected that meets the following three requirements

as the training samples for image remote sensing interpretation. The requirements are as fol-

lows: (1) the dates of the remote sensing data are as close as possible. (2) these training samples

are representative. (3) the number of training samples meets the minimum requirements for

establishing a classification discrimination function. The interpretation symbols are estab-

lished by referencing Google Earth high-definition images from the same period, and combing

with field survey results. The separability of the seven types of training samples obtained is

greater than 1.9, indicating that the selected data has a good separability. The results indicate

that supervised classification methods can be used. According to the GB/T 21010–2017 (2017

national land use classification system standard) and the above classification results, Engebei

are divided into seven categories of land use which include grassland, cultivated land, con-

struction land, transportation land, forest land, waters, and other land.

Landscape index approach

The landscape pattern index method greatly concentrates the landscape pattern information,

mirroring the landscape structure composition and part of the spatial configuration character-

istics [16]. In the scale effect of the sensitive landscape indicators, the scale interval is the range

where the index changes steadily. The area between the two inflection points is called the spa-

tial grain domain. Six landscape indexes sensitive to particle size response and frequently used

are selected to study the grain size effect of landscape pattern [17, 18]. They include PD (patch

density), LSI (landscape shape index), AI (aggregation index), DIVISION (landscape separa-

tion), SHDI (Shannon’s Diversity Index), and SHEI (Shannon’s Evenness Index). The grain

size effect is also called the granularity effect.

Landscape pattern has scale-dependent spatial grain characteristics. Some spatial informa-

tion will be lost due to excessive large grain. Conversely, the overall law is easy to ignore

because of too small grain. The conversion scale starts at 30m and ends at 500m. The grid

scales are set at 20m and 50m intervals. 20m is the interval for the 30-270m section. 50m is the

interval for the 270-470m section.

Area information loss evaluation method

The area information loss evaluation can effectively evaluate the accuracy loss of vector data

due to scale conversion, and evaluate the overall loss in a quantitative way [19]. And the for-

mulas of the evaluation are as follows:

Li ¼
Ai� Abi

Abi
� 100% ð1Þ

Si ¼
ffiffiffi
1
n

r

�
Xn

i¼1
L2
i ð2Þ
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where: Li is the relative value of area loss; Ai is a certain landscape type’ area at a certain scale

after data conversion; Abi is the area of this type before scale conversion; n is the regional land-

scape types’ number; Si is the whole region’ loss index.

We use 30m for land use classification, so the conversion scale starts from 30m. After simu-

lation analysis, we find that when the grain size is 470m, there is a clear trend of regularity.

Therefore, according to the area information loss evaluation method, we calculate the area loss

index under 30-470m grain size in 2021, and then use the grain size as the abscissa and the

land area loss index as the ordinate for mapping.

Construction of landscape ecological risk assessment model

The landscape interference index describes the extent of external disturbance to the ecosystems

under distinct landscapes, and the expression of the index is shown as follows [20]:

Ei ¼ a� Ci þ b� Fi þ c� Di ð3Þ

where: the Ei is the landscape interference index. The Ci is the fragmentation index, Ci = Ni/Ai.

The Fi is the splitting index, Fi ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ni=A

p
=2Pi; Pi ¼ Ai=A; The Di is the dominance index, Di

= dLi + ePi, Li = Ni/N. The letters a, b and c are the weight of Ci, Fi and Di. Ni is landscape

patches’ number. Ai is landscape type’s patch area. Li is landscape type’s relative density. Pi is

landscape types’ relative coverage. The weights of Li and Pi are the d and e. N is landscape

patches’ count. A is landscape’s gross area. In our previous studies, we find that the human dis-

turbance activities about the study zone increased from 2005 to 2021, and the landscape frag-

mentation became greater. After 2016, the distance between patches became greater. The

interference index’s distribution weights are a, b, and c, valuing 0.5, 0.3, and 0.2 [21, 22]. The

distribution weights for dominance are the Pi and Li, valuing 0.6 and 0.4 [21, 22].

Landscape vulnerability is the fragility of ecosystems represented by diverse landscapes,

reflecting the ability of anti-external interference. With the ability of landscape types to resist

external interference being weak, their vulnerability and ecological risk is greater [23]. At pres-

ent, the value of the index is attained by directly assigning values to different landscape types

and normalizing. Using the expert scoring method, the vulnerability of landscape types in the

zone is divided into seven ranks. Other land is the most vulnerable, so it is given the maximum

value. And transportation land is the most stable, so it is assigned the minimum value. Fi (land-

scape vulnerability index) of each landscape type [24] (Table 1) is obtained after

normalization.

The landscape loss index mirrors the extent of natural attributes of diverse landscape eco-

systems when encountering natural and human disturbance [25]. Its formula is as the follow-

ing [26]:

Ri ¼ Ei � Fi ð4Þ

Table 1. Landscape vulnerability index.

Landscape type Assignment Fi

other land 7 1

waters 6 0.83

cultivated land 5 0.66

grassland 4 0.5

forest land 3 0.33

construction land 2 0.16

transportation land 1 0

https://doi.org/10.1371/journal.pone.0294584.t001
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where: Ei and Fi represent the interference and vulnerability index of the i-class landscape

respectively.

The ecological risk assessment model of Engebei is constructed by the formula [27]:

ERIk ¼
XN

i¼1

Aki

Ak
Ri ð5Þ

where: ERIk is the ecological risk index of the i-th-risk community; Aki is the proportion of i-

type landscape of the k-th-risk community; Ak is the k-th-risk community’s area; Ri is its i-cat-

egory landscape loss index.

Landscape ecological risk levels

The ordinary Kriging interpolation approach [28] and natural breakpoint method [29] are

used to divide landscape ecological risks into five levels [30] (Table 2).

Division of small ecological risk zones

The establishment of small ecological risk zones is a premise concerning ecological risk land-

scape assessment. The sampling area should meet 2–5 times the mean area of the landscape

patches about the researching region [31, 32], which can sufficiently mirror synthetical land-

scape pattern about the sampling location. The risk zone division steps are as follows: (1) The

landscape pattern grid map at the best scale of the study area is calculated to obtain the average

value of the landscape patch area in the corresponding year. (2) According to the calculation

results, the size of the risk unit is determined. (3) The grid is divided according to the equal

interval sample extraction method, and the number of small risk zones in the study area is

calculated.

The spatial correlation analysis of landscape ecology risk is conducted through Moran’s I

(Moran index). LISA (Local Indicators of Spatial Association) clustering analysis is based on

the similarity of data in geographic space to analyze the degree of data aggregation, using the

local Moran’s I analysis. Through GeoDa software, ecological risk values about the research

area are brought into relevant formulas to count global Moran’s I value in 2005,2010,2016, and

2021. And the ecological risk of the research zone is analyzed by LISA.

Results

Remote sensing data processing

When interpreting the image of supervised classification results, land type which are with

some errors in image interpretation and easily confused are adjusted. The data classification is

completed through operations such as forestry sub class processing. Finally, the land use classi-

fication maps for each year are obtained (Fig 2). From 2005 to 2016, the area of forests and cul-

tivated land shows an upward trend. From 2016 to 2021, some forest land has been converted

Table 2. Ecological risk classification.

Ecological risk level Ecological risk value Grade

Low-level ERI<0.16 I

Relatively-Low-level 0.16�ERI<0.23 II

Middle-level 0.23�ERI<0.30 III

Relatively-high-level 0.30�ERI<0.37 IV

High-level 0.37�ERI V

https://doi.org/10.1371/journal.pone.0294584.t002
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into cultivated land. From 2005 to 2021, the waters show a downward trend, but the main

waters in the central region remain relatively stable.

The selected validation samples are associated with the classification result map, and the

confusion matrix method is used to evaluate the accuracy. Finally, the accuracy of the remote

sensing supervised classification results is evaluated by the overall classification accuracy and

Kappa coefficient (Table 3). The overall accuracy of the supervised classification results of the

four remote sensing images is high, reaching over 85%. And the Kappa coefficient values are

all above 0.8. Therefore, the classification effect of the supervised classification used meets the

accuracy requirements of the research.

Based on classification, a landscape type structure change map of the study area is drawn

(Fig 3). From 2005 to 2021, grassland and other land were the main landscape types in the

study area. From the perspective of structural changes, the proportion of grassland and forest

land first increases and then decreases; the proportion of arable land and construction land is

gradually increasing. During the years, the construction land area remains stable after 2016;

the area of transportation land first increases, then decreases, and then increases; the

Fig 2. 2005–2021 distribution of land use types in the study area. These maps are formed through supervised classification

based on Landsat 8 satellite images and show the land use types of the region in 2005, 2010, 2016, and 2021. Imagery available

from Geospatial Data Cloud: https://www.gscloud.cn/. (a)Land use types in Engebei in 2005. (b)Land use types in Engebei in

2010. (c)Land use types in Engebei in 2016. (d)Land use types in Engebei in 2021.

https://doi.org/10.1371/journal.pone.0294584.g002

Table 3. Accuracy evaluation of landscape type interpretation.

Evaluation type Classification image year

2005 2010 2016 2021

Overall accuracy (%) 86.96 91.52 96.71 93.36

Kappa coefficient 0.81 0.89 0.95 0.91

https://doi.org/10.1371/journal.pone.0294584.t003
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proportion of water bodies shows a downward trend from 2005 to 2016, and finally remains

stable at around 0.88%.

Spatial grain analysis of landscape pattern

This study is used the changes in six landscape pattern indexes in 2021 to determine the most

suitable spatial grain interval. The vector data of 2021 obtained from the interpretation are ras-

terized. And then 17 grid maps with different scales are obtained. Finally, the grain-size-effect

curves of landscape index in this study area are built, including PD, LSI, DIVISION, AI, SHDI,

and SHEI (Fig 4). Consequently, the first-grain size domain and the second-grain size domain

are determined by some inflection points in curves.

The area loss index at a particle size of 30 to 470m in 2021 is shown in Fig 5. At the conver-

sion scale of 50m, 70m, 90m and 110m, the regional land area loss index is 0.28%, 0.31%,

0.08% and 0.24% respectively. On the premise that 50-70m is the appropriate analysis granu-

larity domain, considering that the greater the regional land area loss index is, the worse the

precision of the land area after the corresponding scale transformation is. Moreover, the land-

scape area loss index of 50 m grain size reaches the minimum value of 0.28%. Therefore, to

obtain a higher precision transformation scale, 50m is selected as the appropriate analysis scale

of the study area, that is, the optimal spatial grain.

Trend of landscape pattern index change

Different landscape indexes of seven land types changed from 2005 to 2021 (Fig 6). The frag-

mentation, interference, and loss index of the waters increase first and then decrease, and the

decline of its dominance index drives the rise of its splitting index. The fragmentation, split-

ting, disturbance, and loss index of cultivated land decrease, while the dominance index

increase. The fragmentation, separation and interference index of the transportation land

show a fluctuating trend. The fragmentation, splitting, interference, and loss index of other

lands maintain a stable trend, while their dominance index shows a downward trend. These

indexes indicate that human interference has a significant impact on Engebei.

Landscape ecological risk assessment

Based on the assessment model, the average values of overall landscape ecological risk con-

cerning the research domain in 2005,2010,2016, and 2021 are 0.1944, 0.1920, 0.1704, and

Fig 3. Percentage of different landscape types in the Engebei ecological demonstration zone from 2005 to 2021.

https://doi.org/10.1371/journal.pone.0294584.g003
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Fig 4. Grain size effect of sensitive landscape index. (a)PD (Patch Density). (b)AI (Aggregation Index). (c)LSI

(Landscape Shape Index). (d)DIVISION (Landscape Spearation). (e)SHDI (Shannon’s Diversity Index). (f)SHEI

(Shannon’s Evenness Index). According to Fig 4, the PD has inflection points at 90, 190, and 370m, and changes gently

at 130~470m without obvious fluctuation. The LSI has obvious inflection points at 90 and 190m, and the change tends

to be gentle at 190-470m. The AI has inflection points at 70, 110 and 150m, and has a significant downward trend

when the particle size is greater than 50m. The DIVISION has inflection points at 50, 90, and 130m. SHDI and SHEI

show similar sharp fluctuations at 30-370m, showing obvious grain size effect, and inflection points at 50, 90, and

130m. The closer SHEI approaches 1, the more uniform the types of landscape patches and the greater the diversity of

the landscape. The value of SHEI is positively correlated with SHDI. When the scale changes from 50 to 100, the PD,

AI, and LSI rapidly decrease, indicating that the degree of fragmentation of the landscape pattern decreases, the

landscape becomes discrete, and the patch shape becomes simple. These indicate that the landscape distribution has

become regular within this scale range. Therefore, when the scale ranges from 50 to 100, SHDI and SHEI change

significantly. As the granularity effect curve tends to stabilize, the scale effect disappears. By synthesizing the particle

size effect curves of these six landscape pattern indexes, there are turning points with significant changes, such as 50,
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0.1940. Over the years, the ecological risk value of the region has changed little. It shows that

the ecological risk level of the region is relatively stable.

In terms of spatial distribution (Fig 7), high-level-risk areas are spread in Tianci lake and

forest landscape intensive areas in the middle of the demonstration zone. The relatively-high-

level-risk areas are spread around the high-level-risk, and its risk value is slightly lower than

that of the high-level-risk areas. The middle-level-risk areas are primarily spread in the dense

farmland. The low-level-risk areas are chiefly scattered in most of the southern region and the

small north part of the demonstration zone. Overall, the middle part of this demonstration

zone has a relatively high-risk level, gradually decreasing to its north and south. As a result, rel-

atively-low-risk level areas widely spread in its north and south.

The areas of landscape ecological risk areas at all levels are counted (Table 4). From 2005 to

2021, the area of relatively-low-level ecological risk areas sightly increase, due to the propor-

tions of relatively-low, middle, and relatively-high levels ecological risk proportions expand.

The proportion of middle-level ecological risk areas scales up year after year. The major reason

is that people have carried out development and utilization for a long time in the demonstra-

tion area, which has intensified the fragmentation of farmland and forest landscape. The pro-

portion of relatively-high-level ecological risk areas rises totally, but its proportion cuts down

to some extent in 2016 due to some areas transfer to middle-level ecological risk areas. And by

2021, its area was 5.0016 km2, accounting for 9.55%. The proportion of high-level ecological

risk areas falls first and then goes up. From 2005 to 2016, it is in a downward stage, and the

area proportion decreases from 7.69% to 3.04%, which decreases by 2.4273 km2. From 2016 to

2021, the cultivated land landscape in the central research area grows because of the interfer-

ence of human activities. As a result, its land fragmentation and vulnerability become slightly

greater. And the extent of high-level ecological risk areas scales up from 3.04% to 5.16%, an

increase of 1.1141 km2. From 2016 to 2021, the area of relatively-low-level ecological risk areas

70, 90, 110, etc. Therefore, according to the scale effect analysis, the first-grain size domain is 50-70m, and the second-

grain size domain is 90-110m. The research shows that the first-grain size domain is a better range for selecting the

appropriate grain size [33], so the first-grain size domain 50-70m is selected as the selection range of the appropriate

analysis grain size, that is, the appropriate analysis grain size domain.

https://doi.org/10.1371/journal.pone.0294584.g004

Fig 5. Regional land area loss index at different scales.

https://doi.org/10.1371/journal.pone.0294584.g005
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expands, because the area of cultivated land in the central region increases. During this time,

the land of Engebei is flat, and its landscape fragmentation is low, so the anti-external interfer-

ence capability about the zone improves.

Spatial correlation of landscape ecology risk

By calculating the landscape pattern grid map at the best scale about the researching area, the

average size of landscape patch area in 2005, 2010, 2016, and 2021 is 0.052km2, 0.048km2,

0.043km2, and 0.033km2 respectively. The selected range of side length of risk cell is 0.322–

Fig 6. Landscape indices changes of diverse landscape types. (a)Fragmentation Index. (b) Splitting Index. (c)

Dominance Index. (d) Interference Index. (e) Loss Index.

https://doi.org/10.1371/journal.pone.0294584.g006
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0.408km. The division of cells should ensure enough number of units reflecting the landscape

pattern distribution in the zone, and avoid problems such as calculation intensity and accu-

racy. Therefore, the 0.4km*0.4km risk unit is used for the estimated cell. The grids are divided

with the equal interval method of sample extraction. Finally, the demonstration area is divided

into 504 risk areas (Fig 8). And taking the grid as the center, we take samples to build the land-

scape ecological risk indexes of the demonstration zone.

The values of global Moran’s I in 2005,2010,2016, and 2021 are evaluated 0.416, 0.399,

0.281, and 0.578 (Fig 9). The calculation results are all positive. They reflect the positive corre-

lation among the spatial spread of landscape ecological risk values about the research region,

indicating that the risk values present the characteristics of agglomeration in space [34]. And

the aggregation of ERI decreases firstly and then increases in general.

Fig 7. Distribution of ecological risk levels in the Engebei ecological demonstration zone. These maps are obtained

by processing Landsat 8 satellite images. Imagery available from Geospatial Data Cloud: https://www.gscloud.cn/. (a)

Distribution of ecological risk levels in Engebei in 2005. (b)Distribution of ecological risk levels in Engebei in 2010. (c)

Distribution of ecological risk levels in Engebei in 2016. (d)Distribution of ecological risk levels in Engebei in 2021.

https://doi.org/10.1371/journal.pone.0294584.g007

Table 4. Ecological risk grade area and proportion in Engebei.

Ecological risk level 2005 2010 2016 2021

Area /km2 Proportion /% Area /km2 Proportion /% Area /km2 Proportion /% Area /km2 Proportion /%

Low 33.039 63.32 31.0563 59.52 34.0173 65.22 28.0288 53.51

Relatively low 8.7921 16.85 10.9512 20.99 7.7481 14.85 9.0576 17.29

Middle 3.8133 7.31 4.4568 8.54 6.2127 11.91 7.5936 14.50

Relatively high 2.5164 4.82 2.763 5.30 2.5956 4.98 5.0016 9.55

High 4.014 7.69 2.9475 5.65 1.5867 3.04 2.7008 5.16

https://doi.org/10.1371/journal.pone.0294584.t004
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During the study period, the spatial morphological aggregation in Engebei is mainly char-

acterized by non-significant aggregation, low-low aggregation, and high-high aggregation (Fig

10). As shown in the LISA analysis result graph (Fig 10), the spatial aggregation patterns of

ecological risk in the area are primarily low-low and high-high aggregations. And its propor-

tions of high-low and low-high aggregations are small. Low-low aggregation areas are mainly

distributed on both sides of the south and north. High-high aggregation areas are primarily

distributed in the central region. The number of low-high aggregation types exhibits an

Fig 8. Engebei Ecological demonstration zone ecological district division. This figure is drawn using a shape file. The shape

file is obtained from Resource and Environment Science and Data Center: https://www.resdc.cn/.

https://doi.org/10.1371/journal.pone.0294584.g008

Fig 9. Scatter plot of Moran ’I index of ecological risk in Engebei. (a)The Moran Index of ERI (Ecological Risk Index) in 2005.

(b) The Moran Index of ERI in 2010. (c) The Moran Index of ERI in 2016. (d) The Moran Index of ERI in 2021.

https://doi.org/10.1371/journal.pone.0294584.g009

PLOS ONE Landscape ecological risk assessment of an ecological area in the Kubuqi desert

PLOS ONE | https://doi.org/10.1371/journal.pone.0294584 November 16, 2023 13 / 20

https://www.resdc.cn/
https://doi.org/10.1371/journal.pone.0294584.g008
https://doi.org/10.1371/journal.pone.0294584.g009
https://doi.org/10.1371/journal.pone.0294584


upward trend. From 2005 to 2021, the number of high-low autocorrelation types decreases,

and the number of non-significant-spatial-autocorrelation-decreased by 82. By observing Figs

7 and 10, the high-high clustering areas are mainly high-risk-level and relatively-high-risk-

level areas. The low-low concentration areas are mostly located in areas with the low-risk level.

The insignificant clustering areas are primarily low-risk-level areas, with a small portion being

areas with relatively-low-risk levels and middle-risk levels.

Discussion

Analysis of remote sensing data usage

The great growth of remote sensing technology makes remote sensing images widely exploited

in landscape ecological risk analysis. Among various remote sensing images, Landsat image is

extensively used because of its high spatial resolution, spectral resolution, positioning accuracy,

and rich information. For example, through remote sensing interpretation of Landsat image,

landscape ecological risk index can be established to dive into the temporal and spatial changes

of landscape ecology risk [35, 36]. Thereby, this study is used such remote sensing images to

study the landscape ecology risk in the ecologically fragile area, that is Engebei ecological dem-

onstration zone. Zhang et al. [37] used SVM to classify land use types based on Landsat remote

sensing data obtained during their research on landscape pattern changes, with an overall clas-

sification accuracy of over 85%. By SVM of remote sensing images, the land use type in this

Fig 10. Local spatial autocorrelation of ecological risk in the Engebei. This figure is drawn using a shape file. The

shape file is obtained from Resource and Environment Science and Data Center: https://www.resdc.cn/. (a)The spatial

morphological aggregation of Engebei in 2005. (b)The spatial morphological aggregation of Engebei in 2010. (c)The

spatial morphological aggregation of Engebei in 2016. (d)The spatial morphological aggregation of Engebei in 2021.

https://doi.org/10.1371/journal.pone.0294584.g010
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study area can be effectively classified into seven types (Fig 2), and the overall accuracy of the

classification results is above 86.9% (Table 3). An overall accuracy of over 85% indicates that

the classification results in this study are reliable. Based on classification, the land use structure

change maps (Fig 3) drawn are also helpful for subsequent landscape pattern risk assessment

analysis. Landsat satellite data is suitable for research on land use. Darren et al. [38] used Land-

sat data to evaluate the impact of land use/land cover changes on surface temperature in Cam-

eron Highlands. Liu et al. [39] obtained land use data using Landsat data by supervised

classification, conducting research on the spatio-temporal patterns, and driving forces of land

use under urbanization in China.

Analysis of the grain size effect

The grain size effect is the basic content of landscape pattern research. Scale maps can be used

to analyze the landscape scale effect of different vegetation types at various space-time scales.

Zhou et al. [40] quantify the granularity effect of landscape indexes using the landscape pattern

index and variation coefficient, constructing an information entropy model to determine the

optimal granularity. In this study, we choose two methods to obtain the optimal spatial grain

of the study area, including landscape index approach and area information loss evaluation

method. And these two methods are relatively simple to implement. Some researchers calcu-

lated landscape pattern indexes for various land use types through one year of remote sensing

data, obtaining the spatial scales required for their research [18, 41, 42]. When selecting the

optimal granularity, Hu et al. [18] select landscape pattern indexes such as SHEI, SHDI, AI,

and DIVISION, and combine the landscape index approach and area information loss evalua-

tion method. Similarly, we calculate some landscape pattern indexes from 2021 remote sensing

data to obtain the spatial scale needed for landscape ecology risk assessment. And we deter-

mine the best spatial grain with the help of area loss index. The difference is that we have

added two additional indexes, PD and LSI. Among them, the PD can reflect the degree of frag-

mentation of various land features, and the LSI can reflect the complexity of landscape shape

changes. According to the Fig 4, each landscape type in Engebei has a significant granularity

effect on the selected landscape index. Under the premise of the first scale domain, 50m is

selected as the optimal spatial grain of the study area.

Analysis of landscape pattern index

Since the implementation of ecological construction in the 1980s, generations have traveled to

Engebei for sand prevention and control, resulting in a vegetation coverage rate of 78% and a

forest coverage rate of 41% [43]. More than 7 million trees, 50000 acres of shrubs, and 5000

acres of excellent grass are planted in the demonstration area. The number of animal species

has also increased from over 20 to over 600. The biological chain and population of animals

and plants have been effectively restored. The improvement of its ecological environment has

also driven the development of the sand industry and tourism industry, and has become a

national demonstration city for ecological tourism construction.

Zhou and Luo [44] construct a comprehensive ERI using the landscape interference index,

vulnerability index, and loss index. Similarly, we utilized these indexes to construct an ERI for

ERA model. The demonstration area is a transitional zone of desert and arid grassland. After

artificial afforestation, fragmentation and interference index of grassland and forest land show

an upward trend. Because grassland is easier to survive than forest land, the dominance index

of grassland shows an upward trend, while the dominance index of forest land is on the rise

first and then on the decline. Due to the inherent geographical advantages, the splitting index

and loss index of grassland show a stable trend. Because the survival rate of forest land is not
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high, its loss index decreases first and then increases. Due to the greater vulnerability of the

waters, human interference must be appropriate.

Through the landscape index approach, we find:

(1) As the construction and development of the demonstration zone push forward people’s

living improving, travel and entertainment needs, the splitting, interference, and loss index of

construction land are getting hitched. (2) As the demonstration area seated in the transitional

belt of desert and arid grassland, the dominance index of grassland shows an upward trend.

(3) Because the survival rate of artificial afforestation under the aeolian sandy soil environment

is not high, the dominance index of forest land increases first and then decreases. (4) As Tianci

lake (also called the Engebei ditch, a large ditch with a length of 2500 meters, a width of 100

meters, and a depth of over 20 meters, see Fig 2) and other waters drove the ecological develop-

ment of the demonstration area, the water splitting index increases. The dominance of culti-

vated land is also on the rise. (5) The dominance index of various land types is on the upswing,

manifesting that the spread of land types of the demonstration zone is relatively apparent.

Analysis of landscape ecological risk assessment

Introducing the landscape ERI to study the evolution of landscape ecological risks from the

perspective of landscape ecology can provide a reference for the construction of ecology secu-

rity patterns in the research area [45]. Tan et al. [46] constructed regional landscape ERI to

evaluate the landscape ecological risk driven by land use transformation. This study utilized

landscape ERI to evaluate the ecological risks of Engebei’s landscape under human

interference.

Combining Figs 2 and 7, we find that the low-risk-level areas are mainly grassland and

other land, while the middle-risk-level areas are mostly farmland and forest land. The rela-

tively-high-risk-level areas and high-risk-level areas are located at the central part of the dem-

onstration area, where forests, grasslands, and water bodies are distributed.

Through the research on remote sensing images of landscape ecology risk assessment in

2005, 2010, 2016, and 2021, the governance of the demonstration area still needs to combine

the long-term and short-term planning of ecological management [47]. The following con-

struction suggestions have been proposed for different levels of ecology risk zones in the

research area:

(1) The high vulnerability of the water landscape and the fragmentation of forest landscape

patches make the middle of the zone the highest landscape ecological risk. Attention should be

paid to ecological restoration here, such as planting plants suitable for growing in deserts. Des-

ert plants generally have specialized structures and functions that adapt to adverse conditions

such as drought, high cold, and barrenness [48]. (2) Compared to the area of high-risk-level

and relatively-high-risk-level areas, the area of middle-risk-level areas is relatively large. And

the middle-risk-level areas are mainly distributed near or around these two types of risk areas.

It is necessary to strengthen the dynamic monitoring of ecological security in middle-risk-level

areas, prevent these areas from transforming into high-risk-level areas, and carry out targeted

ecological engineering. Presently, the land use in this type of area is relatively single. For exam-

ple, the cultivated land is spread mostly in blocks in middle-risk-level areas. (3) The low-risk-

level areas are chiefly scattered in the sandy landscape, with continuous and relatively complete

landscape patches. As shown in Fig 7, with human interference, the area of low-risk-level areas

tends to decrease. With the disturbance of human activities being small, there is a relatively

low-level ecological risk. Therefore, it is necessary to combine previous governance plans and

continue to choose appropriate ecological governance technologies to promote the ecological

development of the research area. And it should ensure the effective combination of natural
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restoration and artificial governance to transform relatively low-risk-level areas into low-risk-

level areas.

In summary, in the central part of the demonstration zone, human interference is relatively

concentrated, but its ecological risk levels are mostly middle, relatively high, and high. This sit-

uation indicates that the development of Engebei still faces a contradiction between ecology

protection and land use construction. Therefore, there is an urgent need to deal with landscape

ecology risks from the perspective of sustainable development.

Spatial correlation analysis of landscape ecological risks

Lin and Wang [49] evaluate the landscape ecological risks of mountainous cities by dividing

regional LER (Landscape Ecological Risks) assessment units, while this article conducts an eco-

logical risk assessment of Engebei by dividing small ecological risk zones. The similarity is that

the risk grid is used as the evaluation unit.

Spatial autocorrelation analysis can ascertain whether the variables have spatial correlation

and the degree of their correlations. The analysis method can be used to analyze the spatiotem-

poral change features of ecosystem service value [50] and unpack spatiotemporal evolution

regulars of landscape ecological risk [51]. In this paper, this approach is evaluated the land-

scape ecological risk of the Engebei. Through spatial autocorrelation analysis, the spatiotempo-

ral change characteristic and risk distribution of the ecology in Engebei can be obtained

intuitively. And the spatial aggregation pattern of ecological risks in Engebei can be demon-

strated by LISA analysis [52]. The local autocorrelation index LISA can reflect the geographical

phenomena on local regional units and the correlation between a certain attribute value and

adjacent attribute values on local units [43]. The global Moran’s I value is all greater than 0,

indicating a positive correlation between the ERI of Engebei. Moreover, the values of global

Moran’s I decrease and then increase, indicating that the spatial correlation of ERI in Engebei

becomes apparent. From the spatial autocorrelation analysis, we conclude that the distribution

area of the high-high aggregation type area is expanding. And the area is consistent with the

spatial distribution position of the high-risk-level and relatively-high-risk-level areas. These

indicate that the total area of high-risk-level and relatively-high-risk-level areas is gradually

expanding. However, the high-risk-level area has decreased, manifesting that the risk level of

some high-risk areas has been reduced to other risk levels.

Conclusions

Since 1980, people have been increasingly investing in the reconstruction of Engebei. We use

landscape ecology risk assessment to provide a comprehensive perspective on land use in typi-

cal ecologically vulnerable areas under human interference. The conclusions are as follows: (1)

The central section of the demonstration area has a high-level landscape ecological risk. And

the risk level gradually decreases toward the north and south. The relatively low-risk-level area

is spread widely in most of the south and a small part of the north. (2) The selected six land-

scape pattern indexes can comprehensively demonstrate the relatively distinct diffusion of

land types in the demonstration area. (3) The ecological risk values in Engebei have a signifi-

cant spatial correlation, and the spatial distribution shows a clustering effect, which is consis-

tent with the spatial distribution. The results can provide references for land use planning and

construction in similar vulnerable areas. In addition, it is conducive to formulating ecological

protection and management policies that are in line with the characteristics of the ecological

and economic development of the area.

PLOS ONE Landscape ecological risk assessment of an ecological area in the Kubuqi desert

PLOS ONE | https://doi.org/10.1371/journal.pone.0294584 November 16, 2023 17 / 20

https://doi.org/10.1371/journal.pone.0294584


Author Contributions

Conceptualization: Jie Zhang, Yi Sun, Haijun Yue.

Formal analysis: Shulin Zheng, Yi Sun.

Funding acquisition: Jie Zhang.

Investigation: Yi Sun.

Writing – original draft: Shulin Zheng, Yi Sun.

Writing – review & editing: Jie Zhang, Shulin Zheng, Yi Sun, Haijun Yue.

References
1. Hao S, Dong F, Liu X, Guo Y, Su L. Analysis on Ecological risk of the evolution of land landscape pattern

in the Nyang river basin. Research of Soil and Water Conservation. 2023; 30(02):378–383+430. https://

doi.org/10.13869/j.cnki.rswc.2023.02.035

2. Hu H, Zhou Y, Xu T. Spatial-temporal evolution of land ecological risk in Hubei Province, China from

1980 to 2018. Resources and Environment in the Yangtze Basin. 2022; 31(10):2246–2258.

3. Cai K, Wang J, Wu W, Tsering L. Gong Z. Qomolangma nature reserve ecological risk under land use

effect. Ecological Science. 2023; 42(02): 183–192. https://doi.org/10.14108/j.cnki.1008-8873.2023.02.

022

4. Peng J, Dang W, Liu Y, Zong M, Hu X. Review on landscape ecological risk assessment. Acta Geogra-

phica Sinica. 2015; 70(04): 664–677. https://doi.org/10.11821/dlxb201504013

5. Wu S, Wei J, He Z, Dong S, Shi X. Research progress in ecological risk assessment of mining cities.

Safety and Environmental Engineering. 2022; 29(01): 207–217. https://doi.org/10.13578/j.cnki.issn.

1671-1556.20201112

6. Wu J, Zhu Q, Qiao N, Wang Z, Sha W, Luo K, et al. Ecological risk assessment of coal mine area based

on "source-sink" landscape theory——a case study of Pingshuo mining area. Journal of Cleaner Pro-

duction. 2021; 295. https://doi.org/10.1016/J.JCLEPRO.2021.126371

7. Omar H, Cabral P. Ecological Risk Assessment Based on Land Cover Changes: A Case of Zanzibar

(Tanzania). Remote Sensing. 2020; 12(19): 3114. https://doi.org/10.3390/rs12193114

8. Yao X, Zhou L, Wu T, Ren M. Landscape dynamics and ecological risk of the expressway crossing sec-

tion in the Hainan rainforest national park. Acta Ecologica Sinica. 2022; 42(16): 6695–6703.

9. Hui J. Landscape Ecological Risk Assessment Based on LUCC—A Case Study of Chaoyang County,

China. Forests. 2021; 12. https://doi.org/10.3390/F12091157

10. Wang D, Ji X, Li C, Gong Y. Spatiotemporal Variations of Landscape Ecological Risks in a Resource-

Based City under Transformation. Sustainability. 2021; 13(9): 5297. https://doi.org/10.3390/

SU13095297

11. Kayumba P M, Chen Y, Mind’Je R, Mindje M, Li X, Maniraho A P, et al. Geospatial land surface-based

thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in

Bayanbulak Wetland, Northwestern China. Landscape Ecology. 2021; 2021(129). 1699–1723. https://

doi.org/10.1007/S10980-021-01240-8

12. Ju H, Niu C, Zhang S, Jiang W, Zhang Z, Zhang X, et al. Spatiotemporal patterns and modifiable areal

unit problems of the landscape ecological risk in coastal areas: A case study of the Shandong Penin-

sula, China. Journal of Cleaner Production. 2021; 310(1):127522. https://doi.org/10.1016/J.JCLEPRO.

2021.127522

13. Liu X. Progress of study on scale effect in landscape ecology in China. J. Journal of Gansu Agricultural

University. 2021; 56(06): 1–9. https://doi.org/10.13432/j.cnki.jgsau.2021.06.001

14. Yang K, Xin G, Jiang H, Yang C. Study on spatiotemporal changes of landscape ecological risk based

on the optimal spatial scale: A case study of Jiangjin district, Chongqing city. Journal of Ecology and

Rural Environment. 2021; 37(05): 576–586. https://doi.org/10.19741/j.issn.1673-4831.2020.0631

15. Xi S, An Y, Li Y, Cai P, Long L, Chen Q. Ecological risk assessment of Karst Mountain Watershed

based on landscape pattern–A case study of Wujiang river in Guizhou province. Resources and Envi-

ronment in The Yangtze Basin. 2019; 28(03): 712–721.

16. Dong Q, Ye C. Spatial and temporal evolution of rural residential areas in Nanchang and influencing fac-

tors. Acta Agriculturae Jiangxi. 2021; 33(07): 131–138+144. https://doi.org/10.19386/j.cnki.jxnyxb.

2021.07.021

PLOS ONE Landscape ecological risk assessment of an ecological area in the Kubuqi desert

PLOS ONE | https://doi.org/10.1371/journal.pone.0294584 November 16, 2023 18 / 20

https://doi.org/10.13869/j.cnki.rswc.2023.02.035
https://doi.org/10.13869/j.cnki.rswc.2023.02.035
https://doi.org/10.14108/j.cnki.1008-8873.2023.02.022
https://doi.org/10.14108/j.cnki.1008-8873.2023.02.022
https://doi.org/10.11821/dlxb201504013
https://doi.org/10.13578/j.cnki.issn.1671-1556.20201112
https://doi.org/10.13578/j.cnki.issn.1671-1556.20201112
https://doi.org/10.1016/J.JCLEPRO.2021.126371
https://doi.org/10.3390/rs12193114
https://doi.org/10.3390/F12091157
https://doi.org/10.3390/SU13095297
https://doi.org/10.3390/SU13095297
https://doi.org/10.1007/S10980-021-01240-8
https://doi.org/10.1007/S10980-021-01240-8
https://doi.org/10.1016/J.JCLEPRO.2021.127522
https://doi.org/10.1016/J.JCLEPRO.2021.127522
https://doi.org/10.13432/j.cnki.jgsau.2021.06.001
https://doi.org/10.19741/j.issn.1673-4831.2020.0631
https://doi.org/10.19386/j.cnki.jxnyxb.2021.07.021
https://doi.org/10.19386/j.cnki.jxnyxb.2021.07.021
https://doi.org/10.1371/journal.pone.0294584


17. Wei S, Xu W, Zhang Z, Huang X. Spatiotemporal scale effect of landscape pattern for natural vegetation

in a forest-steppe zone of Hebei. Ecological Science. 2022; 41(06): 157–166. https://doi.org/10.14108/j.

cnki.1008-8873.2022.06.019

18. Hu R, Du S, Li P, Teng K, Wang R, Qiu Q. Scale effect of landscape pattern in ecologically vulnerable

ethnic regions. China Sciencepaper. 2020; 15(09):1011–1018.

19. Cui Y. Granularity effect of landscape index and landscape ecological risk evaluation in Susong county

based on geographical situation data. Anhui Agricultural University. 2020.

20. Han Z, Li J, Yin H, Shentu Y, Xu C. Analysis of ecological security of wetland in Liaohe River delta

based on the landscape pattern. Ecology and Environment. 2010; 19(03): 701–705. https://doi.org/10.

16258/j.cnki.1674-5906.2

21. Chen X, Ding Z, Yang J, Chen X, Chen M. Ecological risk assessment and driving force analysis of land-

scape in the compound mine-urban area of the northern Peixian County. Chinese Journal of Ecol-

ogy,2022, 41(09):1796–1803. https://doi.org/10.13292/j.1000-4890.202209.007

22. Chen D, Shi L. Landscape ecological risk assessment and prediction for Xiong’an New Area based on

land use change. Ecological Economy,2021, 37(11):224–229.

23. Chen D, Shi L. The landscape ecological risk assessment and prediction for Xiong’an New Area based

on land use change. Ecological Economy. 2021; 37(11): 224–229.

24. Zhang L. Lan use/cover change and ecological risk assessment of the golden quadrangle region in the

border of China, Myanmar, Thailand and Laos. Yunnan Normal University. 2020.

25. Liang Q, Liao M, Lin Z, Teng Y, Li Y, Xie F, et al. Ecological risk assessment of land use landscape in

Fangchenggang city from the perspective of production life ecological space. Science Technology and

Engineering. 2022; 22(28):12683–12694.

26. Xie Y, Gong J, Zhao C. Evaluation of landscape ecological risk of soil and water erosion in the Bailong-

jiang watershed in Southern Gansu, China. Chinese Journal of Ecology. 2014; 33(03):702–708. https://

doi.org/10.13292/j.1000-4890.2014.0061

27. Zheng X, Yang Z, Ren Z, Wei X, Cheng J. A GIS-based soil erosion sensitivity and landscape ecological

risk assessment in Ningxia, northwestern China. Research of Soil and Water Conservation. 2022; 29

(06):8–13+20. https://doi.org/10.13869/j.cnki.rswc.2022.06.013

28. Wang K, Chen C, Bao Y, Lv Q, Nu K. Analysis of spatial and temporal variations on urban heat island in

Jingjiang, Fujian. J. Journal of Tropical Meteorology. 2019; 35(06): 852–864. https://doi.org/10.16032/j.

issn.1004-4965.2019.077

29. Tang X, Song X, Zeng Y, Zhang D. Evaluation and spatio-temporal evolution of forest ecological secu-

rity in the Yangtze river economic belt. Acta Ecologica Sinica. 2021; 41(5): 1693–1704.

30. Li K, Zhao J, Li X. Land use change and landscape ecological risk assessment at county level. Urban

Geotechnical Investigation & Surveying. 2022: 2022(01): 1–7. https://doi.org/10.3969/j.issn.1672-8262.

2022.01.001

31. Wei F, Liu J, Xia L, Long X, Xu Z. Landscape ecological risk assessment in Weibei dryland region of

Shaanxi province based on LUCC. China Environmental Sciences. 2022; 42(04): 1963–1974. https://

doi.org/10.19674/j.cnki.issn1000-6923.20220112.002

32. He J, Wu L, Zhang L, Zhang M. Landscape ecological risk assessment of Three Gorges reservoir area

based on ecological community. Ecology and Environmental Monitoring of Three Gorg. 2022; 7(02):

11–22. https://doi.org/10.19478/j.cnki.2096-2347.2022.02.02

33. Li X, Liu S, Wang Z. Landscape ecological risk characteristics of water source site in Hanzhong city of

the Middle route of the South-to North water transfer project of China. Research of Soil and Water Con-

servation. 2019; 26(05): 181–187. https://doi.org/10.13869/j.cnki.rswc.2019.05.027

34. Wang Y, Wang Y, Yang J, Zhao T, Kou L, Zhang D. Forest ecological security rating and its spatio-tem-

poral evolution analysis in the Yellow River Basin. Acta Ecologica Sinica. 2022; 42(6): 2112–2121.

35. Liu M, Li G, Xing L, Sun J. Analysis of land use change and landscape risk in Laoshan district, Qingdao

city. Periodical of Ocean University of China. 2022; 52(09): 90–102. https://doi.org/10.16441/j.cnki.

hdxb.20210412

36. Wu N, Zhang Y, Li R. Ecological risk analysis and prediction of land use in arid valley based on land-

scape index. Research of Soil and Water Conservation. 2018; 25(02): 207–212. https://doi.org/10.

13869/j.cnki.rswc.2018.02.030

37. Zhang X, Wang X, Hu Z, Xu J. Landscape Pattern Changes and Climate Response in Nagqu Hangcuo

National Wetland Park in the Tibetan Plateau. Sustainability,2023, 15(13). https://doi.org/10.3390/

SU151310200

38. Darren A J H, Hasmadi M I, Melissa F M, Azani A M. Evaluating the impacts of land use/land cover

changes across topography against land surface temperature in Cameron Highlands. PloS one,2021,

16(5). https://doi.org/10.1371/JOURNAL.PONE.0252111 PMID: 34019599

PLOS ONE Landscape ecological risk assessment of an ecological area in the Kubuqi desert

PLOS ONE | https://doi.org/10.1371/journal.pone.0294584 November 16, 2023 19 / 20

https://doi.org/10.14108/j.cnki.1008-8873.2022.06.019
https://doi.org/10.14108/j.cnki.1008-8873.2022.06.019
https://doi.org/10.16258/j.cnki.1674-5906.2
https://doi.org/10.16258/j.cnki.1674-5906.2
https://doi.org/10.13292/j.1000-4890.202209.007
https://doi.org/10.13292/j.1000-4890.2014.0061
https://doi.org/10.13292/j.1000-4890.2014.0061
https://doi.org/10.13869/j.cnki.rswc.2022.06.013
https://doi.org/10.16032/j.issn.1004-4965.2019.077
https://doi.org/10.16032/j.issn.1004-4965.2019.077
https://doi.org/10.3969/j.issn.1672-8262.2022.01.001
https://doi.org/10.3969/j.issn.1672-8262.2022.01.001
https://doi.org/10.19674/j.cnki.issn1000-6923.20220112.002
https://doi.org/10.19674/j.cnki.issn1000-6923.20220112.002
https://doi.org/10.19478/j.cnki.2096-2347.2022.02.02
https://doi.org/10.13869/j.cnki.rswc.2019.05.027
https://doi.org/10.16441/j.cnki.hdxb.20210412
https://doi.org/10.16441/j.cnki.hdxb.20210412
https://doi.org/10.13869/j.cnki.rswc.2018.02.030
https://doi.org/10.13869/j.cnki.rswc.2018.02.030
https://doi.org/10.3390/SU151310200
https://doi.org/10.3390/SU151310200
https://doi.org/10.1371/JOURNAL.PONE.0252111
http://www.ncbi.nlm.nih.gov/pubmed/34019599
https://doi.org/10.1371/journal.pone.0294584


39. Liu Y, Huang C, Zhang L. The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context

of Urbanization in China: Evidence from Nanchang City. International Journal of Environmental

Research and Public Health,2023, 20(3).

40. Zhou HJ, Liu XY, Hu JD, Yu SF. Analysis on dynamic changes of landscape structure in Guangxi Gulf

of Tonkin economic zone based on optimum granularity. Journal of Ecology and Rural Environ-

ment,2022, 38(05):545–555. https://doi.org/10.19741/j.issn.1673-4831.2021.0570

41. Wang L, Yuan Y, Dong H, Huang J, Huang P, Zhang C. Research on spatial scale effect of landscape

pattern of land use in Wuhan city. World Regional Studies. 2020; 29(01):96–103.

42. Fan M, Peng Y, Wang Q, Mi K, Qing F. Correlations between landscape pattern and plant diversity at

multiple spatial scales: a case study of Hanshandak Sandland. Acta Ecologica Sinica. 2018; 38(07):

2450–2461.

43. Liu H, Zhang Y. Deep in the Kubuqi Desert lies a "deep breathing" town. N. Science and Technology

Daily, 2020;2020-04-02(006). https://doi.org/10.28502/n.cnki.nkjrb.2020.001812

44. Zhou JW, Luo J. Spatial-temporal evolution of ecosystem service value and landscape ecological risk in

dry valleys. Yangtze River,2023, 54(04):85–93. https://doi.org/10.16232/j.cnki.1001-4179.2023.04.013

45. Wang L, Wang M. Chengdu-chongqing urban landscape ecological risk evolution analysis. Resources

and Environment in the Yangtze Basin,2023, 32(03):626–637.

46. Tan L, Luo W, Yang B, Huang M, Shuai S, Cheng CX, et al. Evaluation of landscape ecological risk in

key ecological functional zone of South–to–North Water Diversion Project, China. Ecological Indica-

tors,2023, 147.

47. Chen C, Zhou B. Modernization of ecological governance in China: advantages, contradictions and

countermeasures. Journal of Jishou University (Social Sciences). 2023; 44(02):59–69. https://doi.org/

10.13438/j.cnki.jdxb.2023.02.006

48. Zhao X, An S, Cao G, Li X, Lan D, Chu J. Surveying desert major plant communities in China: implica-

tions, current status, and scheme. Journal of Desert Research. 2023; 43(01):9–19.

49. Lin X, Wang ZT. Landscape ecological risk assessment and its driving factors of multi-mountainous

city. Ecological Indicators,2023, 146.

50. Zhang X, Zhang F, Chen W, Li G, Bi P, Wang Z. Spatio-temporal changes of ecological service values

in Yunnan Kweichow Plateau. Bulletin of Surveying and Mapping. 2022; 2022(08): 30–35. https://doi.

org/10.13474/j.cnki.11-2246.2022.0228

51. Zheng K, Li C, Wu Y, Gao B, Li C, Wu Y. Temporal and spatial variation of landscape ecological risk

and influential factors in Yunan border mountainous area. Acta Ecologica Sinica. 2022; 42(18): 7458–

7469.

52. Xiu Y, Hou M, Tian J, Liang T, Feng Q. Characteristics of temporal and spatial variation in landscape

ecological risk in Gansu province based on land use and cover. Acta Prataculturae Sinica,2023, 32

(01):1–15.

PLOS ONE Landscape ecological risk assessment of an ecological area in the Kubuqi desert

PLOS ONE | https://doi.org/10.1371/journal.pone.0294584 November 16, 2023 20 / 20

https://doi.org/10.19741/j.issn.1673-4831.2021.0570
https://doi.org/10.28502/n.cnki.nkjrb.2020.001812
https://doi.org/10.16232/j.cnki.1001-4179.2023.04.013
https://doi.org/10.13438/j.cnki.jdxb.2023.02.006
https://doi.org/10.13438/j.cnki.jdxb.2023.02.006
https://doi.org/10.13474/j.cnki.11-2246.2022.0228
https://doi.org/10.13474/j.cnki.11-2246.2022.0228
https://doi.org/10.1371/journal.pone.0294584

