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Abstract

The importance of the time-cost-quality trade-off problem in construction projects has been

widely recognized. Its goal is to minimize time and cost and maximize quality. In this paper,

the bonus-penalty mechanism is introduced to improve the traditional time-cost model, and

considering the nonlinear relationship between quality and time, a nonlinear time-cost qual-

ity model is established. Meanwhile, in order to better solve the time-cost-quality trade-off

problem, a multi-objective immune wolf colony optimization algorithm has been proposed.

The hybrid method combines the fast convergence of the wolf colony algorithm and the

excellent diversity of the immune algorithm to improve the accuracy of the wolf colony

search process. Finally, a railway construction project is taken as an example to prove the

effectiveness of the method.

Introduction

With the continuous advancement of global urbanization and the increasing demand for infra-

structure construction in cities, construction planning is a basic and challenging task in con-

struction project management. How to plan the project’s progress scientifically and reasonably

has been a hot issue for a long time. At the project planning stage, it is necessary to meet three

main objectives, namely, deliver the project according to the time, cost and quality require-

ments specified in the contract. However, in the project construction stage, customers need to

speed up the project or ensure delivery within the planned date, which requires the project

manager to adjust the relationship between time, cost, and quality. However, this relationship

is contradictory and related [1]. In general, in order to shorten the construction period, project

managers will design new alternatives for each construction activity and re-formulate the

schedule, but this will affect the time, cost, and quality of the construction project. For exam-

ple, by increasing large construction equipment and workers’ labor time, the duration of con-

struction activities can be significantly reduced, but the total cost of construction will also

increase, and there may be project quality problems. Therefore, it is of great significance to

study the trade-off between time, cost, and quality.
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The optimization goal of traditional construction project planning is to analyze the trade-

off between time and cost in the project to minimize the cost. The classical critical path method

is regarded as an acceptable technology to determine the effective cost in construction project

planning [2]. This method analyzes the impact on the cost according to the duration of activi-

ties on the critical path and the priority relationship between activities. After the introduction

of the critical path method, many researchers began to discuss the problem of time-cost trade-

off. For example, Fulkerson [3] proposed a linear programming problem to calculate the proj-

ect time cost trade-off problem composed of multiple individual tasks. These tasks have a

related collapse time and normal time, and the cost of project activities varies linearly between

these extreme times. Robinson [4] proposed a dynamic programming method to solve the

time-cost trade-off problem in project management with available models, which realizes the

optimal allocation between activities with an arbitrary cost time function. Reda R and Carr RI

[5] compared the practical method of time-cost trade-off (TCT) with the computerised TCT

method according to the actual construction planners and considered that the correlation of

construction activities is very important, and the normal computerized TCT technology is

conceptually wrong for construction. De P et al. [6] considered the importance of discrete

time-cost trade-off problems, proposed a solution of network decomposition/reduction, and

emphasized the necessity of developing and evaluating effective procedures to solve general

time-cost trade-off problems. Laslo Z [7] described the stochastic expansion model of time-

cost trade-off problem of the critical path method and constructed four basic formulas of

time-cost trade-off model based on different assumptions, avoiding the infeasibility of addi-

tional expert group evaluation for each possible performance speed. Chen SP and Tsai MJ [8]

proposed a new method for time-cost trade-off analysis of projects network in a fuzzy environ-

ment. The fuzziness of the minimum total collision cost provides more information for time-

cost trade-off analysis in project management. Al Haj and El-Sayegh [9] proposed a nonlinear

integer programming model to solve the time cost optimization problems considering the

influence of total floating charge loss. Alavipour and Arditi [10] integrated the optimization of

project financing costs into the analysis of time-cost trade-off and proposed an integrated

model. Sonmez, Aminbakhsh, Atan [11] proposed a new non-critical job rescheduling method

to narrow the gap between time-cost optimization research and practice.

However, with the in-depth study of project construction, it is found that decision-makers

still need to consider project quality when adjusting the relationship between construction

period and cost. When dealing with large-scale projects, it is difficult for decision makers to

find the best solution with the shortest time, the lowest cost, and the highest quality with their

own experience. Therefore, quality has become an indispensable and important factor. Taking

quality maximization as the third optimization goal leads to the problem of time-cost quality

tradeoff. As a result, a large number of researchers have devoted themselves in recent years to

solving the problem of time-cost-quality tradeoff. Babu and Suresh [12] first developed a linear

programming model of time, cost, and quality, and proposed that the collapse time could affect

project quality. Khang and Myint [13] took cost and quality as affine functions of duration and

took the average value of activity quality as the total quality of the project. In addition, they

claimed that the linear assumption between quality and time was questionable. El-Rayes and

Kandil [14] proposed a multi-objective optimization model to transform the traditional two-

dimensional time-cost trade-off analysis into a three-dimensional time-cost quality trade-off

analysis. Tareghian and Taheri [15] added the quality factor to the discrete-time cost model

and developed a programme to solve the time-cost quality problem. Zhang H and Xing F [16]

considered that the quality could not be collected and recorded by accurate numbers,

described the time, cost, and quality by fuzzy numbers, and evaluated the selected construction

method by using a fuzzy multi-attribute efficiency method combined with constrained fuzzy
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arithmetic operation. Kim J, Kang C, Hwang I [17] considered the potential quality loss cost

associated with rework or modification that may be caused by excessive collapse activities and

proposed a mixed integer linear programming model. Nabipoor Afruzi, et al. [18] constructed

a discrete-time cost-quality trade-off model with limited pattern identification resources con-

sidering the resource constraints in the current project. The model requires that each activity

has multiple modes to execute, and in each execution mode, each activity can be completed in

normal or crash mode. Zhang L, Du J, Zhang S [19] introduced reward and punishment and

established a new time-cost quality integrated optimization model. In addition, a new quality

model called the Quality Performance Index (QPI) was established to describe the reliability of

the system. Tran DH, Cheng MY, Cao MT [20] adopted the definition of personal quality, con-

sidered multiple execution modes in which each mode in each activity has an estimated dura-

tion, and calculated the quality and cost according to their respective duration functions.

Jeunet J, Bou Orm M [21] consider personal quality constraints, priority relationships, non-

preemption and resource availability. A mixed integer linear programming model is developed

to optimize temporary work and overtime, to speed up the project progress while considering

quality and productivity.

In addition to constructing the target mathematical model, the time-cost quality trade-off

problem also needs excellent optimization methods to solve. Because TCQTP belongs to a

multi-objective optimization problem, many researchers devote themselves to developing dif-

ferent optimization algorithms to solve the problem. At present, common optimization algo-

rithms include particle swarm optimization algorithm, fast non-dominated sorting genetic

algorithm with elite retention strategy (NSGA-II), ant colony algorithm, simulated annealing

algorithm, and so forth [22–24]. For example, Fallah-Mehdipour [25] compared the multi-

objective particle swarm optimization algorithm (MOPSO) with the non-dominated sorting

genetic algorithm (NSGA-II) and proved that NSGA-II can determine the optimal scheme

more successfully than the MOPSO algorithm on the issues of time cost trade-off (TCTO) and

time cost quality tradeoff (TCQTO). Fu F, Zhang T [26] proposed a hybrid leapfrog algorithm,

that combines the crossover operator of a genetic algorithm with local search based on substi-

tution in the process of leapfrog. The performance of the algorithm is verified by taking the

construction project of a railway overpass as an example.

Nadimi-Shahraki, et al. [27] proposed an improved moth-flame optimization (I-MFO)

algorithm, introduced the adapted wandering around search (AWAS) strategy to escape the

local optimal solution, evaluated the performance of the proposed algorithm through a bench-

mark function, and compared it with other well-known metaheuristic algorithms. Finally,

I-MFO is used to solve practical mechanical engineering problems. In Khodadadi N, Azizi M,

Talatahari S, Sareh P [28] considering the multi-objective optimization problem of multiple

performance indicators inspired by the principle of crystal structure formation, a meta heuris-

tic algorithm called the Crystal Structure algorithm (Crystal) is proposed, and the algorithm is

evaluated. The results show that the algorithm provides excellent results when dealing with

multi-objective problems. To Nadimi-Shahraki MH, et al. [29] reduce the high selection pres-

sure and low diversification of GWO algorithm, a grey wolf optimizer based on gaze cue learn-

ing (GGWO) is proposed. The algorithm introduced two strategies: neighbor gaze cues

learning (NGCL) and random gaze cues learning (RGCL)to enhance the optimization ability.

The GGWO algorithm is compared with other algorithms. The results show that the GGWO

algorithm has better performance. Based on Azizi M, et al. [30], Multi-Objective Atomic

Orbital Search (MOAOS) is proposed to solve multi-objective optimization problems. By

using MOAOS to evaluate benchmark problems ZDT and DTLZ, the results show that this

algorithm can produce superior or similar results compared with other meta-heuristic meth-

ods. Khodadadi N, Abualigah L, Mirjalili S [31] made appropriate changes to the stochastic
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paint optimizer (SPO) and proposed a multi-objective stochastic paint optimizer (MOSPO) to

solve multi-objective optimization problems. Compared with MOPSO MSSA and MOALO,

MOSPO had high convergence and excellent Pareto front results in dealing with multi-objec-

tive engineering problems.

It is not difficult to conclude from the above literature review that TCQT has been widely

addressed and effectively resolved. However, the existing TCQT mathematical model has not

considered the impact of reward and punishment factors on construction projects, and intelli-

gent optimization algorithms with better solution performance need to be proposed. Thereby,

the contributions of this study are stated as follows: (1) clarify the nonlinear relationship

between time and bonus-penalty cost, a new bonus-penalty cost model is presented. Therefore,

a new multi-objective mathematical model of the time-cost quality trade-off problem with sev-

eral equality and inequality constraints is established. (2) A new multi-objective immune wolf

swarm algorithm has been developed to solve the trade-off problem of time, cost, and quality.

The proposed MOIWCA can solve the problem that the traditional wolf colony algorithm is

easy to fall into a local optimal solution. At the same time, in order to improve the search

speed and optimization performance of the algorithm, the cross operation and immune opera-

tion in the immune algorithm are improved. The algorithm can provide a representative and

managed Pareto set for the time-cost-quality trade off problem. (3) To make sure that the pro-

posed MOIWCA works and can be used, we use a high-speed railway construction project as a

case study to show that the proposed method is better.

The rest of this paper is organized as follows. In section 2, the nonlinear relationships of

time, cost, and quality are analyzed, and the mathematical models of time, cost, and quality are

given, respectively. Section 3, the multi-objective immune wolf colony algorithm is proposed.

In section 4, an experimental test and a case study of a railway construction project are shown

to verify its effectiveness. Finally, the main conclusions and future work of the paper are

presented.

Model mathematical optimization

Mathematical optimization model of the minimum time

Method of the critical path. The critical path method (CPM) is defined as the technology

to analyze and obtain the critical path of a project without considering any resource con-

straints and given the construction time, logical relationship and other time constraints [32].

By using forwards and backwards methods, CPM identifies the possible relationships among

the activities in the project, namely the start-to-start (SS), the finish-to-finish (FF), the start-to-

finish (SF), and the finish-to-start (FS) relations. In the PDM diagram, the path with the lon-

gest operation duration in the schedule network is the critical path, which determines the

shortest possible project duration.

The start-to-finish (SF) is not considered in this paper because it means that the beginning

of an activity requires the realization of another activity. If the latter is delayed, there is no feed-

back to the former at all. When using the CPM to organise the activities sequence, make sure

that each activity has at least one predecessor activity and one successor activity (except for the

start and end of the project’s activities). Meanwhile, to keep the schedule dynamics and effec-

tiveness, each activity has FS or SS in its predecessor logic relationship and has FS and FF in its

successor.

In addition, lead and lag of time are involved in the generalized precedence relationships

(GPR) between activities [33]. GPR can specify a minimum or maximum time lag between any

pair of activities. The minimum time lag means that an activity can only be started (finished) if

the predecessor activity has already been started (finished) within a period of time. The
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maximum time lag means that an activity should have recently started (finished) within a spe-

cific period after the start (finish) of other activities [34].

In this paper, the minimum time of a project is the sum of the times of all activities on the

critical path. The constraints are the precedence relationships between the activities.

Project minimum time and constrains. As mentioned before, we use the CPM to deter-

mine the precedence relationships among the activities in the project to determine the con-

straints in the mathematical model of the minimum project time [35].

Under the given technology and resource conditions, the minimum and maximum activity

realization times can be calculated for each activity on the project. In the activity i, the mini-

mum activity realization time is represented as tmini , and the maximum activity realization time

is represented as tmaxi . In addition, general time tci is introduced. Regardless of policies, weather,

and other special circumstances, the time relationship of activity i can be expressed by the fol-

lowing inequation:

tmini � ti � t
max
i i ¼ 1; 2; 3; . . . ; n ð1Þ

where n is the number of activities on the project.

Then we respectively define the minimum project time Tmin and the maximum project

time Tmax, and the total project realization time T. The value of T is equal to the sum of time of

all activities on the critical path. Therefore, the relationship is described by the following ine-

quation:

Tmin � T � Tmax ð2Þ

The time function is defined as the sum of the duration taken by all the activities in the criti-

cal path of the project while maintaining relationships between the predecessor and successor

activities. The minimization of project total time is shown as follows:

Min T ¼
Pn

i¼1

Pmi
j¼1
φitij ð3Þ

where T is the project total time; φi is a binary variable that is equal to 1 if the activity i is

selected on the critical path, otherwise is equal to 0; tij is the duration of option j for activity i;
mi is the number of subcontracting option for activity i.

As mentioned before, between the activities in the PMD diagram, there are the start-to-

start (SS), the finish-to-finish (FF), and the finish-to-start (FS) relationships. These precedence

relationships are used as constraints for the minimum time. Assume that activity i is the prede-

cessor activity of activity j, activity k is the successor activity of activity j, and lead and lag of

time are involved in the precedence relationships. Therefore, we have three different relation-

ships as follows:

For the relationship of “finish-start” is shown in Fig 1.

sEj � s
E
i � ðduri � otiÞ þ FS

min
ij ð4Þ

f Lk � f
L
j � ðdurk � otkÞ þ FS

min
jk ð5Þ

f Lj � f
E
j � durj � otj ð6Þ

where sEi is the earliest start time of activity i; sEj is the earliest start time of activity j; f Lj is the lat-

est time of activity j; f Lk is the latest time of activity k; duri is the duration of activity i; durj is the

duration of activity j; durk is the duration of activity k; FSminij is the minimal lag/lead between

two activities of i and j for FS relationships; FSminjk is the minimal lag/lead between two activities
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of j and k for FS relationships; t is the reduction time of the activity; ω is a binary variable that

is equal to 1 if the activity is reduced t, otherwise is equal to 0.

For the relationship of “start-start” is shown in Fig 2.

sEj � s
E
i � SS

min
ij ð7Þ

f Lk � s
E
j � ðdurk � otkÞ þ SS

min
jk ð8Þ

where SSminij is the minimal lag/lead between two activities of i and j for SS relationships; SSminjk
is the minimal lag/lead between two activities of j and k for SS relationships.

For the relationship of “finish-finish” is shown in Fig 3.

f Lj � s
E
i � ðduri � otiÞ þ FF

min
ij ð9Þ

f Lk � f
L
j � FF

min
jk ð10Þ

where FFminij is the minimal lag/lead between two activities of i and j for FF relationships; FFminjk

is the minimal lag/lead between two activities of j and k for FF relationships.

Mathematical optimization model of the minimum cost

Nonlinear bonus-penalty theory and the cost model of bonus-penalty. In order to com-

plete the project ahead of schedule, the decision-maker encourages the contractor to reduce

the project total time through the use of economic incentives; and in order to guarantee the

completion of the project on the contract date, the decision-maker discourage the contractor

from delaying the project time by means of economic penalties. Through the analysis of rele-

vant literature [36–38], it can be seen that the existing research on bonus-penalty models of

project duration generally adopts linear mathematical models, which ignore the problem of

insufficient bonus-penalty and the risk of quality and safety. Based on the nonlinear reward

model proposed [39], this paper puts forward the nonlinear bonus-penalty theory, which

implies to that decision-makers have psychological expectations for the reduction or delay of

project duration under the external operating environment. When the decision-maker decides

to reduce project duration by economic incentive, the incentive intention shows a trend of ris-

ing first and then falling; when the decision-makers find that the project duration is extended,

Fig 1. The relationship of “finish-start”.

https://doi.org/10.1371/journal.pone.0278634.g001

Fig 2. The relationship of “start-start”.

https://doi.org/10.1371/journal.pone.0278634.g002
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the penalty intention shows a trend of slow first and then quick. The specific bonus-penalty

intention curves are shown in Figs 4 and 5.

According to the above analysis, there is an N-type nonlinear relationship between the time

reduction of a project and the bonus, which is manifested as the amount of bonus increasing

marginally first and then decreasing marginally with the increase in time reduction of the proj-

ect. By simulating the N-type curve form, the nonlinear characteristics of bonus for the time

reduction of a project can be approximated by the following model:

Cbonus ¼ C
max
bonus arctan tactual � tcontract � teð Þ þ

p

2

h i
ð11Þ

where Cbonus is the cost of bonus; Cmaxbonus is the maximum cost of bonus; tactual is the actual reali-

zation time of project; tcontract is the required time of the project contract; te is the expected

time reduction of the project.

There is an L-type nonlinear relationship between project time delay and penalty, which

manifests as the amount of penalty increasing steadily and then marginally as project time

delay increases. By simulating the L-type curve form, the nonlinear characteristics of the pen-

alty for the time delay of a project can be approximated by the following mathematical model:

Cpenalty ¼

Ptn
k¼1
φtk

Ctnpenalty þ etactual � tcontract � tn � 1
ð12Þ

(

where Cpenalty is the cost of penalty; tk is the number of time delay of project (k = 1, 2,. . ., tn); tn
is the maximum number of expected time delay of project; Ctnpenalty is the cost of penalty at

the tn.

Project minimum cost and constrains. In addition to reward and punishment costs,

total project realization costs include direct and indirect project costs. The direct cost is

directly related to the time of each activity of the project, mainly including the cost of labor,

materials, construction machinery, and other resources. The indirect costs are related to the

total duration of the project and include mainly taxes, project operating costs, personnel man-

agement fees, and other indirect costs.

The direct cost is closely related to the duration of each activity of the project, and the dura-

tion of the activity will affect the direct cost of the activity. Suppose that activity i is one of the

activities in the project, the minimum activity realization time is represented as tmini , the maxi-

mum activity realization time is represented as tmaxi , and the general activity realization time is

represented as ti. Accordingly, the minimum cost of activity i is represented as Cmini;d , the maxi-

mum activity cost is represented as Cmaxi;d ; and the general activity cost is represented as Ci,d.
The time of activity is reduced, we need to put in extra resources for the activity to succeed.

This contributes to the direct cost of activity increasing, and according to practical engineering

experience, with the continuously reducing the duration of the activity, the direct cost is rising,

but the speed of rise is slowing gradually. Therefore, the link between the duration of activity

Fig 3. The relationship of “finish-finish”.

https://doi.org/10.1371/journal.pone.0278634.g003
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and direct cost is nonlinear. The relationship of nonlinear is shown in Fig 6. In this paper, we

use the Lagrange quadratic interpolation formula to establish a mathematical model of the

direct cost:

CD ¼
Pn

i¼1
½CDmini � k

min
i ðtiÞ þ CD

c
i � k

c
iðtiÞ þ CD

max
i � k

max
i ðtiÞ� ð13Þ

kmini ¼
ðti � tci Þðti � t

min
i Þ

ðtmini � tci Þðtmini � tmaxi Þ
ð14Þ

kci ¼
ðti � tmini Þðti � t

max
i Þ

ðtci � tmini Þðtci � tmaxi Þ
ð15Þ

kmaxi ¼
ðti � tmini Þðti � t

c
i Þ

ðtmaxi � tmini Þðtmaxi � tci Þ
ð16Þ

Unlike the relationship between the direct cost and duration, it is difficult to show the

impact in the change of duration of activity in the project on the indirect cost. We consider the

relationship between the indirect cost and total time. According to the practical engineering

experience, with the continuously increasing duration of the activity, the growth speed of indi-

rect costs is slowing. This is because some indirect costs can be put into multiple uses at a time,

such as the cost of management model formulation. There is no need to repeatedly put in.

Therefore, the link between the total time of the project and direct cost is nonlinear, the rela-

tionship of nonlinear is shown in Fig 7. In this paper, we use the Lagrange quadratic

Fig 4. Bonus of duration reduction graph.

https://doi.org/10.1371/journal.pone.0278634.g004
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interpolation formula to establish a mathematical model of the indirect cost:

CID ¼ CIDmin � kminðTÞ þ CIDc � kcðTÞ þ CIDmax � kmaxðTÞ ð17Þ

kmin ¼
ðT � TcÞðT � TminÞ

ðTmin � TcÞðTmin � TmaxÞ
ð18Þ

kc ¼
ðT � TminÞðT � TmaxÞ
ðTc � TminÞðTc � TmaxÞ

ð19Þ

kmax ¼
ðT � TminÞðT � TcÞ

ðTmax � TminÞðTmax � TcÞ
ð20Þ

The minimization of total cost is shown as follow:

Min C ¼ CDþ CIDþ Cbonus þ Cpenalty ð21Þ

Fig 5. Penalty of duration delay graph.

https://doi.org/10.1371/journal.pone.0278634.g005
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Mathematical optimization model of the maximum quality

In the process of project construction, quality has become an important factor for project man-

agers to trade-off and make decisions. Since a project includes various resources, such as mate-

rials, machines, and labor, the overall quality of the project depends on the quality of each

activity. The relationship between the quality and duration of activities is complex. In order to

find out how time affects quality, we propose the following assumptions:

1. The overall quality of the whole project depends on the quality of each activity.

2. Appropriate extension of activity time will improve the quality level.

3. At a certain point in time, the activity quality reaches the highest level; after this point, the

extension of time will lead to the decline of quality level. Because in the activities of some

construction projects, the relationship between activity time and quality is not linear.

Based on the above assumptions, we define the overall project quality as the integration of

the quality of all activities. We define the quality performance index (QPI) as the level of qual-

ity that the contract has reached in a certain amount of time [20]. We define QPIi as the quality

of a single activity as follows:

QPIi ¼ ait
2

i þ biti þ ci ð22Þ

where QPIi2[0, 1], i = 1, 2, . . ., n; ti is the during of activity i, with ti>0; ai, bi, ci are the coeffi-

cients decided by the quadratic function (Fig 8). Fig 8 shows that SDi, BDi, LDi are the shortest

duration, best duration, longest duration of activity i, and BDi corresponds to the maximum

value of QPI. The parameters can be provided by the deterministic data from the case study.

Fig 6. The curve of the relationship of time- direct cost.

https://doi.org/10.1371/journal.pone.0278634.g006
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Based on our prior investigation of real construction projects and the results of statistical

analysis, BDi can be determined by the following equation:

BDi ¼ SDi þ 0:6774ðLDi � SDiÞ ð23Þ

Fig 7. The curve of the relationship of time- indirect cost.

https://doi.org/10.1371/journal.pone.0278634.g007

Fig 8. The curve of the relationship of time- quality.

https://doi.org/10.1371/journal.pone.0278634.g008
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Therefore, QPI of the whole project can be calculated as

QPI ¼
Pn

i¼1
QPIi ð24Þ

The maximization of total quality is shown as follow:

MAXQ ¼
Xn

i¼1
QPIi

.
n ð25Þ

The proposed multi-objective immune wolf colony algorithm

Principle of WCA

Wolf colony algorithm (WCA) is an intelligent optimization algorithm that simulates natural

wolf hunting behaviour [40]. It can show three kinds of intelligent behaviors (wandering

behavior, calling behavior and siege behavior) and update mechanism of wolves. In the WCA,

the best individual is named as α wolf, the second-best individuals are named as β wolves and

third best individuals are named as γ wolves, respectively, and the other individuals are called

as ω wolves. Wandering behavior refers to exploring the optimal position of wolves in the cur-

rent area to randomly search for prey. Calling behavior refers to the α wolf calling the nearby β
wolves through howling, and the β wolves rush to the α wolf quickly. Siege behavior refers to

the wolves’ encircling of prey. Through the natural principle of “survival of the fittest”, the

renewal mechanism of wolf pack is to selectively eliminate some wolves with poor ability and

give priority to ensure that the wolves with ability can get enough food, so as to ensure the con-

tinuity and development of wolf pack. The detailed steps of WCA are as follows:

Step 1. Initialization of the wolf colony

Assuming that the size of the wolf colony is ND, the size of the wolf colony search space is

D, and the location of the i wolf in the early generation is:

Xi ¼ ðxi1; xi2; . . . ; xid; . . . ; xiDÞ ð26Þ

xid ¼ randðx
M
id � x

m
idÞ þ x

m
id ð27Þ

where rand is a random number in [0,1], xmid is the minimum range of iteration xid, xMid is the

maximum range of iteration xid. By calculating the objective function of wolves, comparing

the value of the function, the α wolf, β wolves and γ wolves are selected from all wolf colony.

The α wolf does not need to perform the next three intelligent behaviors, and directly inter to

the next iteration until it is replaced by a better wolf or terminated.

Step 2. Wandering behavior of the wolf colony

After choosing the α wolf, the β wolves start wandering behavior in the space. The β wolves

move in the v direction and record the fitness value in each direction. Then the β wolves will

move in the direction of higher odor concentration and update the position of the β wolves.

After the β wolf moves in the p(p = 1,2,. . .,v)direction, the position of β wolf in the d
(d = 1,2,. . .,D) dimension is expressed as:

xpid ¼ xid þ Zstepa ð28Þ

where η represents the search factor of the β wolves that is a random number in [0,1], stepa
represents the step of the β wolves.

Compared the fitness value of the α wolf with the fitness value of the β wolves. If the loca-

tion of the wolf xid moves to xpid, the fitness of xpid is better than the current location. The posi-

tion of the xid wolf is updated to xpid. Otherwise, the position of the xid wolf does not move. The

adaptation values of the xid wolf after updating is compared with the fitness values of the α
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wolf. If the fitness value of β wolf better than the α wolf, the wolf will take the place of the α
wolf.

Step 3. Calling behavior of the wolf colony

At the end of the wandering behavior, the new α wolf will summon the surrounding γ
wolves, the γ wolves will run to the location of the α wolf with a faster speed. When wolf i in

the k+1 iteration, the position of γ wolf in the d(d = 1,2. . .,D) dimension is expressed as:

xkþ1

id ¼ x
k
id þ yðx

k
ad � x

k
idÞstepb ð29Þ

Where θ represents the rush factor of the γ wolves that is a random number in [–1,1], stepb
represents the step of the γ wolves, xkid represents the position of the wolf i in the d dimensional

space when the k generation, xkad represents the position of the α wolf in the d dimensional

space when the k generation wolves.

Step 4. Siege behavior of the wolf colony

When the wolf colony finish calling behavior, the α wolf command the β wolves, the γ
wolves and the ω wolves to encircle the prey with the position of the α wolf. For the k+1 gener-

ation of wolves, the siege behavior of the wolves is expressed as:

xkþ1

id ¼ x
k
ad þ sstepc ð30Þ

Where σ represents the siege factor of the wolves that is a random number in [–1,1], stepc
represents the step of the ω wolves.

When the siege behavior is finished, if the function value of the position of the wolf i is bet-

ter than the original function value, the position of the wolf will be updated; otherwise, the

position of the wolf will remain unchanged. The adaptation values of the xkad wolf after updat-

ing are compared with the fitness values of the α wolf, β wolves, and γ wolves. The best three

wolves were selected as the α wolf, β wolves, and γ wolves to complete the update of the α wolf,

β wolves, and γ wolves.

Multi-objective immune wolf colony algorithm

Design idea of the IWCA. The immune wolf colony hybrid algorithm proposed in this

paper focuses on the combination of wolf colony algorithm and immune algorithm, which

makes the hybrid algorithm have the advantages of immune algorithm’s excellent solving per-

formance in combinatorial optimization and wolf colony algorithm’s fast convergence in solv-

ing problems, and avoids the disadvantages of immune algorithm’s slow convergence speed in

optimization problems and wolf colony algorithm’s easy falling into local extremum. There-

fore, the immune wolf colony hybrid algorithm provides a new way to solve the time-cost qual-

ity trade-off (TCQT) problem.

When using the immune wolf colony hybrid algorithm to solve the TCQT problem, this

paper takes the individual wolf colony as the antibody of the immune algorithm, the odor con-

centration of prey as the antigen of the immune algorithm, and the odor concentration of the

individual wolf colony as the fitness value of the current solution. The process of wolf colony

searching, and trapping prey is to use immune wolf colony hybrid algorithm to solve the

TCQT problem iteratively. In the process of wolf pack updating, it is always hoped that the

wolf with high adaptability will be left behind. However, if the superior wolf is too concen-

trated, it is difficult to ensure the diversity of the whole wolf colony. Therefore, by using the

mechanism of antibody concentration inhibition, the antibody with low affinity and high con-

centration will be suppressed, and the antibody with high affinity and low concentration will

be retained and promote the production, to ensure the diversity of antibody groups.
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The basic principle of IWCA is to combine the immune principle of antibody concentra-

tion inhibition mechanism and immune memory function in the immune algorithm with the

wolf colony algorithm, calculate the concentration of wolves(antibody) and compare it with

the initial wolf concentration (Cu). If it is higher than Cu, update the wolves using IWCA, oth-

erwise, update the wolves using the self-adapting WCA. Self-adapting WCA can accelerate

search efficiency. The immune operation increases wolf colony diversity, ensures convergence

speed, and improves the global search ability and accuracy.

Steps of the IWCA. The detailed steps of IWCA are as follows:

Step 1. Recognize antigen. The antigen corresponds to the problem to be optimized. Prior

knowledge indicates that one should use experience, knowledge, and understanding of the

problems to obtain an initial feasible region or initial feasible solutions. Define fitness function

fu given by Eq (3), Eq (21), and Eq (25). Then, set the parameters of IWCA: dimension D of a

feasible solution, which equals the number of activities, the population size of wolf colony ND,

the expected reproduction index μ, the maximum number of iterations T, et al.

Step 2. According to Eq (27), generate the initial generation population of wolves randomly,

and in the meantime record the location of each wolf.

Step 3. Evaluate the fitness by calculating the fitness of each current wolf (antibody). The

affinity between antibodies and antigens is used to indicate the recognition degree of antibody

to antigen, which is called its fitness. The affinity function is expressed as:

Pu ¼
1

fu
ð31Þ

where fu is the fitness function. Then, select α wolf, β wolves, γ wolves and ω wolves by com-

paring the fitness value.

Step 4. Judge whether the terminal condition is met. If the current wolf colony includes the

best wolf(antibody), which means that the antibody has the maximal affinity degree with the

antigen, then output the antibody and stop searching; otherwise, go to the next step and con-

tinue searching.

Step 5. Calculate the antibody affinity of each wolf. The affinity between antibodies indicates

the degree of similarity between antibodies. In this paper, it is measured by Forrest’s R conse-

cutive matching method. The expression of the affinity function between antibodies can be cal-

culated as:

Ru;v ¼
ou;v

L
ð32Þ

where ωu,v represents the number of identical bits between antibody u and antibody v. L repre-

sents the length of antibody.

Step 6. Antibody concentration is the ratio of similar antibodies to all antibody groups. The

concentration of the current antibody is expressed as:

Cu ¼
P

u;v2NRu;v
N

ð33Þ

Ru;v ¼
1 Ru;v > a

0 othor
ð34Þ

(

where Cu represents the concentration of antibody. N represents the size of the antibody popu-

lation. Ru,v represents bivariate function, Ru,v is 1, when the affinity between antibodies is
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greater than α, which represents the threshold value that decides whether antibody u is similar

to antibody v, otherwise Ru,v is 0.

Step 7. Calculate the expected reproduction rate of the antibody population. The expected

reproduction rate is composed of the affinity between antibody and antigen and antibody con-

centration. Expected reproduction is expressed as:

Y ¼ l
PuP
Pu
þ 1 � lð Þ

CuP
Cu

ð35Þ

where Y is the expected reproduction rate of the antibody u, λ is a constant.

Step 8. Perform a judgment of concentration. Expected reproduction(Y) is inversely pro-

portional to antibody concentration (Cu). Compared Y with μ. If Y>μ, indicates that Cu is low,

update the population using self-adapting WCA, and continue with step 9(a); if Y�μ, indicates

that Cu is high, and diversity may be increased to avoid prematurity, and continue with step 9

(b).

Step 9.

a. Perform dynamic self-adapting of calling behavior of the wolf colony. For solving the

local optimal solution of WCA, by referring to the adaptive parameter adjustment method in

the particle swarm optimization algorithm, change the rush factor θ in Eq (29) into a dynamic

weight coefficient θ�, to change the fixed step of the calling behavior. In this paper, dynamic

adaptive calling behavior of WCA algorithm is proposed. The new calling behavior of the wolf

colony according to the following equations:

xkþ1

id ¼ x
k
id þ y

�
ðxkad � x

k
idÞstepb ð36Þ

y
�
¼

y
�

min þ
ðymax � yminÞðFkavg � F

k
minÞ

Fkid � Fkmin
Fkid � F

k
avg

y
�

max Fkid < Fkavg

ð37Þ

8
><

>:

where θ� is dynamic adaptive coefficient, y
�

max and y
�

min are the maximum and minimum iner-

tial coefficients respectively; Fkmin is the minimum value of fitness function of wolf colony in the

k generation; Fkid is the value of fitness function of the wolf i in the d dimensional space when

the k generation; Fkavg is the average value of fitness function.

b. Perform the immune operations of selection, crossover, and mutation. Compared with

the traditional immune operation. The selection operation is a roulette wheel. However, the

crossover operation and mutation operation are improved.

In this paper, a single point crossover operation is based on the same gene number. The dif-

ference between the proposed method and the classical single point crossover operation is that

the selection of crossover points is not random. The specific method is to randomly select two

chromosomes, select the same gene number from the two parent chromosomes as the intersec-

tion point, and then split and exchange the remaining chromosomes on the right side of this

point to obtain new offspring. The new crossover operation method can improve the running

speed of the algorithm and ensure the diversity of the population. A single point crossover

operation based on the same gene number is shown in Fig 9.

In this paper, the mutation operation of two-way search is proposed, aim is to avoid the

degradation of the antibody population. The concrete way is to randomly select M point (red

square) as a new variation point. First, M point as the starting point to search, N point for the

search, eventually point to reverse after the search will be able to get a new mutation individual

1. Secondly, to H point starting point for searching, M point for variation at the end of the
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reverse search to get a new mutation individual 2. The mutation operation based on two-way

search is shown in Fig 10.

Step 10. Update the wolf colony. For each wolf that has been updated, compare its current

fitness value with the fitness value of original best wolf (α wolf). If the current fitness value is

better than α wolf, then replace α wolf, otherwise, retain α wolf and continue to go to step 3.

Step 11. Judge whether the termination conditions of the algorithm is met. If the termina-

tion conditions are met, the algorithm is ended. Otherwise, go to step 3, until the maximum

number of iterations t is reached.

According to the principles described above, a flowchart of the solving process is shown in

Fig 11.

Case study

In the above content, based on grey wolf optimizer (GWO) algorithm [41] and immune mech-

anism, we proposed immune wolf colony algorithm (IWCA). It can find the best and unique

solution when dealing with single objective problems, but IWCA cannot solve multi-objective

optimization problems. The reason is due to the sub objectives of the multi-objective optimiza-

tion problem are contradictory, and the improvement of one sub objective may cause the per-

formance of another or several other sub objectives to change accordingly (such as the TCQP

problem to be solved in this paper). That is, it is impossible to achieve the optimal value of

Fig 9. Single point crossover operation based on the same gene number.

https://doi.org/10.1371/journal.pone.0278634.g009

Fig 10. Mutation operation based on two-way search.

https://doi.org/10.1371/journal.pone.0278634.g010
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multiple sub objectives at the same time, but only to coordinate and compromise among

them, make each sub goal as optimal as possible. Its essential difference from the single objec-

tive optimization problem is that the solutions of the multi-objective optimization problem are

not unique, but there is a set of optimal solutions composed of many Pareto optimal solutions.

Each element in the set is called Pareto optimal solution or non-inferior optimal solution. In

order to preform multi-objective optimization problems by IWCA, we combine the idea of

multi-objective optimization with the excellent strategy of IWCA, and propose a multi-objec-

tive immune wolf colony algorithm (MOIWCA). We learn from the components used in

MOPSO [42] and MOGWO [43], and integrate two new components on the basis of IWCA.

The first component is to create an archive, which is responsible for storing all non-dominated

Pareto optimal solutions generated during algorithm iteration. When the optimal solution is

to be archived or the archive is full, it can be controlled through the archive controller. The sec-

ond component is the leader selection strategy, which is used to select from files α wolf, β
wolves, and γ Wolves is the leader in the hunting process. This component can select the least

crowded part of the search space in the best archive, and provide one of the non-dominant

solutions. The selection is done by roulette-roulette method. These two components have been

described in detail in the literature [43], and we will not repeat in the paper.

Fig 11. Flowchart of immune wolf colony algorithm.

https://doi.org/10.1371/journal.pone.0278634.g011
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Test of multi-objective immune wolf colony algorithm

We chose the Rosenbrock function and the Rastrigin function to prove the robustness and

effectiveness of MOIWCA. To prove the advantages of MOIWCA, we conducted comparative

experiments with IGPSO [19], NSGA-II [44], and MOEA/D [45]. We retain the experimental

conditions unchanged: the four optimization algorithms solve the two functions 10000 times

each; the terminal condition of the algorithm iteration is that the number of iterations is no

more than 10000, or the current global solution error is less than 0.9. Compared with the initial

error value, the global solution error of 0.9 is relatively small. It is a recognized low error level

and is an effective test of the convergence of the algorithm. The two test functions are as

follows:

(1) The Rosenbrock functions

f ðxÞ ¼
PN� 1

i¼1
½ð1 � xiÞ

2
þ 100ðxiþ1 � x

2

i Þ
2
� 8x 2 R ð38Þ

where x = (x1, x2,. . .,xn) is a n-dimensional vector, with |xi|<2.4 and i = 1,2,. . .,n. The Rosen-

brock function is a non-convex function with a global minimum. Assuming N = 3, the global

minimum of the Rosenbrock function is 0 at (1,1,1). The location is in a parabolic valley.

Because the value in the valley changes little, it is more difficult to converge to the optimal

region than to the global minimum point. Therefore, this function can verify the convergence

ability of MOIWCA. We set the feasible region is extended to [–100,100] to test the conver-

gence efficiency. Table 1 shows the statistical results of the four algorithms. Compared with

IGPSO, NSGA-II and MOEA/D, IWCA has a shorter running time and can find a better mini-

mum value with a high success rate. The results reflect the effectiveness and stability of

MOIWCA.

(2) The Rastrigin function

RasðxÞ ¼ 20þ x2

1
þ x2

2
� 10ðcos 2px1 þ cos 2px2Þ ð39Þ

where xi2[−5.12,5.12], the minimal point of the function is xi = 0 and the global minimum is

0. The Rastrigin function has many sinusoidal and convex local minima in the solution space,

which makes it more difficult for the optimization algorithm to find the global minimum.

Therefore, this function can verify the convergence ability of IWCA. We expand the original

feasible region 100 times, which is [−512,512], to search. The test results are listed in Table 2.

By analyzing the test results of six convergence efficiency indexes of two tests, it can be con-

cluded that both MOIWCA, IGPSO, NSGA-II, and MOEA/D can successfully achieve the con-

vergence conditions and find the optimal value. However, compared with the other three

algorithms, MOIWCA has a shorter average cycle time, smaller average error, smaller standard

deviation, and a smaller best minimum optimal value. Therefore, MOIWCA has better

Table 1. Comparison of test results of Rosenbrock function using MOIWCA, IGPSO, NSGA-II and MOEA/D.

Average running time (ms) Average iteration generations Mean error Standard deviation Success rate (%) Best minimum value

IGPSO 8,687 2,183 0.429618 0.256765 100.00 0.007728

MOIWCA 7,568 1,750 0.415738 0.235836 100.00 0.004258

NSGA-II 15,366 3,628 0.820524 0.446531 100.00 0.008795

MOEA/D 11,082 2,825 0.646358 0.315873 100.00 0.007936

https://doi.org/10.1371/journal.pone.0278634.t001
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convergence efficiency and optimization ability. In the next section, MOIWCA will be tested

on how excellent it can solve a real-world multi-objective optimization problem.

Case study of a railway construction project

To prove the effectiveness of the proposed multi-objective immune wolf colony algorithm

(MOIWCA) to solve the TCQT problem. This paper takes the Beijing-Shanghai high-speed

railway construction project as an example. The railway construction project has 14 activities,

which include construction preparation, beam making, beam erection, tunnel engineering,

subgrade engineering, yellow River Bridge, ballast less track, track laying, ballast paving, bal-

lasted track, zaobeng pilot section, communication/signal/power/electrification engineering,

station house, joint commissioning. Table 3 illustrates the case study data, including the logical

relationship between activities, duration, cost, and quality.

To apply the MOICWA, the algorithm parameters need to be set. The main algorithm

parameters include population size ND, number of generations T, crossover probability Pc,
mutation probability Pm, expected reproduction index μ and so on. Due to more thorough

sampling of the state space, a larger population size may increase the probability of success in

searching for optimal solution. However, more particles require more calculations, resulting in

longer calculation time. Therefore, a medium-sized population is reasonable. In this study, the

Table 2. Comparison of test results of Rastrigin function using MOIWCA, IGPSO, NSGA-II and MOEA/D.

Average running time (ms) Average iteration generations Mean error Standard deviation Success rate (%) Best minimum value

IGPSO 18,046 3,928 0.367794 0.241865 100.00 0.004157

MOIWCA 9,658 2,486 0.285682 0.224783 100.00 0.003265

NSGA-II 27,863 6,838 0.824563 0.468735 100.00 0.013648

MOEA/D 22,648 5,082 0.693425 0.336749 100.00 0.008543

https://doi.org/10.1371/journal.pone.0278634.t002

Table 3. Construction activities and corresponding parameters of Beijing-Shanghai high speed railway.

Activity number Activity name Logical Option1 Option2 Option3

Ta Cb Qc T C Q T C Q

1 Construction preparation — — — — 6 13 97.64 7 11 93.28

2 Beam making 1SS+2months 20 230 85.63 21 224 98.45 22 220 92.68

3 Beam erection 1FS+3months 19 184 85.39 20 176 98.68 21 172 91.76

4 Tunnel engineering 2 21 192 84.92 22 185 98.11 23 181 91.75

5 Subgrade engineering 2 27 263 86.28 28 257 99.34 29 252 93.26

6 Yellow River Bridge 5SS-1month 26 242 83.87 27 238 98.69 28 235 92.43

7 Ballastless track 2FS-4months 12 130 82.48 13 125 96.58 14 123 91.35

8 Track laying 5FS-1month 5 18 81.74 6 16 95.69 7 13 91.26

9 Ballast paving 8 4 15 82.35 5 13 96.71 6 11 91.67

10 Ballasted track 9 3 12 82.63 4 10 96.95 5 9 90.89

11 Zaobeng pilot section 1 32 313 84.16 33 306 98.82 34 302 93.65

12 Communication/signal/power/electrification engineering 5FS 7 23 83.73 8 20 97.13 9 18 93.11

13 Station house 3SS+5months 24 164 83.52 25 158 95.34 26 155 92.78

14 Joint commissioning 13FS — — — 3 5 99.86 — — —

aProject time (months)
bProject cost (hundred-million-yuan)
cProject quality (%).

https://doi.org/10.1371/journal.pone.0278634.t003
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value of 8 times the number of activities is considered as the population size, so

ND = 8�14 = 112, other parameter values are shown in Table 4.

Because there are 3 options of construction methods for each of the 14 activities, the total

number of the feasible method-combinations is up to 314 = 4782969. Each possible combina-

tion will have a unique impact on the project objectives, such as the shortest time, minimum

cost, and maximum quality of the project. The multi-objective optimization model proposed

in this paper is to search the large search space of possible solutions. By finding the non-domi-

nated solution in successive generations, this method can narrow down the large search space.

Table 5 shows the best solution and project objectives. Solution 13 generated the minimum

duration of the project, solution 12 generated the minimum cost of the project, and solution

16 generated the highest quality of the project. In addition to these three solutions, the remain-

ing solutions represent the trade-off between time, cost, and quality.

The project manager can choose the best solution for a specific project scenario according

to decisions, preferences, and conditions. For example, if the project manager gives priority to

the project with the minimum time, then solution 13 should be selected to achieve the mini-

mum time value of 214 months by increasing additional project cost with low project quality.

If the project manager gives priority to the minimum cost of the project, then solution 12

should be selected to achieve the minimum cost value of 1729 hundred million yuan by

increasing additional project time with high project quality. If the project manager gives prior-

ity to the project with the highest quality, then solution 16 should be selected to achieve the

maximum quality value of 95.84%. In addition, if the project manager wants to strike a mea-

sured balance between these three objectives, then solution 10 provides the compromise solu-

tion, including acceptable project time (219 months), project cost (1764 hundred million

yuan) and project quality (92.99%). Fig 12 shows the typical Pareto optimal fronts obtained

using the MOIWCA for this case study. These three fronts clearly show the relationships

among project duration, cost, and quality. It is not difficult to see that the relationship between

time, cost and quality is non-linear. For example, the project manager can appropriately

extend the time and reduce the cost according to the actual situation of the construction proj-

ect, and the quality can meet the requirements of the construction project; Similarly, the qual-

ity can also meet the requirements of the construction project by appropriately reducing the

time but increasing the cost. However, the quality of the construction project cannot meet the

minimum requirements if the cost is constantly increased by blindly seeking to reduce the

time of the construction project or blindly increasing the time to reduce the cost. This three-

dimensional representation of the tradeoffs may help decision-makers figure out how the dif-

ferent possible plans for using resources will affect the performance of the project.

Table 4. Best MOIWCA parameter for 14 activities in the Beijing-Shanghai high speed railway project.

Parameters Significance Value

ND Population size 112

T Number of generations 300

Pc Crossover probability 0.85

Pm Mutation probability 0.055

μ Expected reproduction index 0.95

stepa Wandering step 0.9

stepb Calling step 0.6

stepc Siege step 0.5

λ Constant of expected reproduction 0.3

https://doi.org/10.1371/journal.pone.0278634.t004
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The non-dominated solutions may also be used to optimize tradeoffs between any two

objectives on a two-dimensional plane. Figs 13–15 show the trade-off between time and cost,

time and quality, and cost and quality, respectively. As illustrated in Fig 13, if the investment

in the construction project is increased, the duration of completing the project will be short-

ened, and vice versa. As shown in the Fig 14, if the duration of the construction project is

increased, the quality of the completed project will increase first and then decrease. The situa-

tion shows that excessive extension of the construction project will lead to a decline in the

quality of the project. One of the possible reasons for the situation is that long hours of work

will reduce the working efficiency of labors. As shown in the Fig 15, if the quality of construc-

tion projects is improved, the investment in construction projects will increase. However,

blindly increasing investment will not make the quality higher and higher but can reduce the

quality. One of the possible reasons for the situation is that the purpose of increasing costs is to

shorten the duration of the construction project, and the reduction of time leads to the decline

of the quality of the construction project.

Performance comparison and analysis

We compared MOIWCA performance against NSGA-II, MOPSO and MODE to assess com-

parative effectiveness. For comparison purposes, all four algorithms used an equal number of

function evaluations, had a population size of 300, and a maximum of 500 generations. In

NSGA-II, the crossover probability is set at 0.5 and the mutation probability is set at 0.1. In

Table 5. Best non-dominated solutions obtained by MOIWCA-TCQT.

Solution Execution method combination Project Performance

Time (months) Cost (hundred million yuan) Quality (%)

1 [2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 1, 1, 2] 218 1768 93.66

2 [3, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 2, 1, 2] 220 1756 92.79

3 [2, 3, 2, 1, 1, 1, 3, 2, 2, 3, 1, 1, 2, 2] 219 1766 91.56

4 [2, 2, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 2, 2] 218 1766 93.36

5 [2, 3, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 2] 218 1765 90.49

6 [3, 2, 1, 3, 3, 3, 2, 3, 1, 1, 1, 1, 2, 2] 221 1751 90.76

7 [2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 3, 1, 1, 2] 217 1768 89.82

8 [3, 1, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 3, 2] 221 1753 91.21

9 [2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 2, 2, 3, 2] 218 1768 92.38

10 [2, 2, 1, 3, 2, 2, 2, 1, 2, 3, 1, 2, 1, 2]d 219 1764 92.99

11 [3, 1, 1, 2, 2, 3, 2, 2, 1, 2, 3, 3, 2, 2] 222 1751 93.41

12 [3, 3, 2, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 2]b 228 1729 93.91

13 [2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 2]a 214 1780 89.64

14 [2, 3, 3, 1, 2, 2, 1, 1, 1, 3, 2, 1, 2, 2] 219 1756 91.45

15 [2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2] 219 1753 91.54

16 [2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2]c 222 1739 95.84

17 [3, 1, 1, 1, 2, 2, 2, 3, 1, 3, 2, 1, 1, 2] 218 1772 91.02

18 [3, 2, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 3, 2] 219 1766 91.77

19 [2, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 2, 2] 216 1782 88.84

20 [3, 2, 3, 1, 1, 1, 2, 2, 3, 1, 1, 3, 1, 2] 219 1768 90.41

aminimum time
bminimum cost
cmaximum quality
dbest compromise.

https://doi.org/10.1371/journal.pone.0278634.t005
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Fig 12. Time–cost–quality tradeoff Pareto front using MOIWCA.

https://doi.org/10.1371/journal.pone.0278634.g012

Fig 13. Time-cost tradeoff analysis.

https://doi.org/10.1371/journal.pone.0278634.g013

PLOS ONE Multiple objective immune wolf colony algorithm for solving time-cost-quality trade-off problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0278634 February 9, 2023 22 / 29

https://doi.org/10.1371/journal.pone.0278634.g012
https://doi.org/10.1371/journal.pone.0278634.g013
https://doi.org/10.1371/journal.pone.0278634


MOPSO, the two learning factors c1, c2 are both chosen at 1.5, and the inertia factor w is set in

the range of 0.2–0.6. The MOIWCA control parameters remained the same, as stated previ-

ously in Table 4. Thirty independent runs are carried out for all experiments.

Multi-objective optimization problem performance measures are more complex than those

of single-objective optimization problems. Three issues are typically considered: (1) conver-

gence to the Pareto optimal set; (2) preservation of diversity in Pareto optimal set solutions; and

(3) the maximal distribution bound of the Pareto optimal set [46]. In the literature, the research-

ers have suggested numerous quality indicators. In this paper, the Spacing metric, and the

Hyper volume (HV) metric are selected to evaluate the performance of different algorithms.

(1) Spacing metric: This indicator assesses the degree of distribution of non-dominated solu-

tions. The mathematical definition of the spacing metric may be given as:

D ¼

Pm
i¼1
dðEi;OÞ þ

P
X2OjdðX;OÞ � �dj

Pm
i¼1
dðEi;OÞ þ ðjOj � mÞ�d

ð40Þ

where O is a set of non-dominated Pareto-front solutions, (E1, E2,. . .,Ek) are k extreme solu-

tions in the set is true Pareto-front,m is the number of objectives and d X;Oð Þ ¼

min
Y2O;Y 6¼X kFðXÞ � FðYÞk is the minimum Euclidean distance between solution X and its neigh-

boring solutions in the obtained non-dominated X set, �d ¼ 1

jOj

P
X2OdðX;OÞ is the mean value

of all d(X,O), |O| is the total solutions inO set. A value of 0 indicates that all members of Pareto

optimal solution are equally spaced. Table 6 shows the comparison of the Spacing metric for

Fig 14. Time-quality tradeoff analysis.

https://doi.org/10.1371/journal.pone.0278634.g014
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different algorithms. Fig 16 is the visualization of the results. The smaller the value of the Spac-

ing metric, the better distribution and diversity of non-dominated solutions. From the com-

parison results of the Spacing metric for different algorithms, the MOIWCA obtained the

minimum Spacing metric. This shows that in dealing with multi-objective optimization prob-

lems, The non-dominated solutions obtained by MOIWCA have better distribution and diver-

sity than other algorithms.

(2) Hyper-volume (HV): This indicator calculates the volume (in the objective space) covered

by members of a non-dominated set of solutions O to a problem that works to minimize all

objectives. A hypercube vi is constructed for each solution Xi2O, with reference pointW
and the solution Xi as the diagonal corners of the hypercube. The reference point may be

found simply by constructing a vector of the worst objective function values. Thereafter, a

union of all hypercubes is found, with the HV of this union calculated as:

HV ¼
SjOj
i¼1
vi ð41Þ

Algorithms with larger HV values are desirable. The HV value of a set of solutions is

Fig 15. Cost-quality tradeoff analysis.

https://doi.org/10.1371/journal.pone.0278634.g015

Table 6. Comparison of Spacing metric for different algorithm.

MOIWCA MODE MOPSO NSGA-II

Best 0.4336 0.4453 0.4627 0.4852

Worst 0.6132 0.7025 0.9416 0.9653

Average 0.5235 0.5431 0.7123 0.7356

Standard Deviation 0.0397 0.0586 0.1542 0.1653

https://doi.org/10.1371/journal.pone.0278634.t006
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normalized using a reference set of Pareto optimal solutions with the same reference point.

After normalization, the HV values are confined to range [0,1]. Table 7 lists the results for each

of the four compared algorithms in terms of HV. From Table 7, we can see that the proposed

model gets the highest HV values. This means that the MOIWCA has better convergence and

diversity performance than the other algorithms. Fig 17 is the visualization of the results.

Conclusions

In this paper, the time-cost-quality trade-off problem is studied, and a hybrid algorithm

MOIWCA is developed to solve the TCQT problem for construction project. The paper makes

three important contributions: first, based on the traditional time-cost model, we introduce

the bonus-penalty mechanism, and propose a new nonlinear time-cost model. Meanwhile, we

develop a new QPI model by analyzing the qualitative and quantitative relationship between

time and quality. Second, we propose a multi-objective immune wolf colony algorithm

(MOIWCA)to solve the TCOQ problem. The design of algorithm is divided into two parts: we

propose IWCA that combines the wolf colony algorithm and immune algorithm, and

improves the crossover operation and mutation operation. In addition, we integrate IWCA

with multi-objective optimization to enable it to deal with time-cost-quality trade-off problem.

Thirdly, we take the Beijing-Shanghai high-speed railway construction project as a case to eval-

uate the performance of the MOIWCA. The results show that the MOIWCA is more effective

and efficient than widely used multi-objective algorithms (MOPSO, NSGA-II, MODE). The

Fig 16. Comparison of Spacing metric for different algorithm.

https://doi.org/10.1371/journal.pone.0278634.g016

Table 7. Comparison of HV metric for different algorithm.

MOIWCA MODE MOPSO NSGA-II

Best 0.9486 0.8965 0.9284 0.8652

Worst 0.7164 0.6932 0.4683 0.2473

Average 0.8207 0.7648 0.7136 0.5241

Standard Deviation 0.0519 0.0546 0.1483 0.2062

https://doi.org/10.1371/journal.pone.0278634.t007
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SP and HV values comparisons indicated that the proposed MOIWCA performs excellent in

terms of distribution, convergence and uniformity.

Results show that the proposed method MOIWCA generates a better Pareto front than

widely used approaches. With the obtained non-dominated solutions, the project managers

can easily trade-off the three important objectives, including project time, cost, and quality.

The proposed multi-objective immune wolf colony algorithm is robust and efficient. With-

out limitation in the setting of the number of decision variables and objectives, the MOIW-

CA-TCQCT model can easily apply to other multi-objective optimization problems in the

field of construction projects by minor modification, such as time, cost, and risk tradeoff prob-

lems in construction management and performance, cost, and reliability in engineering design

work.

Future research work will be carried out in two directions: target model and algorithm

improvement. Considering the complexity of the construction project, the time-cost-quality

trade-off problem cannot meet the decision-making requirements of the project manager.

Problems of risk and ecology also have an important impact on construction projects. Based

on the existing time-cost quality model, two objective functions of minimizing risk and maxi-

mizing ecology are added to better describe the construction project problem. But there aren’t

many ways to test the trade-off problem of time-cost-quality-risk-ecology or figure out how to

solve it. Therefore, it is necessary to propose a new solution to deal with the problem of five

objective functions. MOIWCA has excellent performance in avoiding premature convergence

and improving the efficiency of initial convergence. It can further upgrade the algorithm to

make it an entirely parameter-free algorithm to better solve the complex multi-objective trade-

off problem.

Supporting information

S1 File. Design diagram of Beijing Shanghai high speed railway construction project.

(PDF)

Fig 17. Comparison of HV metric for different algorithm.

https://doi.org/10.1371/journal.pone.0278634.g017
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