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Supplementary Results
Monthly patterns of minimum and maximum temperature
Minimum temperatures were highest in the center of Athens-Clarke County where there was high cover of impervious surfaces and lowest in the outlying rural areas (Fig A in S2 Text). In contrast, maximum temperatures were highest in areas of low tree cover, which included developed areas in urbanized parts of the county as well as fields and other clearings in the rural portions of the county (Fig B in S2 Text). Maximum temperatures were highest in June-July, decreased slightly in July-August, increased in August-September, and then decreased again in September-October. Minimum temperatures were highest in June-July and decreased continuously throughout the season.  
Empirical model of Ae. albopictus abundance
The generalized additive model of Ae. albopictus abundance captured a positive monotonic relationship with minimum temperature and a unimodal relationship with maximum temperature that peaked at 25-30 °C (Fig. A in S2 Text). The model with both minimum and maximum temperatures explained 46% percent of the deviance in mosquito abundance. The AIC of this model (1012.0) was lower than simpler models that included only minimum temperature (1028.4), only maximum temperature (1065.0), and only mean temperature (1037.9), as well as a more complex model that incorporated interactions between minimum and maximum temperature via a tensor product (1015.8). 
The mosquito abundance model was cross-validated by sequentially excluding each site from the model fitting data, fitting the model with data from the remaining site, and generating model predictions using temperature data from the excluded site. This procedure was repeated nine times (once for each site) to generate a cross-validation dataset in which all observations were compared with independent predictions. The cross-validated predictions had a mean error of 0.14, indicating that there was only a very small bias in the model toward underprediction. The mean absolute error was 4.7, but the median absolute error was only 2.1, indicating that a relatively small number of large errors had a strong influence on the mean absolute error value. These large errors likely represent situations where the absence or abundance of other factors not accounted for in the model, particularly the availability of breeding habitat and hosts for blood feeding, resulted in much higher or lower abundances than could be predicted in the model based only on temperature. 
Based on the model evaluation, we concluded that the generalized additive model captured valid and biologically interpretable associations between microclimate temperatures and mosquito abundance. However, model predictions should be interpreted with the caveat that they represent only the thermal potential for mosquito abundance, and that there is additional, unexplained spatial variation to due to a variety of other factors not included in the model.
Comparing Empirical and Theoretical Mechanistic Mosquito Abundance Predictions
Surface plots of monthly M(T) predictions as a function of monthly mean minimum and maximum temperatures illustrated the different temperature sensitivities of the empirical model based on microclimate and mosquito data collected in the field and the mechanistic model based on temperature-trait relationships from laboratory experiments. The empirical model predicted the highest M(Tmin, Tmax) at warm minimum (20-22 °C) and cool maximum (29-31 °C) temperatures (Fig C in S2 Text). The mechanistic model predicted the highest M(T) at cooler minimum (19.5-20.5 °C) and maximum (< 30 °C) temperatures (Fig D in S2 Text). The abundances predicted by the mechanistic model were also much higher than those predicted by the empirical model. These higher values are understandable because the mechanistic model uses a simple equilibrium population equation based on parameters derived under idealized laboratory conditions and does not consider ecological interactions such as competition, predation, and habitat availability that have large influences on mosquito population growth and carrying capacity.
The differences were less pronounced for the VC(T) models, which shared the same equations and parameters for the disease transmission components of the model. However, predictions of VC(T) based on empirical estimates of M(Tmin, Tmax) were still highest at warm minimum (> 21.0 °C) and relatively cool maximum (30-31.5 °C) temperatures (Fig E in S2 Text). In contrast, the VC(T) predictions based on theoretical M(T) estimates peaked at slightly cooler minimum (20.5-21.5 °C) and maximum (29.5-30.5 °C) temperatures (Fig F in S2 Text). Because of the differences in the magnitude of the mosquito abundance predictions, the predictions of VC(T) based on the mechanistic M(T) estimates were much higher than those based on the empirical M(Tmin, Tmax) estimates.
The empirical M(Tmin, Tmax) model predicted highest Ae. albopictus abundance at locations with high minimum (nighttime) temperatures and intermediate maximum (daytime) temperatures. In Athens-Clarke County, the warmest minimum temperatures were concentrated in the urbanized core where there was high cover of impervious surfaces (Fig A in S2 Text), and the coolest maximum temperatures occurred in patches of high tree cover in the urban core as well as the surrounding rural areas (Fig B in S2 Text). As a result, the highest mosquito abundances predicted by the empirical M(Tmin, Tmax) model occurred in patches of trees embedded within the more developed central portion of the county (Fig G in S2 Text). As a result, high mosquito abundances were predicted in the urbanized portions of Athens-Clarke County, which had high impervious surface cover and high minimum temperatures (Fig B in S2 Text). The locations with the highest mosquito abundance were found in patches of high tree cover where daytime shading reduced maximum temperature and kept it relatively close to the optimum level. OverallPredicted Ae. albopictus abundance increased from June-July to a peak in July-August and then decreased into late summer and early fall. In contrast, t
In contrast to the empirical model, the theoretical M(T) model based on temperature-trait relationships derived from laboratory experiments produced very different predictions. The mosquito abundance predicted by the theoretical model was highest and had different spatial and temporal patterns (Fig. C in S2 Text). he mechanistic M(T) model predicted higher mosquito abundances in outlying rural areas than in the urban core, and in the fall than in the summer (Fig. H in S2 Text). These differences in mosquito abundance predictions also led to differences in predictions of VC(T) that incorporated the empirical estimates of mosquito abundance (Fig. I in S2 Text) versus mechanistic estimates of mosquito abundance (Fig. J in S2 Text).The optimum temperatures for mosquito development were lower in the theoretical model than in the empirical model, and as a result the theoretical model predicted higher mosquito abundances in outlying rural areas than in the urban core, and in the fall than in the summer. These differences in mosquito abundance predictions also led to substantial differences in predictions of vectorial capacity that incorporated the empirical estimates of mosquito abundance (Fig. D in S2 Text) versus theoretical estimates of mosquito abundance (Fig. E in S2 Text). 
The considerable differences between the predictions from the two models likely reflect the distinction between the broader fundamental climate niche of Ae. albopictus, which is captured by the theoretical model, and the realized niche, which is captured by the empirical model. In particular, other unmeasured factors related to habitat quality, host availability, competition, and genetic adaptation are reflected in the local measurements of Ae. albopictus, but are not captured by the theoretical model. As a result, we decided to use the locally calibrated empirical estimates of mosquito abundance in the vectorial capacity model for Athens-Clarke County. 
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Figure A: Mean minimum microclimate temperatures summarized during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were produced using R version 3.6.1. The maps were produced using R version 3.6.1.
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Figure B: Mean maximum microclimate temperatures summarized during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were produced using R version 3.6.1. The maps were produced using R version 3.6.1.
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Figure A: Predicted counts of Ae. albopictus abundance (colored surface) as a smoothed function of minimum daily temperature and maximum daily temperature summarized over the preceding week. Black dots represent observations of mosquito density with the size of the dot proportional to the number of observed mosquitoes.[image: ]
Figure C: Contour plot of monthly mosquito abundance predicted by the empirical M(Tmin, Tmax) model in relation to mean minimum and maximum microclimate temperatures. The response surface was generated using locally estimated scatterplot smoothing (LOESS) regression. Each blue contour line represents a change in daily mosquito abundance of 0.5.
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Figure D: Contour plot of monthly mosquito abundance predicted by the mechanistic M(T) model in relation to mean minimum and maximum microclimate temperatures. The response surface was generated using locally estimated scatterplot smoothing (LOESS) regression. Each blue contour line represents a change in daily mosquito abundance of 1000.
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Figure E: Contour plot of monthly vectorial capacity predictions based on empirical M(Tmin, Tmax) estimates in relation to mean minimum and maximum microclimate temperatures. The response surface was generated using locally estimated scatterplot smoothing (LOESS) regression. Each blue contour line represents a change in vectorial capacity of 1.
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Figure F: Contour plot of monthly vectorial capacity predictions based on mechanistic M(T) estimates in relation to mean minimum and maximum microclimate temperatures. The response surface was generated using locally estimated scatterplot smoothing (LOESS) regression. Each blue contour line represents a change in vectorial capacity of 2000.
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Figure BG: Predicted densities of Ae. albopictus mosquitoes during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were generated by combining the empirical M(Tmin, Tmax) model illustrated in Fig. A C with daily microclimate mapsdata. The maps were produced using R version 3.6.1.
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Figure CH: Predicted densities of Ae. albopictus mosquitoes during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were generated by combining the theoretical mechanistic steady-state populationM(T) model with daily microclimate maps. The maps were produced using R version 3.6.1.
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Figure DI: Predicted vectorial capacity during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were generated by combining the empirical model of mosquito density abundance with the temperature-trait model of vectorial capacity. The maps were produced using R version 3.6.1.
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Figure EJ: Predicted vectorial capacity during four monthly periods in 2018. A) June-July. B) July-August. C) August-September. D) September-October. The maps were generated by combining the theoretical mechanistic model of mosquito density with the temperature-trait model of vectorial capacity. The maps were produced using R version 3.6.1.
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