S4 Text. Effects of different functional forms of the exposure and prevalence on the rate of spillovers.

Table S1. Effects of different functional forms of the exposure $\eta(N_R)$ and prevalence $Pr_R(N_R)$ on the mean and variance μ_{λ} and σ_{λ}^2 of the rate of spillovers. *C* and *D* are constants.

	$\eta(N_R), Pr_R(N_R), \lambda$	$\mu_{\lambda}, \sigma_{\lambda}$	Notes
Scenario 1	$\eta(N_R) \propto N_R$	$\mu_{\lambda} = C \mu_{N_H} \mu_{N_R} \mu_{\chi_R}$	Exposure proportional to host abundance. Infection prevalence does not depend on host abundance. <i>E.g.</i> a scenario described by a frequency dependent SIR model with fixed population at endemic equilibrium [1].
	$Pr(N_R)$ not dependent on N_R	$\sigma_{\lambda}^{2} \approx \left(CN_{R}\chi_{R}\right)^{2} \sigma_{N_{H}}^{2} + \left(CN_{H}\chi_{R}\right)^{2} \sigma_{N_{R}}^{2} + \left(CN_{H}N_{R}\right)^{2} \sigma_{\chi_{R}}^{2}$	
	$\lambda = C N_H N_R \chi_R$		
Scenario 2	$\eta(N_R) = \eta_\infty$	$\mu_{\lambda} = C \mu_{N_H} \eta_{\infty} \mu_{\chi_R}$	Exposure does not depend on host abundance. Infection prevalence does not depend on host abundance. <i>E.g.</i> a scenario where the probability of contacts saturates for a large $N_{R\infty}$ asymptotically approaching the value η_{∞} .
	$Pr(N_R)$ not dependent on N_R	$\sigma_{\lambda}^{2} \approx \left(C\eta_{\infty}\chi_{R}\right)^{2}\sigma_{N_{H}}^{2} + \left(CN_{H}\eta_{\infty}\right)^{2}\sigma_{\chi_{R}}^{2}$	
	$\lambda = C N_H \eta_\infty \chi_R$		
Scenario 3	$\eta(N_R) \propto N_R$	$\mu_{\lambda} = C \mu_{N_H} \mu_{\chi_R} \left[1 - D \mu_{N_R} \right]$	Exposure proportional to host abundance as in scenario 1. Infection prevalence also depends on host abundance. This form of prevalence arises, <i>e.g.</i> , from a density dependent SI model with fixed birth rate at endemic equilibrium.
	$Pr(N_R) = 1 - \frac{D}{N_R}$	$\sigma_{\lambda}^{2} \approx \left[C\left(N_{R}-D\right)\chi_{R}\right]^{2}\sigma_{N_{H}}^{2} + \left[CN_{H}\chi_{R}\right]^{2}\sigma_{N_{R}}^{2} + \left[CN_{H}\left(N_{R}-D\right)\right]^{2}\sigma_{\chi_{R}}^{2}$	
	$\lambda = CN_H \left(N_R - D \right) \chi_R$		
Scenario 4	$\eta(N_R) = \eta_\infty$	$\mu_{\lambda} = \eta_{\infty} \mu_{N_H} \mu_{\chi_R} \left[1 - D \mu_{[1/N_R]} \right]$	Exposure does not depend on host
	$Pr(N_R) = 1 - \frac{D}{N_R}$	$\sigma_{\lambda}^{2} \approx \left[\eta_{\infty} \left(1 - \frac{D}{N_{R}}\right) \chi_{R}\right]^{2} \sigma_{N_{H}}^{2} + \left[\eta_{\infty} N_{H} \frac{D}{N_{2}^{2}} \chi_{R}\right]^{2} \sigma_{N_{R}}^{2} +$	abundance as in scenario 2. Infection prevalence depends on host abundance as in scenario 3.
	$\lambda = \eta_{\infty} N_H \left(1 - \frac{D}{N_R} \right) \chi_R$	$ \left[\eta_{\infty} N_{H} \frac{N_{R}^{2} \chi_{R}}{\left(1 - \frac{D}{N_{R}}\right)} \right]^{2} \sigma_{\chi_{R}}^{2} $	

References

1. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University Press; 2008.