
Derivation of the stability criteria for the connected schistosomiasis

model

1 The local model

Let us start with the analysis of the parasite invasion condition in MacDonald’s (1965) spatially implicit

model. We recall that the model can be written as

dW

dt
= aθC − γW

dY

dt
= bM(1 − Y ) − νY

dC

dt
=

ΠC

V
NY − µCC

dM

dt
=

ΠM

V
θ′H

W

2
− µMM .

As the model is a positive system (namely its state variables can never become negative if the system

is initialized at generic non-negative conditions), the bifurcation from stable to unstable of the disease-

free equilibrium (DFE) X0 = [0, 0, 0, 0]T , i.e. a state of the system characterized by the absence of the

parasite, can only occur via an exchange of stability. This implies that the DFE switches from being a5

stable equilibrium to being a saddle (i.e. an equilibrium with one unstable manifold) through a so-called

transcritical bifurcation [? ]. The condition for the bifurcation to occur (hence for parasite invasion) is

thus determined by the stability properties of the Jacobian of the system evaluated at the DFE, i.e.

J0 =



−γ 0 aθ 0

0 −ν 0 b

0 ΠC
V N −µC 0

ΠM
V θ′H2 0 0 −µ


.
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Specifically, the DFE is asymptotically stable (thus precluding parasite invasion) if and only if the dom-

inant eigenvalue of J0 is strictly negative. In this case the determinant of J0 is positive, because the

Jacobian is a matrix of even order. The change of stability for X0 is thus obviously associated to the

condition det(J0) = 0, i.e.

det(J0) = −γ det




−ν 0 b

ΠC
V N −µC 0

0 0 −µM


− aθ det




0 −ν b

0 ΠC
V N 0

ΠM
V θ′H2 0 −µM


 =

= −γνµCµM +
abθθ′ΠcΠMHN

2V 2
= 0 .

The previous condition can be equivalently written in terms of the basic reproduction number R0 as10

R0 =
abθθ′ΠCΠMHN

2γνµCµMV 2
= 1 ,

and the parasite can invade a disease-free community if and only if R0 > 1.

2 The spatially explicit network model

A spatially explicit version of Macdonald’s model, accounting for human mobility and hydrological trans-

port of the intermediate larval stages of the parasite (and neglecting snail mobility) proposed by [? ] is

formulated as follows:

dWi

dt
= a

(1 −mi)θiCi +mi

n∑
j=1

QijθjCj

− γWi

dYi
dt

= bMi(1 − Yi) − νYi

dCi

dt
=

ΠC

Vi
NiYi − µCCi − lCi Ci +

n∑
j=1

lCj PjiS
C
ji

Vj
Vi
Cj

dMi

dt
=

ΠM

V
θ′i

(1 −mi)Hi
Wi

2
+

n∑
j=1

mjHj
Wj

2
Qji

− µMMi − lMi Mi +
n∑

j=1

lMj PjiS
M
ji

Vj
Vi
Mj .

Analogously to the spatially implicit case, the condition for parasite invasion in the network model is

determined by the stability properties of the Jacobian matrix of the system linearised at the disease-free15
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equilibrium. Switching to matrix notation, we have

J∗0 =

 A B

C D

 ,

where

A =

 −γI 0

0 −νI

 B =

 a(I−m + mQ)θ 0

0 bI


20

C =

 0 ΠCV
−1N

ΠM
2 V−1θ′(I−m + QTm)H 0

 D =

 −µCI + TC 0

0 −µMI + TM

 .

In the previous expressions I is the identity matrix; m, θ, V, N, θ′ and H are diagonal matrices whose

non-zero elements are made up by the parameters mi, θi, Vi, Ni, θ
′
i and Hi, respectively; Q = [Qij ] is

the connectivity matrix for human mobility; TC =
(
V−1PC

TV − I
)
lC and TM =

(
V−1PM

TV − I
)
lM,

where PC = [PijS
C
ij ] = P ◦ SC and PM = [PijS

M
ij ] = P ◦ SM are transport matrices accounting for25

hydrological connectivity and larval survival during transport, and lC and lM are diagonal matrices

whose non-zero elements are the local values of lCi and lMi , respectively.

Let us preliminary note that the off-diagonal entries of J∗0 are all nonnegative and at least one diagonal

entry is negative, thus J∗0 is a proper Metzler matrix [? ] and its eigenvalue with maximal real part

(dominant eigenvalue) is real. If the union of graphs associated with matrices P and Q is strongly30

connected, then the graph associated with J∗0 is also strongly connected. Therefore we can apply Perron-

Frobenius theorem for irreducible matrices [? ] and state that the dominant eigenvalue of J∗0 is the

maximum simple real root of the characteristic polynomial. The condition for the transcritical bifurcation

of the DFE is that the dominant eigenvalue crosses the imaginary axis at zero, namely that the determinant

of J∗0 is zero [? ]. When the DFE is stable (sufficient condition to prevent parasite invasion), all the35

eigenvalues of J∗0 have negative real parts and det(J∗0) is positive because J∗0 is a matrix of order 4n. The

DFE becomes unstable (necessary condition for parasite invasion) when det(J∗0) switches from positive

to negative, or equivalently when the dominant eigenvalue of J∗0 switches from negative to positive.

Noting the block structure of J∗0 and that A is a piece-wise scalar matrix (thus AB = BA), the
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determinant of J∗0 can be computed as [? ]

det(J∗0) = det(DA− CB) =

= det


 γ(µCI−TC) −bΠCV

−1N

−aΠM
2 V−1θ′(I−m + QTm)H(I−m + mQ)θ ν(µMI−TM)


 = det(J∗∗0 ) .

Writing J∗∗0 as

J∗∗0 =

 U W

X Z

40

it is possible to show [see again ? ] that

det(J∗∗0 ) = det(UZ −WZ−1XZ) ,

obviously provided that matrix Z is invertible. With straightforward algebraic manipulations the right-

hand side of the previous equation can be written in a form that is more amenable to further analysis,

i.e.45

det(UZ −WZ−1XZ) = det(W) det(ZW−1U −X ) = det(W) det(J∗∗∗0 ) ,

which additionally requires matrix W to be invertible. If the conditions on matrices Z and W are

verified, the bifurcation condition det(J∗0) = 0 corresponds to det(J∗∗∗0 ) = 0. The determinant of J∗∗∗0

can be written as

det(J∗∗∗0 ) =

= det

(
ν(µMI−TM)

(
− 1

bΠC
VN−1

)
γ(µCI−TC)+

+
aΠM

2
V−1θ′(I−m + QTm)H(I−m + mQ)θ

)
=

= det

(
aΠM

2
V−1θ′(I−m + QTm)H(I−m + mQ)θ − γν

bΠC
(µMI−TM)VN−1(µCI−TC)

)
=

= det

(
abΠCΠM

2γνµCµM
NV−1θ′[(I−m)H(I−m) + (I−m)HmQ + QTmH(I−m) + QTmHmQ]θV−1+

− 1

µCµM
N(µMI−TM)VN−1(µCI−TC)V−1

)(
bΠC

γνµCµM

)n

det
(
N−1

)
det(V) =

= det(J∗∗∗∗0 )

(
γνµCµM
bΠC

)n

det
(
N−1

)
det(V) .
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The condition det(J∗∗∗0 ) = 0 is thus clearly equivalent to det(J∗∗∗∗0 ) = 0, where

det(J∗∗∗∗0 ) =

= det

(
abΠCΠM

2γνµCµM
N
(
V−1

)2
θ′(I−m)2Hθ+

+
abΠCΠM

2γνµCµM
NV−1θ′

[
(I−m)mHQ + QTHm(I−m) + QTm2HQ

]
θV−1+

− N

(
I− 1

µM
TM

)
VN−1

(
I− 1

µC
TC

)
V−1

)
=

= det

(
abΠCΠM

2γνµCµM
N
(
V−1

)2
θ′(I−m)2Hθ+

+
abΠCΠM

2γνµCµM
NV−1θ′

[
(I−m)mHQ + QTHm(I−m) + QTm2HQ

]
θV−1+

− I +
1

µC
VTCV

−1 +
1

µM
NTMN−1 − 1

µCµM
NTMVN−1TCV

−1

)
.

If we introduce a diagonal matrix R0, whose non-zero elements are the local values R0i of the basic

reproduction number, i.e.

R0i =
abθiθ

′
iΠCΠMHiNi

2γνµCµMV 2
i

,

a matrix50

RM
0 (m,Q) =

abΠCΠM

2γνµCµM
NV−1θ′

[
(I−m)mHQ + QTHm(I−m) + QTm2HQ

]
θV−1

accounting for the effects of human mobility on disease transmission, and another matrix

T(µC ,TC, µM ,TM) =
1

µC
VTCV

−1 +
1

µM
NTMN−1 − 1

µCµM
NTMVN−1TCV

−1

describing the effects of pathogen hydrological transport, it is possible to define a generalized reproduction

matrix55

G0 = (I−m)2R0 + RM
0 (m,Q) + T(µC ,TC, µM ,TM) .

The original bifurcation condition det(J∗0) = 0 can thus be written as

det (I−G0) = 0 .
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Let λi (i = 1..n) be the eigenvalues of G0 and g0 = maxi(λi). Then

det (I−G0) =

n∏
i=1

(1 − λi) .60

Therefore, the determinant of J∗0 switches from positive to negative when g0, the dominant eigenvalue

of G0, switches from being smaller to being larger than one. It follows that the condition for the instability

of the DFE (hence for parasite invasion) is g0 > 1.

We note that in the absence of hydrological dispersal (lCi = lMi = 0 for all i) and human mobility

(mi = 0 for all i), i.e. in the case of completely isolated communities, the condition for parasite invasion65

becomes

det (I−R0) = 0 ,

which is obviously satisfied when the largest of the R0i values is equal to one – which corresponds to the

classical criterion obtained in a spatially implicit context. However, the introduction of human mobility

and hydrological connections makes the condition g0 > 1 for parasite invasion absolutely nontrivial.70

This criterion synthesizes the intertwined effects of local epidemiological processes, human mobility and

hydrological transport on parasite invasion. As a matter of fact, G0 is the sum of three matrices: one

depending on local dynamics only, the other two (non-linearly) on spatial coupling mechanisms. The

dominant eigenvalue of G0 is not simply deducible from the eigenvalues of these three addenda. Therefore,

human mobility and hydrological networks interplay in a complex manner to determine parasite invasion75

and spread.

3 Spatial patterns of disease spread

Because of the assumption of strong connectivity made in the previous section, the condition under which

the parasite can invade an initially disease-free community corresponds to that for the spatial spread of the

disease. The spatial localization of the sites that are colonized by the parasite in the early phases following80

its introduction in a metacommunity is determined by the dominant eigenvector of the Jacobian matrix J∗0.

In fact, if the DFE is unstable, the dominant eigenvector of matrix J∗0 pinpoints the directions in the

state space along which the system trajectories, after a transient period related to initial conditions, will

diverge from the equilibrium. The dominant eigenvector is characterized by strictly positive components

[according to Perron-Frobenius theorem applied to Metzler matrices; see again ? ], each corresponding –85
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in this case – to the parasite burden in human hosts, the prevalence of infected snails, and the abundances

of cercariae and miracidia in different nodes of the network.

The dominant eigenvector of J∗0 can be computed by solving

J∗0



W

Y

C

M


= λ′



W

Y

C

M


,

where λ′ is the dominant eigenvalue of J∗0, and W, Y, C and M are the components of the dominant

eigenvector corresponding, respectively, to parasite burden, prevalence of infected snails, and abundances

of cercariae and miracidia. Recalling that close to the transcritical bifurcation through which the DFE

loses stability the dominant eigenvalue of J∗0 is equal to zero, the previous matrix equation becomes

− γW + a(I−m + mQ)θC = 0

− νY + bM = 0

ΠCV
−1NY − (µCI−TC)C = 0

ΠM

2
V−1θ′(I−m + QTm)HW − (µMI−TM)M = 0 .

From the first two equations we get90

W =
a

γ
(I−m + mQ)θC

and

Y =
b

ν
M .

If we plug these two expressions into the third and fourth equations of the linear system above we find

bΠC

ν
V−1NM− (µCI−TC)C = 095

and

aΠM

2γ
V−1θ′(I−m + QTm)H(I−m + mQ)θC− (µMI−TM)M = 0 .
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Solving for M the first of these two equations

M =
ν

bΠC
VN−1(µCI−TC)C

and substituting into the second we get100

[
aΠM

2
V−1θ′(I−m + QTm)H(I−m + mQ)θ − γν

bΠC
(µMI−TM)VN−1(µCI−TC)

]
C = 0 ,

which corresponds (see previous section) to

J∗∗∗0 C = 0 .

Because we already know that

J∗∗∗0 =
γνµCµM
bΠC

N−1J∗∗∗∗0 V =
γνµCµM
bΠC

N−1(G0 − I)V ,105

combining the two previous expressions we have

(G0 − I)C = 0 .

If we remember that close to the transcritical bifurcation of the DFE the dominant eigenvalue g0 of

matrix G0 is equal to one we can write

G0C = C = g0C .110

We can thus conclude that close to the bifurcation through which the DFE loses stability the dominant

eigenvector g0 of matrix G0 corresponds to the cercarial components of the dominant eigenvector of J∗0,
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while the other components of J∗0 can be found as linear combinations of g0, i.e.

W =
a

γ
(I−m + mQ)θg0

Y =
1

ΠC
VN−1(µCI−TC)g0

C = g0

M =
ν

bΠC
VN−1(µCI−TC)g0 .

Note that these simple relationships between the dominant eigenvectors of J∗0 and G0 hold only close

to the transcritical bifurcation of the DFE. In general, for parameter combinations for which g0 � 1, the

study of the geography of disease spread requires the computation of the eigenvalues and eigenvectors of

matrix J∗0.
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