Table S12. Associative studies on *E. multilocularis* infection in intermediate hosts

Reference	Study Information	Statistical Method	Significant Factor
Leiby et al., 1974 [115]	Parasitological examination of 5,638 Peromyscus maniculatus in North Dakota (EEUU)	Analysis of variance	Age (p =0.0001), habitat (p =0.0002), season (p =0.002), age*season (p =0.003) and habitat*season (p =0.04)
Gottstein et al., 2001 [114]	Parasitological examination of 513 rodents in Fribourg (Switzerland)	Univariable analysis	Yearly fluctuation of prevalence (<i>p</i> <0.005) for <i>Arvicola terrestris</i>
Henttonen et al., 2001 [119]	Parasitological examination of 224 <i>Microtus</i> <i>rossiaemeridionalis</i> in Svalbard (Norway)	Multivariable logistic regression	Overwintered adults (<i>p</i> <0.001) and prevalence variation related with body weight and length (<i>p</i> <0.001)
Stieger et al., 2002 [102]	Parasitological examination of 1,155 rodents in Zurich (Switzerland)	Univariable analysis	Adults (<i>p</i> <0.001) showed higher prevalence and prevalence variation by trapping site (<i>p</i> =0.019) for <i>A. terrestris</i>
Hanosset et al., 2008 [93]	Parasitological examination of 1,249 rodents in Wallonia (Belgium)	Univariable analysis	Adult muskrats Ondatra zibethicus (p=6.56x10 ⁻⁶) presented higher prevalence
Reperant et al., 2009 [117]	Parasitological examination of 658 rodents in Geneva (Switzerland)	Multivariable logistic regression	Body weight and geographical area (p<0.0001) for Arvicola terrestris
Stien et al., 2010 [118]	Parasitological examination of 387 sibling voles in Svalbard (Norway)	Multivariable logistic regression	Sample site and vole length (p <0.0001), year of sampling, sample site * year and sample site vole length (p =0.02)
Burlet et al., 2011 [116]	Parasitological examination of 856 A. terrestris in Zurich (Switzerland)	Multivariable logistic regression	Age (>7 months), period, area and mean day temperature included in the best- fitting model with the lowest AICc (-244.04)

Measures of association reported when available (*) Interaction term.

Abbreviations: OR, odds ratio; CI, confidence interval; AICc, Akaike's information criterion corrected for small samples sizes.