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Construction of the coexpression networks 

Expression values in each microarray experiment, expressed as log ratios of the signal from 

experimental cDNA to the signal from reference cDNA, were normalized to have a mean of 

0.0 and a standard deviation of 1.0. This was done by calculating the average (μ) and standard 

deviation (σ) for each experiment, and transforming each value by subtracting the average 

and dividing by the standard deviation: x=(x′- μ)/σ, where x′ is the original value and x is the 

transformed (normalized) value. Given two genes α and β from S (S is the set of all genes 

with associated expression profiles) and their normalized expression values across different 

experiments of the experiment set E, the coexpression value of α and β can be calculated as 

the Pearson correlation coefficient of XE
α and XE

β, where XE
α represents the measurements for 

α in the set E, and XE
β represents the measurements for β in the set E, as shown in the figure 

below: 
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The coexpression network GE
θ is the set of all gene pairs whose Pearson correlation 

coefficients, according to the experiment set E, are at least θ: 

GE
θ={(i,j)|ρ(XE

i,XE
j)≥θ}, 

where ρ is the Pearson correlation coefficient function. The set of nodes in the coexpression 

network GE
θ is denoted as NE

θ: 

NE
θ={i|∃j:ρ(XE

i,XE
j)≥θ} 

|NE
θ| therefore represents the number of nodes in the network GE

θ. The coverage of the 

network is defined as: 

fE
θ=|NE

θ|/|S| 

Thus, fE
θ indicates what fraction of all genes the network GE

θ represents. A higher coverage 

implies that the network can potentially be used for prediction of functions for a larger 

fraction of T. brucei genes with available expression profiles. 

The precision of a network in finding functional interactions is calculated by comparing the 

network to gold standard positive and negative sets. The gold standard positive set I consists 

of all gene pairs that share at least one function according to KEGG pathway database: 

I={(i,j)|Fi∩Fj≠Ø}, 

where Fi and Fj represent the set of functions for genes i and j according to KEGG. The gold 

standard negative set I′ includes all gene pairs that do not share any function, given that each 

gene has at least one annotation in KEGG pathway database: 

I′={(i,j)|Fi∩Fj=Ø,Fi≠Ø,Fj≠Ø} 

The term “tbr01100” (Metabolic pathways) was ignored in all analyses. 

 The limitations and incompleteness of both I and I′ need to be noted: not all T. brucei genes 

with known functions are represented in KEGG; therefore, I is far from complete. 

Furthermore, the annotations for genes that are present in KEGG may not be complete, 
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meaning that two genes may actually share a pathway, but this information is missing from 

KEGG; therefore, I′ may contain some gene pairs that should actually belong to I but are 

mistakenly assumed as negatives. 

The positive predictive value (PPV, also referred to as precision) of the network GE
θ is 

defined as: 

pE
θ=|GE

θ∩I|/(|GE
θ∩I|+|GE

θ∩I′|) 

Therefore, pE
θ estimates the fraction of gene pairs in GE

θ that are functionally related. We 

used the area under the curve (AUC) for pE
θ(θ) vs. fE

θ(θ) as an estimate of how well the 

experiment set E can reflect the functional linkages among genes. This AUC is here referred 

to as AE. 

In this study, we used different experiment sets: EK which is the set of four experiments from 

ref. [1], EQ which is the set of eight experiments from ref. [2], EJ which is the set of five 

experiments from ref. [3], EKQJ= EK+EQ+EJ , and Ë⊆EKQJ. Ë is chosen so as to result in the 

maximum AE
: 

AË≥AE ∀E⊆EKQJ 

Since all subsets of EKQJ could not be tested due to computational limitation, we used a 

heuristic approach to find Ë. A pseudocode for this approach is shown below: 

1. Set Ë=EKQJ 

2.  Create the list L={E′|E′⊆EKQJ, |E′|=|Ë|-1 ∨ |E′|=|Ë|+1}

3.  Find the E in L that has the maximum AE  

4.  If AE>AË then set Ë=E and go to step 2 

5. Report Ë 

Using each of the experiment sets EKQJ and Ë, we defined a coexpression network by 

selecting the minimum value for cutoff θ that could result in pθ≥0.75 (i.e. precision of at least 

75%). The selected value of θ for EKQJ was 0.94 and for Ë was 0.957. The resulting networks 

are referred to in the paper as CoExp1
Tbr and CoExp2

Tbr, respectively. 
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Identification of conserved coexpression linkages among genes 

We identified 5300 orthologs of T. brucei genes in the closely related organism Leishmania 

infantum based on reciprocal best BLAST-P hits with e-values <1×10-6. The set of T. brucei 

genes whose L. infantum orthologs could be unambiguously identified is referred to as S′. The 

experiment set E′ for L. infantum was obtained from three different studies [4,5,6].  The 

conserved coexpression network GE,E′
θ,θ′ is the set of all gene pairs that are coexpressed 

according to both experiment sets E=EKQJ (for T. brucei) and E′ (for L. infantum): 

GE,E′
θ,θ′={(i,j)|i∈S′,j∈S′,ρ(XE

i,XE
j)≥θ, ρ(XE′

i′,XE′
j′)≥θ′}, 

where ρ is the Pearson correlation coefficient function, i′ is the ortholog of i in L. infantum 

and j′ is the ortholog of j in L. infantum. To identify the best θ and θ′ values, we tried all pairs 

of values so that θ∈{-1,-0.99,-0.98,…,0.98,0.99,1} and θ′∈{-1,-0.99,-0.98,…,0.98,0.99,1}. 

The pair of values that resulted in the maximum coverage of S′ and a precision of at least 0.50 

was chosen. 

To examine the possibility of over-training of θ and θ′ values, we performed a leave-one-out 

cross-validation, in which each time one gene pair (l,k) was left out, the best θ and θ′ values 

were determined using the remaining gene pairs, and the left out gene pair was evaluated 

using these values. If ρ(XE
l,XE

k)≥θ and ρ(XE′
l,XE′

k)≥θ′, the pair (l,k) was added to the cross-

validation network Gx: 

1. Set Gx=Ø 

2. For all {(l,k)|l∈S′,k∈S′,(l,k)∈I∪I′} 

3. If (l,k)∈I then I=I–{(l,k)} 

4.  If (l,k)∈I′ then I′=I′–{(l,k)} 

5.  Find the values for θ and θ′ using the new I and I′ 

6.  If ρ(XE
l,XE

k)≥θ and ρ(XE′
l,XE′

k)≥θ′ then Gx= Gx+{(l,k)}

7.  Restore I and I′ 

8. Report Gx 
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The Gx was found to have a precision of 0.48 and S′ coverage of 0.113 which are very close 

to the values for the conserved coexpression network that is reported in the paper, implying 

that the procedure used to find the best values for θ and θ′ did not over-train them. 

Network-based prediction of gene function 

We evaluated the association of each gene with each KEGG pathway using a 

hypergeometric-based method: Assume that N is the set of nodes in the network G, Cα⊂N is 

the set of nodes that are connected to the node α (excluding the node α itself), and M⊂N is the 

set of nodes that have the particular function fM according to KEGG, again excluding the 

node α itself: 

 

The null hypothesis H0 is that Cα is independent of M. To evaluate this hypothesis, we 

assume a hypergeometric distribution for |M∩Cα|: 

Pr(X≥xobs|H0)=Σx hypergeo(x;|N|,|M|,|Cα|), 

where xobs=|M∩Cα|≤x≤min(|M|,|Cα|) and “hypergeo” is the hypergeometric distribution 

function. If H0 is rejected, the node α is considered associated with M and, thus, with function 

fM. Since node α itself is not included in the calculation of the probability value, there is no 

MCα 

N

M∩Cα 

α 
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need to cross-validate this procedure, as it naturally resembles a leave-one-out cross-validated 

procedure. 

We evaluated the performance of this procedure for each network and each pathway 

separately. The p-value cutoff for rejecting the null hypothesis was selected to be ≤0.05 and 

to result in a PPV≥0.80, meaning that at least 80% of predictions are correct. 

Identification of potential regulatory motifs in UTRs 

T. brucei genes were clustered based on the normalized values of the experiment set EKQJ. 

We used different clustering approaches: Iclust [7] uses an information-based strategy to 

cluster the genes into a predefined number of clusters. By default, this number is √ |S|, where 

S is the set of all T. brucei genes with available expression profiles. Alternatively, we used 

the standard k-means algorithm with either an initial set of 100 means or an initial set of 30 

means. The algorithm converged to 82 and 19 clusters, respectively. Gene clusters along with 

either complete or truncated 3′ UTR sequences were submitted to FIRE [8] with default 

parameters. The truncated sequences contained the first 1000bp from the 5′ end of each 3′ 

UTR. Prior to identification of potential regulatory elements, FIRE removes homologous 

sequences. In the paper, we only discuss the results of running FIRE on the set of 19 clusters 

and the truncated sequences; the complete set of results can be found at 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. 
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