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Model equations

Here we present the main features of the model which is described in more detail in a
companion paper |1]. Suppose the trial has n individuals, with count outcomes denoted
by Y1,Ys,...,Y, and the corresponding denominators by Lq,..., L,. In the current
trial ‘individuals’ are locations, at which there is usually just one house (L; = 1),
although more in the case of identical GPS coordinates. Let ¢’ = (cy,...,c,) be the
vector of cluster random effects where ¢; = ¢; if individuals ¢ and j are both in the same
cluster so there are ¢ distinct random effects, one for each cluster (¢! denotes the
transpose of ¢) and s? = (sy, s2,...,5,) a vector of spatially correlated random effects,
included to model spillover dependence. Conditionally on all the random effects,
Y1,...,Y, are assumed independent with Poisson distribution and means given by:

ElY;|c,s] = Liexp(a+ Bt +ndit; +yd; (1 —t;) + ¢ + s4) (1)

Hence the logarithmic link is used. The binary variable ¢; indicates whether
individual 4 is in the intervention (¢; = 1) or the control arm (¢; = 0), and d; is the
number of individuals within a specified radius who are in the intervention arm

We use N, (0, Q) to denote the multivariate normal distribution of dimension m
with zero mean vector and covariance matrix @, and I, denotes the identity matrix of
dimension m. We restrict the cluster and spatial random effects to have linear form,
namely

c=Z.a, s=2Z:b (2)

where Z. and Z; are design matrices with ¢ and k explanatory variables respectively. k
is a number that is determined by a) orthogonality constraints and b) restricting the
analysis to positive spatial dependence.

The vectors a and b have independent multivariate normal distributions with mean
zero, and covariance matrices o2 I q and o2 I, respectively (where I q s the ¢ x ¢
identity matrix). The cluster design matrix Z. contains ¢ cluster-level covariates where
the [th covariate is a vector with 1s for individuals in cluster [, and Os elsewhere

The spatial effects design matrix Z, is restricted to give ICAR spatial dependence,
and also to satisfy X7 Z, = 0 so its columns are orthogonal to those of X where X is
the design matrix of fixed effects. The orthogonality between fixed and random effects
design matrices is required to avoid so-called spatial confounding [2].

Prior specifications

One of the main requirements for an efficient application of INLA is that the number of
hyper parameters be small — less than six in practice. We have three: 02 and o2, with
the third representing variation between pairs of clusters.

In our novel model, which in the companion paper we call the extended model [1],
we assign a flat improper prior for @ and independent N7 (0,0.001) priors for 8, n and .
For the three random effect standard deviations we assign independent exponential
priors |3]. This allows small values of o, — preventing the priors from imposing
extra-Poisson variation — and avoids large values — reflecting the prior belief that the
fixed effects are sufficient to explain the data citeKelsall1999. To maintain this
behaviour for four random effect precisions, we multiply their scale value of 2000 by
42 = 16, while keeping 0.5 for the shape parameter. These are called penalised
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complexity priors [3], and favour the standard model (with no spatial random effects) in
order to avoid fitting artificial spatial and cluster dependence. The companion paper [1]
contains results from three sets of priors, corresponding to weak, medium and strong
penalties to the spatial model as compared to the standard model. For the current
dataset the results are similar, and here we use only the medium set.

Goodness of fit

To check the goodness of fit of the models presented in this paper we use posterior
predictive diagnostics as opposed to the deviance information criterion (DIC) which is
known for underpenalizing complex models with many random effects |5]. Here we focus
on the conditional predictive ordinates (CPQOs) which are the leave-one-out cross
validation posterior predictive distributions. Each CPO is the posterior probability of
obtaining the value of Y; when the model is fitted to all data except Y;. A larger value
implies a better fit of the model, and very low CPO values suggest that Y; is an outlier
or an influential observation. These quantities can be computed efficiently using
INLA [6]. We use the geometric mean of the CPOs as a global measure of goodness of
fit. This measure lies in (0,1) and equals the exponential of the average log pseudo
marginal likelihood or LPML [7].
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