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Clustering 

To subdivide the monitored area in uniform zones, we consider data from single sites (or very 

close sites) sampled all years from 2013 to 2018. The number of years with at least one WNV-

positive pool was considered as indication of persistence of the virus in a particular site. By 

interpolating these values (multilevel b spline interpolation) we obtained the map shown in 

Figure A, which allows to define areas with comparable persistence during the years, and led to 

the cluster division proposed in the main text. Exactly four sites near the center of the trapping 

region have been positive every year. When looking at the weekly pattern of incidence in the 

four sites within each year, it was clear that the easternmost two and the westernmost two 

were highly correlated to each other (they were both positive or both negative most bi-weeks), 

while the two pairs tended to be positive in different weeks of the year. In order to detect the 

spread pattern occurring every year, we then kept these in separate clusters (B and C); we 

included in each of these clusters the sites spatially close to them, with an overall pattern of 

positive weeks not too different. After this choice, the remaining subdivision followed. Western-

most sites have a pattern of incidences quite different from other sites and similar between 

them. As for the eastern sites, it is clear from Figure A that the northern ones were more often 

positive than the southern ones; thus, we formed two other clusters, a northeastern and a 

southeastern (see Fig. 1a in the main text for the map of clusters). 

 

 
Figure A. Traps interpolation according to the number of years with positive WNV detection. 
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Temperature trends 

The daily average temperatures were provided, for every trap site, by the Regional 

Environmental Agency (ARPAE Emilia-Romagna) according to a high-resolution gridded 

interpolated dataset [1]. Figure B compares the daily 2018 mean temperature with the daily 

average computed between 2013 and 2017. 

 

 

 
Figure B. Average daily temperature for each cluster. Continuous line: 2018 data. Dashed line: average 

over 2013-2017. 

 

Average April-May temperatures for 2019, collected from [2], ranged between 14.4 and 14.7°C 

in the major cities (Bologna, Ferrara, Modena, Parma, Piacenza, Ravenna, Reggio nell’Emilia 

and Rimini) of the study area. 
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Additional results 

Entomological model 

Assuming that the number of observed trapped adult mosquitoes follows a Poisson distribution 

with mean obtained from the model, similarly to [3], the likelihood of the observed data for a 

given cluster c and year y has been defined as 

𝐿𝑒𝑛𝑡(𝑐, 𝑦) = ∏ 𝑒−�̃�(𝑠,𝑐,𝑦) ⋅
�̃�(𝑠, 𝑐, 𝑦)𝑛(𝑠,𝑐,𝑦)

𝑛(𝑠, 𝑐, 𝑦)!
 

𝑁𝑐(𝑦)

𝑠=1

 

where s runs over the considered sampling dates, Nc(y) is the number of samplings for cluster c 

during year y, n(s, c, y) is the observed average number of trapped adult female mosquitoes 

over the sites of cluster c for sampling s during year y and �̃�(𝑠, 𝑐, 𝑦) is the predicted number of 

captures simulated by the model with parameters {A0, K1, K2}. 

We allowed for two different values within each season of the density-dependent factor in the 

entomological model to take into account that during summer Cx. pipiens breeding sites 

availability might change, causing a possible increase in Cx. pipiens larval mortality, for 

instance because of competition with Ae. albopictus [4]. Indeed, as shown in Figure C, scaling 

factors are estimated to decrease during the second part of the breeding season, resulting in a 

lower larval survival.  

 

 
Figure C. Boxplots (2.5%, 25%, 75% and 97.5% quantiles and median) of the estimated distributions of 

the density-dependent scaling factors K1 and K2 for each cluster and year under study. Distributions for K2 

(scaling factor after June 30) are identified by an asterisk. 
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Epidemiological model 

The model we used to simulate WNV transmission in an avian population consisting of adult 

and juvenile individuals can be represented with the scheme shown in Figure D. 

 

 
Figure D. Model flow chart for WNV transmission in birds (squares) and mosquitoes (circles) in an average 

trapped area. Compartments: Bsa, Bea, Bia, Bra (Bsj, Bej, Bij, Brj): adult (juvenile) susceptible, exposed, 

infectious and immune birds; Ms, Me, Mi: susceptible, exposed and infectious mosquitoes.  

 

At the beginning of the season the bird community is assumed to consist of adult individuals 

only, which can breed and reproduce until mid-July, giving birth to juvenile individuals with rate 

γ. Susceptible adult (juvenile) birds Bsa(Bsj) contract the virus from bites of infectious 

mosquitoes with overall probability λB (which takes into account the biting and the transmission 

rates). After an intrinsic incubation period θB, they become infectious and subsequently recover, 

with rate δB, and become immune to reinfections. Susceptible mosquitoes (Ms) can become 

exposed to infection (Me) after biting infectious birds with an overall probability λM which takes 

into account the temperature-dependent biting and transmission rates; in such a case, they will 

become infectious to the avian population (Mi) after a temperature-dependent extrinsic 

incubation period 1/θM and for the rest of their life. Here, we did not model explicitly the 

mosquito dynamics since we had previously estimated Cx. pipiens abundance through the 

entomological model. So, we considered the total number of adult mosquitoes, M(t), as a 

known function; specifically, for each cluster c and year y, M(t)=A(t, c, y) (see main text). If  

ω(t)=M(t)-(Ms(t)+Me(t)+Mi(t))>0, then at day t new ω(t) susceptible mosquitoes enter the system. 

A more comprehensive explanation of the model can be found in [5], while parameters values 

are presented in Table 2 in the main text. 

The likelihood formula used for the MCMC calibration of the epidemiological model is 

𝐿𝑒𝑝𝑖(𝑐, 𝑦) = ∏ (
𝑁𝑐(𝑠, 𝑦)

𝐾𝑐(𝑠, 𝑦)
) 𝑃𝑐(𝑠, 𝑦,Ψ)

𝐾𝑐(𝑠,𝑦)(1 − 𝑃𝑐(𝑠, 𝑦,Ψ))
𝑁𝑐(𝑠,𝑦)−𝐾𝑐(𝑠,𝑦)

𝑁𝑐(𝑦)

𝑠=1
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where s runs over the considered sampling dates of cluster c during year y, Nc(y) is the number 

of samplings for cluster c during year y, Kc(s, y) is the number of recorded positive pools for 

sampling s for cluster c during year y and  

𝑃𝑐(𝑠, 𝑦,Ψ) = 1 − (1 −
𝑀𝑖(𝑠,Ψ)

𝑀(𝑠,Ψ)
)
𝑢𝑐(𝑠)

, 

represents the probability that at least one mosquito in the pool is infected. Here Mi(s, Ψ) and 

M(s, Ψ) are respectively the number of infected and total mosquitoes predicted by the model for 

the sampling date s (for cluster c during year y) with free parameters Ψ={B0(c, y), pR(c, y), p(c, y), 

f1(c, y), f2(c, y)} and uc(s) is the average of the pool sizes analysed on day s. 

As shown in Figure E, the estimated distributions for the epidemiological free parameters for 

2018 are compatible with the ones found for previous seasons, although we can note that for 

some clusters (e.g. C, D and E) the initial mosquito prevalence p is estimated to be slightly 

higher. 

 

 
Figure E. Boxplots (2.5%, 25%, 75% and 97.5% quantiles and median) of the estimated distributions of 

the free parameters of the epidemiological model: p, B0, pR, f1, f2 (from first to last row) for each cluster A, 

B, C, D, E (from first to last column). Distributions are shown aggregating years before 2018. 
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Figure F shows for each cluster and year the average final avian seroprevalence Sf, i.e. the 

fraction of immune birds predicted at the end of the season. We can note that the Sf is quite 

high for 2018 for clusters with a very high WNV circulation (B-D). 

 

 
Figure F. Final average seroprevalence estimated by the epidemiological model per year and cluster.  
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Sensitivity analysis 

Host-to-vector transmission probability 

In the epidemiological model, pBM, the probability that a susceptible mosquito acquires the 

infection from an infected bird, is a temperature dependent function [5] defined as 

𝑝𝐵𝑀 =
exp(𝑎 + 𝑏 ⋅ 𝑇)

1 + exp(𝑎 + 𝑏 ⋅ 𝑇)
, 

with a and b obtained with a binomial regression model computed on the Cx. pipiens 

competence observed upon laboratory infection at three different temperatures (namely 18, 23 

and 28°C) [6]. Because of this relatively small number of observations, we decided to perform 

some sensitivity analysis on the model by perturbing such function as follows: let m=(a, b) and S 

the covariance matrix of the estimated coefficients. Then we computed a new function with 

coefficients m’=(a’, b’) with 

𝑚′ = 𝑚 + 𝐴 ⋅ 𝑋 

Where X is s standard normal distribution N(0,1) and A is such that A∙At=S. In this way,  

𝑣𝑎𝑟(𝑚′) = 𝐴 ⋅ 𝑣𝑎𝑟(𝑋) ⋅ 𝐴𝑡 = 𝐴 ⋅ 𝐴𝑡 = 𝑆. 

We generated 100 new pBM functions, which are presented in Figure G, and, for each of them, 

we calibrated the epidemiological model as explained previously. 

 

 
Figure G. Perturbations of the host-to-vector transmission probability function. Orange points: observed 

probability from laboratory experiment [6]; black lines: baseline function [5]; green lines: perturbed 

functions used for the sensitivity analysis. 
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As shown in Figure H, we did not find any remarkable difference between the estimated 

posterior distributions of the model free parameters. Such consistency can be observed in the 

model predictions as well. For instance, as shown in Figure I, estimated avian and mosquito 

prevalence for 2018 with the modified transmission probability are very similar to the baseline 

ones.  

 

 
Figure H. Boxplots (2.5%, 25%, 75% and 97.5% quantiles and median) of the estimated distributions of 

the free parameters of the epidemiological model: p, B0, pR, f1, f2 (from first to last row) for each cluster A, 

B, C, D, E (from first to last column). Lighter colors show baseline distributions (see Figure C) while darker 

colors show estimates obtained by perturbing the bird-to-mosquito transmission probability function in 

the epidemiological model. Distributions are shown aggregating years before 2018. 
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Figure I. Comparison between estimated average avian (first row) and mosquito (second row) prevalence 

with the baseline epidemiological model (continuous line) and by perturbing the bird-to-mosquito 

transmission probability function (dashed lines) for each cluster A, B, C, D, E (from first to last column). 

Shaded areas represent the 95%CI of simulations with the modified function. 

 

 

House sparrow model 

We calibrated our epidemiological model assuming the avian population consists of magpies, 

which are thought to be one of the main reservoirs for WNV transmission in the study area [7]. 

To investigate whether modelling a different bird species would affect significantly our results, 

we re-calibrated the model adapting as done in [5] the avian demographic and epidemiological 

parameters for house sparrow (Passer domesticus), a competent host for WNV [8]. In particular 

(see Table A), infectious sparrows recover faster than magpies. 

Table A. House sparrow parameters for the epidemiological model. 

Parameter Value Source 

Avian fertility rate (day-1) 
0.05 until July 15 

0 afterwards 

[9] 

Adult birds death rate (day-1) 0.0015 [9] 

Juvenile birds death rate (day-1) 0.0083 [9] 

Length of viremia in birds (days) 1.8 [8] 

 

This model performed slightly worse, as only 87% (compared to the 96% obtained with the 

baseline model) of the total number of weekly positive pools lie within the 95% CI predictions. 

As shown in Figure J, the posterior distributions of some of the model free parameters are quite 

different. For instance, the initial number of house sparrows (B0) is estimated to be smaller with 

respect to magpies, while Cx. pipiens is predicted to feed more on this bird species, possibly 

because of its lower estimated abundance. The predicted prevalence is lower as well, especially 

in the host population, consistently with the assumed shorter viremia (see Figure K).  We still 

found a positive statistically significant (p-value=0.04) correlation (Pearson’s correlation 
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coefficient 0.37) between mosquito average prevalence in June and the average April-May 

temperature (see Figure L, panel a), while for the avian prevalence (see panel b) it is not 

significant (Pearson’s correlation coefficient 0.34, p-value=0.06). 

 

 
Figure J. Boxplots (2.5%, 25%, 75% and 97.5% quantiles and median) of the estimated distributions of 

the free parameters of the epidemiological model: p, B0, pR, f1, f2 (from first to last row) for each cluster A, 

B, C, D, E (from first to last column). Lighter colors show baseline distributions (see Figure C) while darker 

colors show estimates obtained by assuming the avian population to consist of house sparrows. 

Distributions are shown aggregating years before 2018. 
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Figure K. Comparison between estimated average avian (first row) and mosquito (second row) prevalence 

with the baseline epidemiological model (continuous line) and by assuming the avian population to 

consist of house sparrows (dashed lines) for each cluster A, B, C, D, E (from first to last column). Shaded 

areas represent the 95%CI of simulations with house sparrows. 

 

 
Figure L. Estimated average June mosquito (panel a) and avian (panel b) prevalence (Y-axis) versus spring 

average temperatures in degrees Celsius (X-axis) assuming the bird population to consist of house 

sparrows. Colors represent the cluster division (A: red, B: blue, C: green, D: purple, E: orange).  
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Human transmission 

For each cluster 𝑐 ∈ {A, B, C, D, E} and day t of year 𝑦 ∈ [2013, 2018], we computed the human 

transmission risk λH(c, y, t), similarly to what proposed in [5], as 

λH(𝑐, 𝑦, 𝑡) =

{
 
 

 
 1 − f1

dA
⋅
Mi(𝑐, 𝑦, 𝑡)

hc
, t < July 15

1 − f2
dA

⋅
Mi(𝑐, 𝑦, 𝑡)

hc
, t ≥ July 15

 

Where hc is the average number of humans living in an area a for cluster c and Mi(c, y, t) is the 

number of infected mosquitoes in a for cluster c at day t of year y as estimated by the model. 

We then fitted the total number of WNND cases for each cluster c and year y following the 

same approach presented in [5]. In particular, we rescaled λH(c, y, t) by a cluster-dependent 

parameter ρC, computed the total number of WNND cases predicted per year as 

CH(𝑐, 𝑦) =∑Pois(ρc ⋅ λH(𝑐, 𝑦, 𝑡) ⋅ HC)

𝑡

 

Where Hc is the number of humans living in cluster c, and estimated ρC by Markov Chain Monte 

Carlo sampling applied to the Poisson likelihood of observing the recorded number of cases 

over the six years under study, given the model-predicted ones. We can interpret ρc as a product 

of the probability of virus transmission to humans per mosquito infectious bite times the 

probability of symptoms development times the reporting rate. 

As presented in Figure M, 24 out of 30 (80%) observed yearly number of WNND cases lie within 

the 95%CI predictions of the human transmission model. The transmission parameter ρc is 

estimated to be significantly higher for cluster E (panel f), possibly implying quite different 

ecological settings with respect to the rest of the region. The majority of cases, in 2018, is 

predicted to occur between the end of July and the end of August (see Figure N), consistently to 

actual observations [10]. 
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Figure M. Human transmission model results. a-e): Boxplots (2.5%, 25%, 75% and 97.5% quantiles and 

median) representing the distributions of the estimated number of WNND cases per cluster and year. 

Dots: observed data. f): estimated ρc distributions (2.5%, 25%, 75% and 97.5% quantiles and median) for 

the five clusters.  

 

 
Figure N. Estimated average number of predicted (lines) and recorded (bars) WNND weekly cases per 

cluster for 2018. 
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