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Among the world’s most vexing emerging infectious diseases,

dengue continues to spread, and in its many endemic areas is a

major public health problem [1–3]. There is no vaccine available,

and the immunology of dengue, whereby immunological ‘‘prim-

ing’’ can result in extremely severe manifestations (e.g., dengue

hemorrhagic fever) complicates vaccine development [4]. Thus

dengue control is dependent on controlling the mosquito vector,

and resistance to insecticides, environmental and social disruption,

climate change, and global movement of goods and people (and

incidentally, vectors) provide ongoing hurdles to effective vector

control [5,6].

Accurate risk analysis and allocation of resources for dengue

control depends on disease surveillance. Dengue surveillance is

similarly complex and depends in most areas on formal

surveillance systems that capture case counts (or via syndromic

surveillance at sentinel sites) [7,8]. Laboratory reporting of

serology can confirm not only individual cases but identify the

viral serotypes found in a given area at a point in time [9]. Analysis

of mosquito populations can also confirm dengue circulation and

provide information on viral types [10–12]. Formal surveillance

has many advantages: precise counts of case numbers, good

geographic localization and the potential to identify precise disease

etiology among them.

However, formal infectious disease surveillance systems have

important limitations, including lags between case occurrence and

reporting. Sentinel sites may report cases only periodically or fail

to report altogether for a variety of reasons. Delays in reporting

may occur when governmental organizations charged with

surveillance aren’t able to adequately collect and analyze data or

publish reports in a timely manner. These problems may be

particularly daunting in developing countries with limited

resources to devote to strengthening surveillance systems: robust

formal public health surveillance is expensive, requiring major

investments in trained personnel, communications, buildings and

equipment. Indeed, the economic conditions that prevent

development of robust surveillance systems may also be those

that potentiate dengue transmission: for example, a seroprevalence

study performed in a city straddling the Texas-Mexico border

found marked differences in dengue seroprevalence on the

Mexican side of the border in association with economic

disadvantage [13].

The hierarchical nature of formal public health surveillance also

poses challenges to surveillance. Hierarchical reporting structures

can lose data at any point of interaction, for example when a

regional authority fails to report to a national one. Finally, in some

situations there can be short-term disincentives for the timely and

transparent reporting of disease activity: governments may fear

that surges in disease activity may chase away tourists or visitors,

or may undermine government credibility [14].

To address these drawbacks, a complementary system of infor-

mal surveillance tools have been developed, some by governmen-

tal agencies, but many by non-governmental organizations and/or

researchers. Event-based surveillance systems such as ProMED,

GPHIN HealthMap and BioCaster rely on unofficial reports of

disease, for example from clinicians or web-based healt-related

news media, to report on disease outbreaks [15–17]. Such systems

have proven reliable and timely and informal sources of

information were even recognized in the 2005 revision of the

International Health Regulations as important sources of epidemic

intelligence [18,19]. The rapid and accelerating growth of the

Internet has improved the usefulness and sensitivity of these

systems and they have likely improved the timeliness of outbreak

reporting [18], and the ever-expanding availability of electronic

information has also led to the discovery of other types of analyses

that detect disease outbreaks. ‘‘Web-crawlers’’ (software programs

that search internet sites for specific terms, and then use these

search terms to generate reports or maps of disease activity) can

provide important information on disease outbreaks that may be

published on nongovernmental websites, in online newspapers,

and in blogs, and this approach powers the widely-used

HealthMap system mentioned above [20]. In the context of the

recent cholera outbreak in Haiti, there were inconsistencies in

initial accounts of regional disease activity, but information from

HealthMap proved useful in the construction of a mathematical

model that predicted disease spread on the island [21].

The analysis of real time search queries—the so-called

‘‘searchstream’’– has been shown to be a sensitive and timely

means of evaluating geographically-specific trends in influenza;

both Yahoo and Google search engines have proven to be

powerful tools for influenza surveillance [22,23]. More recently,

evaluation of data from the microblogging website Twitter has

been shown to provide useful information about both disease

activity and disease concern related to the 2009 influenza

pandemic [15]. Finally, the widespread availability of smartphone

technologies makes it possible to interact with population members

to elicit information on illness (so-called ‘‘crowdsourcing’’), and

also (by using cellphone or smartphone network data) to evaluate

the movement of populations, which may be a key predictor of

how epidemics spread [24–26].
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Figure 1. Screenshot of search performed on the term ‘‘pneumonia’’ using the Google Insights for Search tool (http://www.google.
com/insights/search/#). The expected wintertime seasonality of pneumonia incidence is mirrored in seasonal surges in search volumes.
doi:10.1371/journal.pntd.0001215.g001
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Readers unfamiliar with these approaches may wish to try a

simple experiment using the Google Insights for Search tool,

which provides a graphical depiction of both search term volumes

and online media reports of disease (http://www.google.com/

insights/search/#). Searches on terms such as ‘‘norovirus’’ or

‘‘pneumonia’’ produce seasonally oscillating patterns of searches as

one might anticipate in diseases with strong wintertime seasonality

(Figure 1), and which is presumably generated by individuals who

have, or know someone who has, this diagnosis seeking to learn

more about it online. However, the pitfalls of this approach can be

appreciated in a similar manner: a search on the term ‘‘influenza’’

produces a graph with a tremendous spike in 2009 (Figure 2);

indeed a spike so large that it obscures influenza activity in all

other years. This reflects the difficulties that searchstream-based

surveillance methods may encounter when evaluating diseases that

generate extreme public concern or media attention.

Chan et al., in this edition of PLoS Neglected Tropical Diseases [27],

apply searchstream surveillance techniques to the monitoring of

dengue. In this case, search queries appear to closely track (rather

than lead) dengue activity as measured by traditional systems. The

authors have limited their model to certain locations defined in

part by the extent of Internet use in these areas (Bolivia, Brazil,

India, Indonesia and Singapore). Their findings are exciting: when

evaluated in a ‘‘testing set’’ of data not used to derive initial

models, they found extremely strong correlation between dengue-

related query volumes and case counts reported by traditional

surveillance systems, but their approach has the advantage of both

timeliness and transparency (including the availability of the

system on the Google.org website).

As with any prediction-oriented surveillance tool, a major

concern relates to model ‘‘over-fitting’’ such that the prediction

model performs well in the dataset that was used in its creation but

fails to work well in the ‘‘real world’’. Reassuringly the authors

divided their data into a derivation set and a testing set (or

‘‘holdout set’’ as they call it), with the former used for model

construction. As can be seen in the table and figure they present,

their derived models perform extremely well in both sets in all

countries, in the derivation set as expected, but also in the testing

set. Perhaps less straightforward is the authors’ decision to

‘‘smooth out’’ unusual spikes in search volumes in candidate

queries; as demonstrated by the influenza example above, extreme

surges in public interest in a disease can cause surges in query

volumes, as can surges in interest related particular subject that is

unrelated to the disease under surveillance but shares attributes

that would be the subject of searches. By smoothing search

volumes, the authors may have incorporated into their models

terms that have the potential to ‘‘misbehave’’ in the future. For

example, one imagines that if a novel (and frightening) new

hemorrhagic fever unrelated to dengue emerges in one of these

countries in coming years, one would imagine that the correlation

between the search term ‘‘haemorrhagic fever’’ and dengue

volumes would decline. As we don’t have access to the precise

query terms that were included in each country-specific model, it is

difficult to know whether or not the terms included in the model

would be vulnerable to such effects. The authors note that the

expanding range of a clinically similar illness (Chikungunya) may

confound the utility as well [28].

It would also be helpful to see to what extent there is overlap in

components of models across countries, as this may help us

understand whether these models can be applied to other

jurisdictions or whether they are applicable only in the country

for which they were constructed. As dengue is a disease whose

range may change under the influence of climate change, it is

important to know whether such an approach is applicable in the

face of novel emergence of dengue in a new region or jurisdiction,

or whether it is only applicable in countries like these in which

dengue is currently endemic.

Perhaps the greatest challenge for the use of the approach

described here is the same that applies across surveillance

modalities: the same geographic locations that lack public health

resources to control dengue, and to perform traditional surveil-

lance, are likely to lag in access to the Internet as well.

Nonetheless, the application of web-query based monitoring to a

major and growing health threat in the developing world

represents an important step forward. The ability to inexpensively

and reliably maintain situational awareness of dengue activity will

be welcomed by those charged with the public health response.

Does the development of web-based surveillance tools repre-

sent a revolution in how we conceptualize surveillance? We

think not: current high-quality public health surveillance already

utilizes multiple sources of information to gain a more complete

picture of the incidence and distribution of disease. For example,

influenza surveillance may include laboratory-based virological

surveillance, sentinel syndromic surveillance (e.g., school-based

absenteeism reports) and evaluation of mortality trends for

pneumonia and influenza, which taken together may provide a

more complete picture of disease risk and impacts. Searchterm-

based surveillance and other modalities mentioned above thus

provide an additional tool in the surveillance toolbox, which has

advantages over traditional surveillance as well as limitations. It

should be noted, however, that limitations such as those described

above are not absent from traditional surveillance systems either:

estimates of incidence can change markedly

with changing case definitions, incidence of laboratory-confirmed

disease can change markedly with augmentation or restriction of

clinical testing or changes in diagnostic test methodologies, and

syndromic surveillance systems can be subject to poor specifi-

city and frequent false alarms. Thus supplementary information

derived using methods such as the one developed by Chan and

colleagues should be welcomed by public health professionals.

The transparency of such systems may also help demonstrate the

value of openness in disease reporting, which may have ‘‘spillover

effects’’ on traditional surveilance systems.

References

1. Guzman MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2: 33–42.

2. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM (2003)

Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg

Infect Dis 9: 800–809.

3. Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhagic fever: the emergence
of a global health problem. Emerg Infect Dis 1: 55–57.

4. Webster DP, Farrar J, Rowland-Jones S (2009) Progress towards a dengue

vaccine. Lancet Infect Dis 9: 678–687.

Figure 2. Screenshot of search performed on the term ‘‘influenza’’ using the Google Insights for Search tool (http://www.google.
com/insights/search/#). Although influenza searches would expect to display similar wintertime seasonality to pneumonia searches, depicted in
Figure 1, the public concern and interest generated by the 2009 influenza pandemic generated a large spike in searches in that year, which obscures
seasonal oscillation in other years.
doi:10.1371/journal.pntd.0001215.g002

www.plosntds.org 4 May 2011 | Volume 5 | Issue 5 | e1215



5. McElroy KL, Santiago GA, Lennon NJ, Birren BW, Henn MR, et al. (2011)

Endurance, refuge, and reemergence of dengue virus type 2, Puerto Rico, 1986–
2007. Emerg Infect Dis 17: 64–71.

6. Hotez PJ, Remme JH, Buss P, Alleyne G, Morel C, et al. (2004) Combating

tropical infectious diseases: report of the Disease Control Priorities in Developing
Countries Project. Clin Infect Dis 38: 871–878.

7. Runge-Ranzinger S, Horstick O, Marx M, Kroeger A (2008) What does dengue
disease surveillance contribute to predicting and detecting outbreaks and

describing trends? Trop Med Int Health 13: 1022–1041.

8. Meynard JB, Chaudet H, Texier G, Ardillon V, Ravachol F, et al. (2008) Value
of syndromic surveillance within the Armed Forces for early warning during a

dengue fever outbreak in French Guiana in 2006. BMC Med Inform Decis Mak
8: 29.

9. van Panhuis WG, Gibbons RV, Endy TP, Rothman AL, Srikiatkhachorn A,
et al. (2010) Inferring the serotype associated with dengue virus infections on the

basis of pre- and postinfection neutralizing antibody titers. J Infect Dis 202:

1002–1010.
10. Sharma K, Angel B, Singh H, Purohit A, Joshi V (2008) Entomological studies

for surveillance and prevention of dengue in arid and semi-arid districts of
Rajasthan, India. J Vector Borne Dis 45: 124–132.

11. Victor TJ (2009) Detection of dengue viral infections in Aedes mosquitoes: an

essential tool for epidemiological surveillance. Indian J Med Res 129: 634–636.
12. Seng CM, Setha T, Nealon J, Socheat D (2009) Pupal sampling for Aedes

aegypti (L.) surveillance and potential stratification of dengue high-risk areas in
Cambodia. Trop Med Int Health 14: 1233–1240.

13. Brunkard JM, Robles Lopez JL, Ramirez J, Cifuentes E, Rothenberg SJ, et al.
(2007) Dengue fever seroprevalence and risk factors, Texas-Mexico border,

2004. Emerg Infect Dis 13: 1477–1483.

14. Wilder-Smith A (2006) The severe acute respiratory syndrome: impact on travel
and tourism. Travel Med Infect Dis 4: 53–60.

15. Collier N, Doan S, Kawazoe A, Goodwin RM, Conway M, et al. (2008)
BioCaster: detecting public health rumors with a Web-based text mining system.

Bioinformatics 24: 2940–2941.

16. Brownstein JS, Freifeld CC, Madoff LC (2009) Digital disease detection–
harnessing the Web for public health surveillance. N Engl J Med 360:

2153–2157.

17. Brownstein JS, Freifeld CC, Reis BY, Mandl KD (2008) Surveillance Sans

Frontieres: Internet-based emerging infectious disease intelligence and the

HealthMap project. PLoS Med 5: e151. doi:10.1371/journal.pmed.0050151.

18. Chan EH, Brewer TF, Madoff LC, Pollack MP, Sonricker AL, et al. (2010)

Global capacity for emerging infectious disease detection. Proc Natl Acad

Sci U S A 107: 21701–21706.

19. Fidler DP, Gostin LO (2006) The new International Health Regulations: an

historic development for international law and public health. J Law Med Ethics

34: 85–94.

20. Freifeld CC, Mandl KD, Reis BY, Brownstein JS (2008) HealthMap: global

infectious disease monitoring through automated classification and visualization

of Internet media reports. J Am Med Inform Assoc 15: 150–157.

21. Tuite AR, Tien J, Eisenberg M, Earn DJ, Ma J, et al. (2011) Cholera epidemic in

Haiti, 2010: using a transmission model to explain spatial spread of disease and

identify optimal control interventions. Ann Intern Med 154: 593–601.

22. Polgreen PM, Chen Y, Pennock DM, Nelson FD (2008) Using internet searches

for influenza surveillance. Clin Infect Dis 47: 1443–1448.

23. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, et al. (2009)

Detecting influenza epidemics using search engine query data. Nature 457:

1012–1014.

24. Freifeld CC, Chunara R, Mekaru SR, Chan EH, Kass-Hout T, et al. (2010)

Participatory epidemiology: use of mobile phones for community-based health

reporting. PLoS Med 7: e1000376. doi:10.1371/journal.pmed.1000376.

25. Epstein JM, Parker J, Cummings D, Hammond RA (2008) Coupled contagion

dynamics of fear and disease: mathematical and computational explorations.

PLoS One 3: e3955. doi:10.1371/journal.pone.0003955.

26. Wang P, Gonzalez MC, Hidalgo CA, Barabasi AL (2009) Understanding the

spreading patterns of mobile phone viruses. Science 324: 1071–1076.

27. Chan EH, Sahai V, Conrad C, Brownstein JS (2011) Using web search query

data to monitor dengue epidemics: A new model for neglected tropical disease

surveillance. PLoS Negl Trop Dis 5(5): e1206. doi:10.1371/journal.

pntd.0001206.

28. Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M (2007) Chikungunya, an

epidemic arbovirosis. Lancet Infect Dis 7: 319–327.

www.plosntds.org 5 May 2011 | Volume 5 | Issue 5 | e1215


