Supporting Information

Potential impact of sexual transmission on Ebola virus epidemiology: Sierra Leone as a case study

Jessica L. Abbate1,2,3*, Carmen Lia Murall4†, Heinz Richner1, Christian L. Althaus5

1Institute for Ecology and Evolution, University of Bern, Bern, Switzerland.
2UMR MIVEGEC (UMR CNRS 5290, IRD 224, UM), Montpellier, France.
3UMR UMMISCO (UMI 209 IRD-UPMC), Bondy, France.
4Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
5Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.

*Direct correspondence to: jessica.abbate@ird.fr
†Authors contributed equally to this article.

December 11, 2015

S1 Appendix. Calculating R_0

At the beginning of the epidemic when the population is entirely susceptible ($S/N = 1$), the SEICR model from the main text can be written as:

$$
\begin{align*}
\frac{dS}{dt} &= -\beta SI - \beta S pC, \\
\frac{dE}{dt} &= \beta SI + \beta S pC - \sigma E, \\
\frac{dI}{dt} &= \sigma E - \gamma I, \\
\frac{dC}{dt} &= (1 - f)\gamma I - \alpha C, \\
\frac{dR}{dt} &= \alpha C, \\
\frac{dD}{dt} &= f\gamma I.
\end{align*}
$$

The model has three disease stages, exposed, E, infected, I, and convalescent, C, and thus, a vector representing these disease stages can be defined as $x(t) = \begin{pmatrix} E \\ I \end{pmatrix}$. Let F be the infection matrix and V be the transition matrix. Since both I and C can transmit the virus, the matrices F and V become

$$
F = \begin{pmatrix}
0 & \beta S_0 & \beta S p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \quad \text{and} \quad V = \begin{pmatrix}
\sigma & 0 & 0 \\
-\sigma & \gamma & 0 \\
0 & -(1 - f)\gamma & \alpha
\end{pmatrix}.
$$
The progression through disease stages can be found from \(x' = Fx(t) - Vx(t) \), and thus the expected number of secondary infections is

\[
\int_0^\infty Fx(t)dx = Kx(0),
\]

where the next generation matrix is \(K = F V^{-1} \) and its positive real eigenvalue is the basic reproductive number:

\[
R_0 = \frac{\beta s_0}{\gamma} + \frac{(1-f)\beta s p}{\alpha}.
\]

Note that when \(\alpha \) goes to infinity or either \(\beta_s = 0 \) or \(p = 0 \), the equation reduces to \(R_0 = \frac{\beta s_0}{\gamma} \), which is the basic reproductive number in absence of sexual transmission. Therefore, the contribution of sexual transmission to the overall \(R_0 \) is simply

\[
R_{0,C} = \frac{(1-f)\beta s p}{\alpha}.
\]