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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Since the 2015 to 2016 outbreak in America, Zika virus (ZIKV) infected almost 900,000AU : PerPLOSstyle; subjectsshouldnotbeusedforhumanpatients:Therefore; subjectshasbeenchangedtopatientsthroughoutthearticle:
patients. This international public health emergency was mainly associated with a significant

increase in the number of newborns with congenital microcephaly and abnormal neurologic

development, known as congenital Zika syndrome (CZS). Furthermore, Guillain–Barré syn-

drome (GBS), a neuroimmune disorder of adults, has also been associated with ZIKV infec-

tion. Currently, the number of ZIKV-infected patients has decreased, and most of the cases

recently reported present as a mild and self-limiting febrile illness. However, based on its

natural history of a typical example of reemerging pathogen and the lack of specific thera-

peutic options against ZIKV infection, new outbreaks can occur worldwide, demanding the

attention of researchers and government authorities. Here, we discuss the clinical spectrum

and immunopathological mechanisms underlying ZIKV-induced neurological manifesta-

tions. Several studies have confirmed the tropism of ZIKV for neural progenitor stem cells

by demonstrating the presence of ZIKV in the central nervous system (CNS) during fetal

development, eliciting a deleterious inflammatory response that compromises neurogenesis

and brain formation. Of note, while the neuropathology of CZS can be due to a direct viral

neuropathic effect, adults may develop neuroimmune manifestations such as GBS due to

poorly understood mechanisms. Antiganglioside autoantibodies have been detected in mul-

tiple patients with ZIKV infection–associated GBS, suggesting a molecular mimicry. How-

ever, further additional immunopathological mechanisms remain to be uncovered, paving

the way for new therapeutic strategies.
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Introduction

Arthropod-borne viruses or arboviruses are responsible for many important infectious dis-

eases worldwide [1]. Due to many aspects of modern society, such as disorganized urbaniza-

tion, excessive population growth, and increasing international mobility in the past few

decades, arboviral diseases currently represent a serious global public health issue [1]. In this

context, the outbreak of Zika virus (ZIKV) infection that started in Brazil in 2015 was declared

a state of emergency and global concern by the World Health Organization (WHO) on Febru-

ary 1 of the same year [1,2]. This was mainly driven by the exponential increase of newborns

with microcephaly and adults with Guillain–Barré syndrome (GBS). Currently, there are

approximately 4,000 cases of congenital Zika syndrome (CZS) in Brazil. The virus has spread

to more than 94 countries, infecting as of today almost 900,000 people, confirming the rele-

vance of arboviruses as a global threat [3].

ZIKV is mostly vectored by Aedes aegypti mosquitoes [4], followed by Aedes albopictus
[5,6]. It is worth mentioning that it can also be found in human sperm up to 6 months after

infection. Consequently, in September 2016, WHO further classified ZIKV infection as a sexu-

ally transmitted disease (STD) [7]. Furthermore, vertical transmission (mother-to-fetus and

breastfeeding) and transmission by blood transfusions have been described, and the presence

of ZIKV in tears was also reported [8–13]. Noteworthy, vertical transmission was also observed

in vectors, as infected Ae. aegypti laid infected eggs [6]. Of note, scientists discovered that the

Ae. aegypti, when exposed to ZIKV, chikungunya virus (CHIKV), and dengue virus (DENV),

may transmit 1, 2, or even all 3 viruses simultaneously [14], resulting in viral coinfection and

immune hyperresponsiveness [11].

Symptoms associated with acute phase ZIKV infection are headache, fever, conjunctivitis,

myalgia, exanthem, and arthralgia [11], which may confound the initial diagnosis from other

arboviruses such as DENV and CHIKV infections. Of note, approximately 80% of individuals

infected with ZIKV do not develop any clinical manifestation [1], and only 0.3% to 0.5% of

infected pregnant women have given birth to babies with microcephaly [15]. However, during

the peak of the outbreak in Rio de Janeiro (2016), adverse neonatal outcomes reached 46% of

the infected cases [16]. These facts indicate multifactorial influences in the outcome of ZIKV

infection. In this context, Caires-Júnior and colleagues described that only one of dizygotic

twins developed CZS [17]. This suggested that host factors (e.g., genetic background and epi-

genetics) also affect the outcome of ZIKV infection. On the other hand, viral mutations have

been shown to be involved in pathogenicity and transmission [18]. In this regard, genetic and

phylogenetic investigations indicate that distinct ZIKV lineages (e.g., those of West African,

East African, and Asian origins) may affect infectivity, virulence, and clinical presentation.

Thus, genetic aspects of the virus need to be considered in the etiopathogenesis of ZIKV infec-

tions and outcomes, which have been reviewed in detail elsewhere [19,20].

Many studies have confirmed the tropism of ZIKV for neural progenitor stem cells [21,22]

and a causal relationship between ZIKV infection during fetal development and the occur-

rence of CZS [4,23,24]. The neural cell adhesion molecule (NCAM1) has been recently

reported as the possible ZIKV receptor [25]. However, other entry receptors might be involved

since AXL receptor tyrosine kinase (AXL) has been shown to mediate ZIKV entry in human

glial cells [26]. For instance, it has been shown that the ZIKV genome interacts with Musachi-

1 (MSH-1), an RNA-binding protein in the central nervous system (CNS). MSH-1 has an

important function in orchestrating mRNA translation for proper neurodevelopment. ZIKV

sequesters MSH-1 to promote its replication in the replisomes, impairing the translation of

endogenous neurotrophic factors [27].
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Notably, an association between ZIKV infection in adults and the development of autoim-

mune manifestations such as GBS has also been extensively reported [28]. HAU : PleasecheckwhethertheeditstothesentenceHowever; theetiopathologyremainsnotfully:::arecorrect; andprovidecorrectwordingifnecessary:owever, the etio-

pathology remains not fully understood, thus making the investigation of ZIKV–host

interactions an important research area to be explored. For instance, there is no specific ther-

apy available for ZIKV, demanding the identification of novel immunopathological mecha-

nisms to develop new therapeutic strategies. Here, we review the neuroimmunopathological

mechanisms and disease outcomes associated with ZIKV infection.

The clinical spectrum of congenital Zika syndrome

The epidemic of CZS was first reported in Brazil in 2015. The many neurologic abnormalities

of CZS may consist of abnormal cranial morphology such as overlapping cranial sutures,

severe microcephaly, protruding occipital bone, neurologic impairment, and scalp ridges.

Brain anomalies can also be present and include abnormal gyral patterns, thin cerebral corti-

ces, larger amount of fluid spaces, calcification of subcortical regions, corpus callosum abnor-

malities, asymmetric and increased ventricles, lesser amount of white matter, and cerebellar

hypoplasia. Ocular anomalies, if present, consist of macular pucker formation, retinal inflam-

mation, focal pigmentary retinal mottling, and hypoplasia or atrophy of the optical nerve.

Congenital contractures such as arthrogryposis and congenital talipes equinovarus have also

been described. When neurologic sequelae occur, they may include early hypertonia, epilepsy,

irritability, and symptoms of extrapyramidal involvement [16,29,30] (Fig 1).

The immune response during pregnancy and the development of

congenital Zika syndrome

During pregnancy, the female body employs homeostatic strategies to promote both immune

regulation and tolerance while promoting immune surveillance and defense. These immuno-

logical processes support embryo development and prevent maternal–fetal infections to avoid

placental dysfunction and intrauterine growth restriction [31]. The placenta provides a physi-

cal barrier interfacing the maternal and fetal blood circulation and is also essential for waste,

gas, and nutrient exchange. The placenta is an immunologically active barrier to secure

implantation and to restrict pathogen invasion [32]. The development of the fetus leads to an

expansion of maternal peripheral blood mononuclear leukocytes and their recruitment into

the placenta, promoting a tolerogenic environment [33]. In addition, extrinsic and intrinsic

factors such as nutritional status, infections, stress, and obesity of a pregnant woman can influ-

ence her immune response and promote disorders associated with fetal neurodevelopment

[34].

ZIKV can overcome the maternal–fetal immune physiological barrier by directly inducing

cytopathic cell death and indirectly by tissue damage caused by a local exacerbated inflamma-

tory response [22,35,36]. For instance, a detrimental role of type I interferons (IFNs) in preg-

nancy has been suggested when mice were inoculated with ZIKV at a gestational age

corresponding to the mid and late first trimester in humans. This indicates a gestation stage–

dependent ZIKV vertical transmission. By breeding homozygous type I IFN receptor (IFN-α/β
receptor (IFNAR)) knockout (−/−) mothers with heterozygous male mice (IFNAR +/−),

Yockey and colleagues showed that IFN-β produced in the placenta of heterozygous (IFNAR

+/−) litters induced a more pronounced tissue damage and increased viral loads than in homo-

zygous deficient ones (IFNAR−/−) [37]. These findings suggest that the signaling events trig-

gered by IFN-β lead to abortion and growth restriction during ZIKV infection. This

observation highlights the complex interplay between host and pathogen during ZIKV

infection.
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Moreover, new immunopathological mechanisms suspected to be involved in CZS await

further investigation. For instance, ZIKV neurotoxicity could impair neurogenesis through a

direct cytopathic effect on developing neurons by recruiting leukocytes and activating astro-

cytes and microglia. This may lead to subsequent congenital abnormalities and/or abortion.

Of note, during brain inflammatory responses, astrocytes and microglia express inducible

nitric oxide synthase (iNOS) [38]. Diop and colleagues have demonstrated that during initial

hours of in vitro infection of microglia (CHME-5 cell line) with ZIKV, there is an up-regula-

tion of chemokine receptors transcripts involved in leukocyte migration and synapse regula-

tion as well as increase of iNOS and pro-inflammatory molecules such as tumor necrosis

factor alpha (TNFAU : PleasenotethatTNF � aandIL � 1bhavebeendefinedastumornecrosisfactoralphaandinterleukin1beta; respectively; inthesentenceDiopandcolleagueshavedemonstratedthatduringinitialhoursof :::Pleasecorrectifnecessary:-α), interleukin 1 beta (IL-1β), and IL-6 [39]. Nitric oxide (NO) is a gaseous

bioactive compound that exerts protective and regulatory function on different cell types and

influences the vascular smooth muscle tone. However, NO can present both anti- and

Fig 1. ZIKV-associated neurological manifestations. (A) Infected adults may be asymptomatic or present with febrile acute infection symptoms (right panel). The

infection may also result in neurological complications, involving the CNS and/or PNS. (B) ZIKV infection during pregnancy can affect the fetus and result in abnormal

nervous system development, impairing neurogenesis and leading to characteristic anomalies. Created with Biorender.com. CNSAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:, central nervous system; PNS,

peripheral nervous system; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pntd.0009575.g001
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proapoptotic properties, depending on its concentration and source. At low concentrations

and when derived from endothelial and neuronal isoforms of NO synthase (eNOS and nNOS),

NO normally has protective effects. On the other hand, at higher concentration levels and

derived from iNOS, NO is more likely to induce cell death [40]. Therefore, low levels of NO

promote the destruction of microorganisms and tumor cells, but at high concentrations and

for long term, it induces apoptosis of neurons, genotoxic species, and neurodegenerative disor-

ders caused by an S-nitrosylation–dependent pathway [41].

Neuroimmune disorders associated with ZIKV infections

In addition to CZS, a variety of neurological manifestations affecting both CNS and peripheral

nervous system (PNS) of adults have been reported in patients infected with ZIKV, such as

GBS, CNS vasculitis, radiculitis, myelitis, meningoencephalitis, or a combination of these com-

plications [28,42] (Fig 1). While CZS is the direct result of the neuropathological effects of the

virus [22], these neuroimmune manifestations may occur due to immune dysregulation and

autoimmunity triggered after convalescence of ZIKV infection, at least in some patients [43].

This hypothesis is based on postmortem examination of some infected adults in whom ZIKV

viral RNA or antigen were undetectable in the PNS and CNS of patients who had developed

GBS.

Guillain–Barré syndrome

GBS is an autoimmune disease characterized by progressive bilateral weakness and loss of

deep tendon reflexes due to peripheral nerve damage [28,43]. The etiopathogenesis of GBS fol-

lowing ZIKV infection may involve molecular mimicry between glycolipids and some ZIKV

structural molecules, thus leading to an autoimmune response [44]. A recent systematic review

and meta-analysis by Leonhard and colleagues characterized the clinical phenotype of ZIKV-

associated GBS as a general sensorimotor demyelinating syndrome with frequent facial paraly-

sis [45]. The authors observed that the time between the development of infectious symptoms

and neurologic manifestations was approximately 1 week, and ZIKV viral RNA could be

detected in the cerebrospinal fluid (CSF) through reverse transcription polymerase chain reac-

tion (RT-PCR) in only 10 out of 244 cases. While this observation suggested that the outcome

of ZIKV infection may involve host self-reactivity, the authors were not able to exclude the

possibility that the ZIKV may directly trigger GBS while hiding in CNS or PNS compartments.

Of note, some of these individuals showed demyelination associated with inflammation and

mononuclear lymphocytic infiltration [28], while others were found to have autoantibodies

[46] (Fig 2). Beyond, there is evidence that the development of GBS not associated with ZIKV

infection involves the activation of the classical complement pathway, disrupting myelin

sheath, nodes of Ranvier, and other membranes of the nervous system [47]. However, the role

of the complement system in ZIKV-induced GBS remains to be investigated.

Encephalitis

A recent study performed in Colombia, where a high number of pediatric ZIKV infections

occurred, identified a total of 6 encephalitis cases in children [48]. The symptoms diminished

faster than those of encephalitis caused by other infectious agents. Lymphocytosis of the CSF

was present in all cases, and higher cytokine levels were found in the CSF of 1 patient when

compared with plasma levels, suggesting local inflammation [48].

A single patient with preexisting multiple sclerosis (MS), who developed acute disseminated

encephalomyelitis following ZIKV infection, indicates the possibility that this virus may exac-

erbate MS symptoms [49]. The patient was found to have ZIKV envelope protein in the brain
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tissue, indicating the presence of the virus, possibly due to disruption of the blood–brain bar-

rier (BBB) directly related to MS. These data suggest an association between neurologic com-

plications due to ZIKV and an existing immune dysregulation background. However, similar

cases are necessary to strengthen this hypothesis. These events raise the question whether

ZIKV primary infections in the CNS may lead to severe neuropathological complications in

patients with a preexisting MS condition.

Neuromyelitis optica spectrum disorder

Another possible outcome of ZIKV infection is the occurrence of neuromyelitis optica spec-

trum disorder (NMOSD), recently characterized in a single patient [50]. NMOSD is a severe

and debilitating condition that mostly affects the spinal cord. The development of NMOSD

not associated with ZIKV infection involves antibodies, mainly immunoglobulin G (IgGAU : PleasenotethatIgGhasbeendefinedasimmunoglobullinGinthesentenceThedevelopmentofNMOSDnotassociatedwithZIKVinfectioninvolves:::Pleasecorrectifnecessary:),

against a water channel called aquaporin-4 (Aqua-4) that is mostly expressed by astrocytes.

This leads to complement activation as well as antibody-dependent cellular cytotoxicity

(ADCC), resulting in extensive damage, as shown by MRI [51,52]. Initially, the patient with

ZIKV infection presented with a positive RT-PCR for the virus in the CSF. Later in the course

Fig 2. Neuroimmunological mechanisms involved in ZIKV infection. (A) Molecular mimicry between ZIKV and gangliosides. (B) Infected astrocytes mediate the

activation and recruitment of immune cells into the CNS. (B, C) Antibodies against ZIKV cross-react with neurons, eliciting an autoimmune response that results in

demyelination. (D) During fetal development, local infection activates microglia, promoting the production of cytokines. Loss of BBB integrity occurs due to infection of

astrocytes, which allows immune cell recruitment, contributing to pathological neuroinflammation. Neural stem cell infection results in autophagy and possibly other

unknown immunopathological mechanisms. The impaired neurogenesis results in congenital abnormalities. Created with Biorender.com. BBB, blood–brain barrier;

CNS, central nervous system; IL-1β, interleukin 1 beta; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; NO, nitric oxide; TNF, tumor necrosis factor; ZIKV,

Zika virus.

https://doi.org/10.1371/journal.pntd.0009575.g002
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of the disease, he developed tactile and temperature allodynia of both arms. However, the

immunopathological mechanism underlying the development of NMOSD remains to be

uncovered. For instance, whether there is a molecular mimicry between ZIKV antigens and

Aqua-4 has not been investigated.

The immune response to ZIKV and its tropism for the nervous

system

Blood mononuclear cells such as antigen-presenting cells (APCs; e.g., monocytes and dendritic

cells) are the most frequently infected leukocyte subpopulations by ZIKV [53]. The recognition

of pathogen-associated molecular patterns (PAMPs) of ZIKV (e.g., RNA) by host pathogen

recognition receptors (PRRs) such as the Toll-like receptor 3 (TLR3) is followed by the up-reg-

ulation of pro-inflammatory molecules [54]. For example, the recognition of ZIKV by APCs

induces the production of pro-inflammatory mediators and microbicidal mechanisms, such as

production of IFNα/β, TNF-α, IL-1β, and NO. These innate immunity events are essential for

the activation of T and B lymphocytes, responsible for the adaptive immune response [55],

and, consequently, viral control and elimination [56].

In general, APCs present in human blood and epidermis seem to be the main route of dis-

tribution of the virus to other host tissues [56]. However, ZIKV also infects several other cell

types such as skin epithelial cells [57], trophoblasts [58], neuronal progenitors, and stem cells

[4,22]. During replication, many flaviviruses induce the rearrangement of the endoplasmic

reticulum (ER) membrane to support viral production. This process triggers ER stress that

results in an active unfolded protein response and autophagy [59], which is a constitutive pro-

cess of antigen presentation, but is also potentiated during stress, such as nutrient deprivation.

Most cells catabolize proteins to generate energy by carrying and degrading damaged organ-

elles and cytosolic proteins in lysosomes or more complex structures generated by the fusion

of these with autophagosomes. If autophagy is up-regulated and persists, cells may die [60]. In

this context, ZIKV infection of human fetal neural stem cells may impair neurogenesis by

aberrant activation of autophagy, i.e., the nonstructural viral proteins NS4A and NS4B syner-

gistically induce cellular dysregulation by suppressing the PI3K-Akt-mTOR pathway [61],

which is essential for brain development and autophagy regulation [62,63].

It has been shown that ZIKV colocalizes with autophagosomes [57]. Souza and colleagues

developed a biological system of induced neural differentiation obtained by reprogramming

human skin fibroblasts. The in vitro infection of neural stem and progenitor cells with ZIKV

results in the depletion of progenitors and disruption of neural differentiation, as demon-

strated by transmission electron microscopy and confocal microscopy [64]. The authors

showed impaired cell proliferation and down-regulation of caspase-dependent apoptotic cell

death. They also confirmed the occurrence of autophagy by the presence of numerous autop-

hagosomes in the perinuclear region of ZIKV-infected cells.

Type I IFNs and signaling pathways involved in the immune response to

ZIKV

Among others, type I IFNs trigger the activation of the signal transducer and activator of tran-

scription 1 (STAT1) and STAT2, which play a key role in the antiviral immune response [65].

They induce a state of viral resistance in host cells by activating enzymes such as 20-50-oligoa-

denylate synthetase 1 (OAS1) or ribonuclease L (RNAse L) that catalyze viral RNA degradation

[66]. Type I IFNs are also responsible for the up-regulation of class I major histocompatibility

complex (MHC) and costimulatory molecules (CD80, CD86, and CD40), potentializing anti-

gen presentation to T helper (CD4+) and cytotoxic (CD8+) lymphocytes [67]. These IFNs also
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increase cytolytic action and proliferation of natural killer (NKAU : PleasenotethatNKhasbeendefinedasnaturalkillerinthesentenceTheseIFNsalsoincreasecytolyticactionandproliferationof :::Pleasecorrectifnecessary:) cells through the production

of cytokines such as IL-15 [68]. Jurado and colleagues [69] demonstrated that transgenic mice

lacking type I IFNs have increased viremia in the CNS when infected by ZIKV, mostly due to

the antagonistic effect of the ZIKV nonstructural protein 5 (NS5) on STAT1 and STAT2 phos-

phorylation induced by type I IFNs [70].

In addition, in vitro infection of human-induced neural progenitor cells (hiNPCs) by a

ZIKV Brazilian strain showed a transcriptional profile related to inflammation, IFN response,

cell death, and growth [71]. Lima and colleagues confirmed these data at the protein level by

measuring soluble cytokines and chemokines in hiNPCs supernatants using a multiplex assay

[71]. The levels of type I IFNs and of chemokines and cytokines associated with effector leuko-

cyte recruitment and pro-inflammatory mechanisms were also significantly higher in CSF

samples of CZS infants [71]. This raises the possibility that ZIKV affects infants’ brains, trigger-

ing a local pathological inflammation that compromises neurogenesis and brain development.

ZIKV and immune evasion strategies

ZIKV avoids host immune response by a number of mechanisms, favoring viral replication

and vertical transmission. Studies performed both with human cells and animal models clearly

demonstrated the importance of type I and III IFNs in the prevention of ZIKV infection

[24,72]. Type I IFNs activate cells expressing the IFNAR. This event triggers STAT1, STAT2,

and IFN regulatory factor 9 (IRFAU : PleasenotethatIRF � 9hasbeendefinedasIFNregulatoryfactor9inthesentenceThiseventtriggersSTAT1; STAT2; andIFNregulatoryfactor9:::Pleasecorrectifnecessary:-9) to translocate to the nucleus and induce the transcription

of multiple antiviral proteins called IFN-stimulated genes (ISGs), which effectively block viral

replication and viral particle assemblage. Interestingly, the ZIKV NS5 protein targets human

STAT2 inducing its degradation, abolishing type I IFNs responses [70]. However, this phe-

nomenon is not observed in mice. For this reason, mice are highly resistant to ZIKV infection

compared to humans, and transgenic or IFN knockout models are required to further investi-

gate the host–pathogen relationship [24,73].

It has also recently been shown that ZIKV triggers the production of kynurenine (Kyn),

which activates its receptor called aryl hydrocarbon receptor (Ahr). This receptor is capable of

suppressing not only type I IFNS, but also inhibits the effect of the promyelocytic protein leu-

kemia (PML) protein, which limits ZIKV replication. The use of Ahr antagonists in a murine

experimental model of vertical transmission abrogated kyn-induced suppression and led to a

better fetal outcome [74].

A possible implication of pyroptosis and inflammasome activation

in neurological disorders associated with ZIKV infection

Pyroptosis is a type of programmed cell death triggered by the stress of extracellular or intra-

cellular homeostasis [75]. Morphologic alterations associated with pyroptosis are a unique

form of chromatin condensation that differs from apoptosis and plasma membrane permeabi-

lization. Pyroptosis utilizes caspase-1–dependent and caspase-1–independent mechanisms.

During dengue infection, viral RNA is recognized by innate receptors [76]. Cytoplasmic nucle-

otide-binding oligomerization domain (NODAU : PleasenotethatNODhasbeendefinedasnucleotide � bindingoligomerizationdomaininthesentenceCytoplasmicnucleotide � bindingoligomerizationdomainðNODÞ � likereceptorsactivatesignaling:::Pleasecorrectifnecessary:)-like receptors activate signaling pathways that

subsequently culminate in the activation of a multiprotein complex called inflammasome.

Among the components that make up this multiprotein unit, the cellular protease caspase-1 is

of relevance [77]. With the activation of inflammasomes, pro-caspase-1 is cleaved into cas-

pase-1, which then cleaves pro-IL-1β and pro-IL-18 as well as gasdermin D (GSDMD), which

are released to the extracellular milieu [78]. IL-1β is a pyrogenic cytokine that mediates fever,

immune cell migration, BBB disruption, adaptive immune activation, and several other func-

tions. IL-18 induces IFN-γ production, which is important to activate effector T cells and NK
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cells. In turn, GSDMD is known to form pores that are necessary for the rapid release of IL-1β
[79,80]. A recent study demonstrated that inflammasome responses are associated with

human glioblastoma cell line activation when infected with ZIKV. This infection was linked

with increased oxidative stress and pyroptosis, contributing to inflammation and neurological

dysfunction [81].

The protective role of microglia against neurological damage

caused by ZIKV

Microglia are resident macrophages located in the CNS. They are a main component of the

local immune response, eliminating apoptotic cells and playing an essential role in brain devel-

opment, synaptic pruning, memory, and neuronal recycling [35]. Limonta and colleagues

demonstrated that primary human fetal astrocytes (HFAs) that promote neuron support and

nutrition and participate in the BBB maintenance can become a reservoir for ZIKV, shedding

virus for at least 1 month post-in vitro infection [82]. ZIKV infects microglia progenitors that

derive from the yolk sac (first site of hematopoiesis in both mice and humans), and then, when

mature, microglia carrying ZIKV invade the fetal brain [82]. This provides an explanation on

how ZIKV reaches the brain of the fetus.

Moreover, many PAMPs and damage-associated molecular patterns (DAMPs) are associ-

ated with brain damage and can trigger microglia activation. Fekete and colleagues hypothe-

sized that microglia sense damage of individual cells before irreversible neuronal injury,

recruiting more phagocytic resident cells to the compromised neurons after virus infection via

purinergic receptors, promoting phagocytosis, and restraining virus dissemination [83]. The

authors also demonstrated that ATP delivered by infected neurons exerts chemotactic func-

tion, recruiting more precursors of phagocytic cells into the site of brain infection [83].

Conclusions

Despite the advances in understanding the immunopathology of the neurological disorders

associated with ZIKV infections, several underlying mechanisms remain poorly understood.

One important aspect is to determine the main routes and biological processes of ZIKV infec-

tion in fetuses and adults and whether they overlap. In addition, extensive research is necessary

to find therapeutic targets to avoid uncontrolled ZIKV-induced neuroinflammation and BBB

damage. This is important to prevent the resulting neuropathology due to cell death, dysregu-

lated cell cycle–related pathways, and local immune dysregulation [71,84].

Although the role of type I IFNs and their associated signaling pathways involved in the

immune response to ZIKV have been extensively investigated, other protective host factors

remain to be uncovered. In addition, immunopathological mechanisms that are poorly under-

stood in humans have been investigated in detail in ZIKV-infected mice, including damage of

the BBB by astrocytes resulting in a significant infiltration of T lymphocytes into the CNS.

This event destroys neurons, causing considerable damage to the brain due to dysregulation of

antiviral activity and cytotoxicity resulting in paralysis. This finding supports the role of adap-

tive immunity in the neurological manifestations that occur in ZIKV-infected patients [69,85].

However, the precise mechanisms resulting in immune dysregulation that lead to ZIKV-

induced autoimmunity remain unclear. Thus, in the absence of approved specific anti-ZIKV

therapy or vaccines, a better understanding of the mechanisms that are involved in susceptibil-

ity to ZIKV infection and its pathophysiology will be essential for developing effective thera-

pies, reducing morbidity and mortality of newborns and adults due to ZIKV infections.
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23. Mlakar J, Korva M, Tul N, PopovićM, Poljšak-Prijatelj M, Mraz J, et al. Zika Virus Associated with Micro-

cephaly. N Engl J Med. 2016; 374:951–958. https://doi.org/10.1056/NEJMoa1600651 PMID: 26862926

24. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika Virus Infection during Preg-

nancy in Mice Causes Placental Damage and Fetal Demise. Cell. 2016; 165:1081–1091. https://doi.

org/10.1016/j.cell.2016.05.008 PMID: 27180225

25. Srivastava M, Zhang Y, Chen J, Sirohi D, Miller A, Zhang Y, et al. Chemical proteomics tracks virus

entry and uncovers NCAM1 as Zika virus receptor. Nat Commun. 2020; 11:3896. https://doi.org/10.

1038/s41467-020-17638-y PMID: 32753727

26. Meertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, et al. Axl Mediates ZIKA

Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep. 2017; 18:324–

333. https://doi.org/10.1016/j.celrep.2016.12.045 PMID: 28076778

27. Chavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS, Sanford TJ, et al. Neurodevelopmental pro-

tein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017; 357:83–

88. https://doi.org/10.1126/science.aam9243 PMID: 28572454

28. Dirlikov E, Torres J V., Martines RB, Reagan-Steiner S, Pérez GV, Rivera A, et al. Postmortem findings
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