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Abstract

Previous field and laboratory studies investigating airborne Burkholderia pseudomallei have

used a variety of different aerosol samplers to detect and quantify concentrations of the bac-

teria in aerosols. However, the performance of aerosol samplers can vary in their ability to

preserve the viability of collected microorganisms, depending on the resistance of the

organisms to impaction, desiccation, or other stresses associated with the sampling pro-

cess. Consequently, sampler selection is critical to maximizing the probability of detecting

viable microorganisms in collected air samples in field studies and for accurate determina-

tion of aerosol concentrations in laboratory studies. To inform such decisions, the present

study assessed the performance of four laboratory aerosol samplers, specifically the all-

glass impinger (AGI), gelatin filter, midget impinger, and Mercer cascade impactor, for col-

lecting aerosols containing B. pseudomallei generated from suspensions in two types of cul-

ture media. The results suggest that the relative performance of the sampling devices is

dependent on the suspension medium utilized for aerosolization. Performance across the

four samplers was similar for aerosols generated from suspensions supplemented with 4%

glycerol. However, for aerosols generated from suspensions without glycerol, use of the fil-

ter sampler or an impactor resulted in significantly lower estimates of the viable aerosol con-

centration than those obtained with either the AGI or midget impinger. These results

demonstrate that sampler selection has the potential to affect estimation of doses in inhala-

tional animal models of melioidosis, as well as the likelihood of detection of viable B. pseu-

domallei in the environment, and will be useful to inform design of future laboratory and field

studies.

Author summary

Burkholderia pseudomallei is a type of bacteria that can cause a severe disease called

melioidosis in humans, and it is known to be transmitted by aerosols in some cases. In

this study, we compare the performance of four aerosol samplers for B. pseudomallei aero-

solized from different types of liquid suspensions. We found that differences in sampler
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performance were dependent on the composition of the suspension from which the bacte-

ria was aerosolized, with samplers that collect onto dry substrates (25mm gelatin filters

and a Mercer cascade impactor) performing poorly when the initial suspension contained

nothing to protect the bacteria against desiccation. The results of this study will help

inform comparisons between previous studies of B. pseudomallei in aerosols that used dif-

ferent methods, and will be useful to inform sampler choices for future studies, both in

laboratory settings with controlled conditions and field studies with aerosols of unknown

composition.

Introduction

The gram-negative bacterium B. pseudomallei, the causative agent of the disease melioidosis, is

a soil saprophyte endemic to Southeast Asia, northern Australia, and other tropical regions

around the world [1]. Melioidosis is a significant public health concern, with estimates of

upwards of 100,000 cases occurring worldwide annually [2–5]. Direct contact with contami-

nated soil or water is considered to be the primary route of exposure, but there is evidence that

aerosol transmission also contributes to the spread of melioidosis. While one air sampling

study in the endemic region found no evidence of B. pseudomallei in air samples[6], culturable

B. pseudomallei has been isolated from outdoor air samples collected downwind from known

environmental reservoirs and upwind of cases of melioidosis with respiratory symptoms [7,8],

and B. pseudomallei genetic material has been found in air samples during a typhoon season in

Taiwan [9]. Furthermore, airborne transmission has been demonstrated for other Burkhol-
deria species, including B. cepacia and B. cenocepacia, [10–13].

Studies to assess the hazard posed by an airborne pathogen rely on aerosol sampling devices

to collect material for subsequent analyses. However, previous studies have demonstrated that

aerosol samplers differ in their ability to collect and preserve the viability of collected microor-

ganisms [14–17], complicating comparisons of results from studies that have utilized different

samplers. Differences in sampler performance have the potential to bias study outcomes,

including conclusions about the presence or absence of the microorganism in naturally occur-

ring aerosols in a field study or assessments of the inhalational virulence in animal models of

disease. Previous studies of aerosols containing Burkholderia spp. have employed a wide vari-

ety of sampling devices to collect material for analyses. Studies have detected Burkholderia spp.

in field studies using both high flow air samplers [8,18–20] as well as lower flow devices, specif-

ically impingers and filters [7,9]. Laboratory studies examining the effects of inhaled B. pseudo-
mallei in animal models of disease have predominantly utilized liquid impingers to quantify

the concentration of the bacterial aerosols and estimate the dose received [21–33].

Despite the public health concerns surrounding B. pseudomallei and its potential for aerosol

transmission, as well as the potential for sampler selection to affect study outcomes, only one

study was identified that reported data comparing the performance of aerosol samplers with

this microorganism [22]. That study examined common laboratory aerosol samplers and dem-

onstrated that the Mercer cascade impactor, gelatin filter, and AGI performed equivalently for

quantifying concentrations of aerosolized B. pseudomallei [22]. The aim of the present study

was to extend the findings of this previous study by assessing the performance of additional

aerosol samplers commonly utilized in the laboratory for sampling aerosolized B. pseudomal-
lei, as well as to assess the effect of the medium in which the microorganism is suspended prior

to aerosolization on sampler performance. Data on the relative performance of aerosol sam-

pling devices produced by this study may be useful to inform sampling strategies for future
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laboratory studies examining the inhalational hazard posed by B. pseudomallei, as well as selec-

tion of sampling devices for field studies seeking to quantify concentrations of naturally occur-

ring outdoor aerosols containing viable B. pseudomallei.

Methods

Bacteria

B. pseudomallei 1026b was obtained from Battelle Memorial Institute (BMI) in Columbus,

OH. BMI had obtained the stock directly from the Mahidol Oxford Tropical Medicine

Research Unit in Bangkok, Thailand. B. pseudomallei 1026b was originally isolated in 1993,

and has since become a commonly used isolate for inhalation studies using animal models of

melioidosis [26,32–36]. The day prior to an experiment, 200 μL of thawed single use frozen ali-

quots of B. pseudomallei 1026b were used to inoculate 50 mL of LB-Lennox (LB) Broth

(Teknova) in a 200 mL baffled flask. Cultures were incubated with shaking at 225 rpm for 18 h

at 37˚C to produce stationary phase bacteria. The suspension containing stationary phase bac-

teria was diluted 1:10 in LB broth or LB broth supplemented with 4% glycerol (LB4G) and

stored at room temperature for up to two hours until use. Both LB broth and LB4G, or media

with similar compositions, are commonly used for culturing B. pseudomallei for aerosol exper-

iments [27,37–41]. In the present study, aerosol starting material suspensions in LB had a

mean titer of 8.69 ± 0.08 Log colony forming units (CFU)/mL, and suspensions in LB4G had a

mean titer of 8.71 ± 0.08 Log CFU/mL. All work with B. pseudomallei was conducted in a Bio-

safety Level 3 (BSL-3) laboratory.

Colony counts were used to estimate concentrations of viable B. pseudomallei in aerosol

starting materials and in aerosol samples. Samples were diluted in phosphate buffered saline

(PBS; Gibco) containing 0.002% Tween-80 (Millipore Sigma) (PBST), plated in triplicate on

sheep blood agar (SBA) plates, inverted, and incubated for 44–48 h at 37˚C before counting

colonies.

Tracer

Tests to assess physical performance of the aerosol sampling devices utilized a non-labile

tracer, specifically 1 μm FluoroMax green polystyrene latex (PSL) microspheres (PN G0100,

ThermoFisher Scientific), suspended in LB or LB4G. Total fluorescence in samples was mea-

sured using a Glomax Multi Jr fluorescence reader (Promega) with excitation and emission

wavelengths of 460 nm and 515–570 nm, respectively. Results are reported as relative fluores-

cence units (RFU).

Aerosol test system and samplers

A test system consisting of an aerosol generator, a desiccant dryer, and chamber with multiple

sampling ports was constructed and used to compare the performance of four devices for sam-

pling B. pseudomallei aerosols (Fig 1). Aerosols were generated into the system using a 3-jet

Collison nebulizer (CH Technologies) controlled with a mass flow controller (Alicat Scientific)

at an average flow of 8.4 ± 0.1 Lpm. A desiccant drier (In-Tox Products) was situated down-

stream of the aerosol generator to aid in droplet evaporation and equilibration before the aero-

sol entered the sampling chamber. The sampling chamber was constructed of 10.2 cm

diameter stainless steel sanitary pipe with four 1.3 cm sampling ports evenly spaced around

the circumference of the sampling chamber. Aerosol sampling devices were connected to the

ports on the sampling chamber with conductive tubing. Perforated stainless steel plates located

upstream and downstream of the sampling ports facilitated uniform distribution of the airflow

PLOS NEGLECTED TROPICAL DISEASES Aerosol sampler comparison for Burkholderia pseudomallei

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009001 February 1, 2021 3 / 14

https://doi.org/10.1371/journal.pntd.0009001


and aerosol within the sampling chamber. The total exhaust airflow of the system consisted of

the flows of the individual samplers and additional HEPA-filtered vacuum pump-driven

exhaust, and was maintained at an average of 19.9 ± 0.2 Lpm. A HEPA-filter (TSI Inc.) located

immediately upstream of the desiccant dryer allowed for passive entry of additional dilution

air required to balance the supply and exhaust airflows.

The performance of four types of laboratory aerosol samplers were evaluated in this study:

All Glass Impingers (AGI; Model 7541; Ace Glass Inc.), midget impingers (PN: 225-36-1; SKC

Inc.), 25 mm gelatin filters (PN: 12602-25-ALK; Sartorius Stedim Plastics GmbH.) in delrin fil-

ter holders (PN 1109, Pall Corp.), and a Mercer cascade impactor (PN MCR-3500, In-Tox

Products). AGIs were selected for evaluation as they are a common collection device utilized

in many published studies with B. pseudomallei [21–24,26, 27,31–33]. Midget impingers were

selected as a liquid sampler with the potential for more gentle collection than the AGI. While

the AGI accelerates particles to sonic velocity through a critical orifice, the midget impinger

can be operated at lower flow/velocity. Gelatin filters were selected for comparison based on

their ease of use and past use in studies with aerosolized B. pseudomallei [8,22,32]. Addition-

ally, gelatin filters do not contain any glass components, which can be an important safety con-

sideration in the biocontainment laboratories required for work with B. pseudomallei. The

Mercer cascade impactor is a compact stainless-steel collection device that fractionates aerosol

particles based on their aerodynamic size, allowing estimation of both the concentration and

the particle size distribution of the sampled aerosol.

Midget impingers were loaded with 10 mL PBST and operated at a target airflow of 1 Lpm,

regulated with a critical orifice (O’Keefe Controls). AGIs were loaded with 10 mL PBST and

operated at 6 Lpm using the critical orifice intrinsic to the sampler. Prior to use, the stainless

steel impactor collection discs for the Mercer cascade impactor were coated with a thin layer

of polyethylene glycol (PEG; MilliporeSigma) to aid capture of aerosol particles. The impactor

was operated at 3.5 Lpm, and material collected on impactor discs during sampling was recov-

ered by placing collection discs into separate tubes containing 5 mL PBST and briefly vortex-

ing. Gelatin filters were operated at a target flow of 1 Lpm, regulated with a critical orifice

(O’Keefe Controls). Material collected on gelatin filters was re-suspended by dissolving each

filter in 10 mL of PBST at approximately 37˚C and vortexing briefly to facilitate dissolution.

Fig 1. Aerosol test system. (A) Side view: a Collison nebulizer generated aerosols that passed through a desiccant dryer before entering the sampling chamber. The aerosol

was sampled from four ports spaced evenly around the circumference of the sampling chamber; (B) Cross-sectional view at the plane of sampling ports: Samplers were

connected to the sampling chamber as shown to prevent the need for any additional bends in the sampling inlets. Clockwise from top: gelatin filter in delrin holder, AGI,

midget impinger, and Mercer cascade impactor.

https://doi.org/10.1371/journal.pntd.0009001.g001
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Assessment of physical and biological collection efficiencies

Tests were conducted with fluorescent PSL microspheres to assess the physical performance of

the sampling devices and separately with B. pseudomallei to assess their ability to preserve bac-

terial viability. All tests with B. pseudomallei were conducted with the aerosol test system

installed in a Class III Biosafety Cabinet. Six replicate tests were conducted with each combina-

tion of suspension liquid and analyte. Sampler and system airflows were measured prior to

each test using a thermal mass flow meter (PN 4043, TSI, Inc.). For each test, a single sampler

of each type was attached to one of the ports on the sampling chamber (Fig 1) and an aerosol

containing either B. pseudomallei or 1 μm fluorescent PSL microspheres in either LB or LB4G

was generated with the Collison nebulizer into the test system. Following a ten-second equili-

bration period after initiation of aerosol generation, sampler airflow was engaged and the sam-

plers collected aerosol for ten minutes.

For each test, the aerosol concentration (Caero) of either B. pseudomallei or the PSL tracer

measured at each port was calculated according to Eq 1, where Cs is the analyte concentration

in the liquid recovered from the sampler, Vs is the volume recovered from the sampler, Qs is

the sampler air flow rate, and ts is the sampling duration.

Caero ¼
Cs � Vs

Qs � ts
Eq1

For each sampler, the B. pseudomallei aerosol concentration measured in each test was

divided by the mean tracer aerosol concentration from the same sampler type to normalize the

culturable B. pseudomallei aerosol concentration for sampler-specific physical inefficiencies,

such as low collection efficiency, re-aerosolization from the sampler, or incomplete recovery of

collected material from the sampler. This ratio represents a relative measure of the ability of a

given sampler to preserve the viability of collected B. pseudomallei.
The median aerodynamic diameter and geometric standard deviation (GSD) of the aerosol

in each test were calculated using the fluorescence or B. pseudomallei concentration data from

the Mercer cascade impactor stages using a two point interpolation of the cumulative concen-

tration as described previously [42]. Results are reported as activity median aerodynamic

diameters (AMAD) rather than mass median aerodynamic diameters (MMAD) as the calcula-

tions are based on the activity of the material collected on each stage rather than its mass.

Sample concentrations, aerosol concentrations, and size parameters were calculated using

Microsoft Excel 2013. Aerosol concentrations were compared using 2-way ANOVA and

Tukey’s post-test with suspension medium and sampler as factors using GraphPad Prism ver-

sion 6.03 (GraphPad Software). Particle size parameters were compared using 2-way ANOVA

with suspension medium and analyte as factors. An alpha level of 0.05 was used as the criterion

for statistical significance. All values are presented as mean ± standard deviation.

Results

Aerosol concentrations of 1 μm fluorescent microspheres measured with each sampler type

are shown in Fig 2. Aerosol concentrations varied significantly by sampler type (P<0.0001),

but neither the suspension medium nor the interaction of sampler and suspension medium

were significant factors (P = 0.3977 and P = 0.0961, respectively). Concentrations measured by

the midget impinger were significantly lower than all other samplers, indicating a lower overall

physical collection efficiency for this sampler. The concentrations measured by the AGI, Mer-

cer cascade impactor, and gelatin filter were similar to each other, although small but signifi-

cant differences were observed between the Mercer cascade impactor and the gelatin filter
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with LB aerosols (P = 0.0467) and between the AGI and the Mercer cascade impactor with

LB4G aerosols (P = 0.0028).

Aerosol concentrations of B. pseudomallei measured with each sampler type are shown in

Fig 3. Suspension medium, sampler type, and the interaction between parameters were all sig-

nificant factors when compared using two-way ANOVA (P<0.0025 for all comparisons). B.

pseudomallei aerosol concentrations were significantly higher when aerosolized in LB4G than

in LB. No significant differences were observed between the aerosol concentrations measured

by any of the samplers for LB4G aerosols. For LB aerosols, there was not a significant differ-

ence between aerosol concentrations measured with the AGI and midget impinger. However,

the concentrations measured with the AGI and midget impinger were significantly higher

than those measured with either the Mercer cascade impactor or the gelatin filter (P<0.0205

for all comparisons).

The ratio of the aerosol concentration of B. pseudomallei to the aerosol concentrations of

1 μm fluorescent microspheres measured by each sampler was used to normalize for physical

losses and provide a relative measure of the ability of a given sampler to preserve the viability

of collected B. pseudomallei (Fig 4). For these ratios, both the suspension medium and sampler

type were significant factors (P<0.0001 for both), but the interaction between suspension

medium and sampler type was not (P = 0.1813). Ratios for each sampler were higher with aero-

sols generated from LB4G than LB. For both LB and LB4G aerosols, the largest observed differ-

ence in ratios between samplers was between the Mercer cascade impactor and the midget

impinger. For LB4G aerosols, this difference was approximately 2-fold, whereas for LB aerosols

the difference was over 100-fold.

Fig 2. Tracer aerosol concentrations. Aerosol concentrations varied significantly by sampler type (P<0.0001), but neither the suspension medium nor the

interaction of sampler and suspension medium were significant factors (P = 0.3977 and P = 0.0961, respectively). Tracer aerosol concentrations measured by midget

impingers were lower than all other samplers for aerosols of both LB and LB4G. Small but significant differences were present between the Mercer cascade impactor

and either the gelatin filters (LB aerosols), or the AGI (LB4G aerosols). Significant differences by Tukey’s multiple comparisons post-test are indicated by an asterisk.

MI = midget impinger, AGI = All Glass Impinger, MCI = Mercer cascade impactor, GF = gelatin filter.

https://doi.org/10.1371/journal.pntd.0009001.g002
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Particle size distributions estimated using Mercer cascade impactors are shown in Table 1.

By 2-way ANOVA, the suspension medium had a small but significant effect on the AMAD

(P = 0.0317), but neither the analyte nor the interaction between analyte and suspension

medium was a significant factor (P = 0.8450 and 0.5073, respectively). There was not a signifi-

cant difference between the GSDs as a function of suspension medium, analyte, or their inter-

action. (P = 0.2557, 0.9941, and 0.2035, respectively).

The aerosol concentrations measured by each sampler and the particle size distribution

parameters determined from the Mercer cascade impactor data for each test are available in

the supplementary information file (S1 Data).

Discussion

Previous studies have provided evidence that aerosol transmission may contribute to the

spread of melioidosis, although the relative contribution of this pathway to overall disease

transmission is not known. Accurate measurements of viable airborne B. pseudomallei concen-

trations in field and laboratory studies are important for assessing the hazard posed by this

transmission pathway. However, such measurements are dependent on the ability of an aero-

sol sampler to collect and preserve the viability of bacteria, and few studies have examined the

performance of aerosol sampling devices with B. pseudomallei to inform sampler selection or

facilitate comparisons between studies. The present study examined the performance of four

commonly utilized laboratory aerosol samplers with aerosols of B. pseudomallei 1026b gener-

ated from suspensions in media with and without supplemental glycerol. Results demonstrated

that viable bacterial aerosol concentrations were dependent upon both the type of sampler

used and the composition of the suspension medium from which the aerosols were generated.

Fig 3. B. pseudomallei aerosol concentrations. For aerosols generated from B. pseudomallei suspended in LB, the Mercer cascade impactor and gelatin filter

measured significantly lower aerosol concentrations than the AGI and midget impingers. However, for aerosols generated from B. pseudomallei suspended in LB4G,

all four samplers performed equivalently. Significant differences by Tukey’s multiple comparisons post-test are indicated by an asterisk. MI = midget impinger,

AGI = All Glass Impinger, MCI = Mercer cascade impactor, GF = gelatin filter.

https://doi.org/10.1371/journal.pntd.0009001.g003
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For B. pseudomallei aerosolized from suspensions in LB broth supplemented with glycerol,

the aerosol concentrations of viable bacteria measured with an AGI, midget impinger, gelatin

filter, and Mercer cascade impactor were equivalent. This finding is consistent with a previous

study which found no differences in the performance of AGIs, gelatin filters, and Mercer cas-

cade impactors for measuring aerosol concentrations of B. pseudomallei suspended in tryptone

broth with 4% glycerol, a formulation similar to the glycerol-supplemented LB broth used in

the present study [22]. However, for aerosols generated from suspensions without supplemen-

tal glycerol in the present study, measured aerosol concentrations of B. pseudomallei were

dependent on the type of sampler used, with both liquid impingers resulting in significantly

higher concentrations than either the Mercer cascade impactor or the gelatin filter.

In addition to tests with B. pseudomallei, tests were also conducted with 1 μm fluorescent

PSL microspheres as a tracer to assess the relative physical performance of the samplers. Dif-

ferences in tracer aerosol concentrations were observed between the different samplers, but

Fig 4. Aerosol Concentration Ratios. The aerosol concentrations of B. pseudomallei measured with each sampler were normalized for the physical losses by taking

the ratio of B. pseudomallei concentration to tracer aerosol concentration measured for each sampler type. The results of 2-way ANOVA demonstrate that both

suspension medium and sampler type, but not their interaction, were significant factors (P<0.0001, P<0.0001, and P = 0.1813, respectively). Significant differences

by Tukey’s multiple comparisons post-test are indicated by an asterisk. MI = midget impinger, AGI = All Glass Impinger, MCI = Mercer cascade impactor,

GF = gelatin filter.

https://doi.org/10.1371/journal.pntd.0009001.g004

Table 1. Particle size distributions measured by Mercer cascade impactor. The suspension medium had a small but significant effect on the AMAD (P = 0.0317), but

neither the analyte nor the interaction between analyte and suspension medium was a significant factor. There was not a significant difference between the GSDs as a func-

tion of suspension medium, analyte, or their interaction.

Liquid Analyte AMAD (μm) GSD

LB 1 μm PSL microspheres 1.87 ± 0.37 1.59 ± 0.12

B. pseudomallei 1.92 ± 0.32 1.65 ± 0.17

LB4G 1 μm PSL microspheres 1.59 ± 0.22 1.59 ± 0.07

B. pseudomallei 1.68 ± 0.03 1.53 ± 0.03

https://doi.org/10.1371/journal.pntd.0009001.t001
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measured concentrations were not affected by the type of suspension medium. This result was

expected given the similarity in particle size distributions for aerosols generated from the dif-

ferent media. Comparisons of the ratios of B. pseudomallei to tracer aerosol concentrations

demonstrated that significant differences existed in the ability of the different samplers to pre-

serve the culturablity of collected bacteria, and that these differences were dependent on both

sampler type and suspension medium. Notably, while the lower aerosol concentrations of the

physical tracer measured by the midget impinger for both media suggest that it is less physi-

cally efficient than the other samplers for this particle size distribution, the concentration ratio

values suggest that it is better at preserving the viability of collected bacteria than the other

samplers. These differences effectively cancelled each other out, a finding that would not have

been apparent by only comparing concentrations of viable B. pseudomallei.
In the present study, liquid impingers were significantly better than the gelatin filter or

Mercer cascade impactor at preserving the culturability of collected bacteria aerosolized from

LB broth, suggesting that the microorganism may be sensitive to desiccation post-collection

within the sampler. This effect was not evident when supplemental glycerol was present in the

initial suspension medium, suggesting that the effects of desiccation are dependent on the

composition of the aerosol particles. Glycerol is essentially non-volatile at the conditions tested

in the present study, and may have protected the organism against desiccation in the gelatin

filter and Mercer cascade impactor. These observations are consistent with previous studies

that have shown both that bacterial survival during aerosolization is affected by the composi-

tion of the initial suspension medium [43–45], and that glycerol can have protective effects on

microorganisms in aerosols [46]. While the suspension liquids used in the present study were

laboratory media, the observed sensitivity to desiccation is consistent with published reports

indicating that natural substrates which facilitate water retention, such as sputum or clay soils,

tend to preserve viability of Burkholderia spp. [11,47]. Additionally, these results suggest that

for field studies of B. pseudomallei where the composition of aerosol particles is unknown, use

of a collection device with a liquid collection medium may provide the best chance of detecting

viable bacteria.

B. pseudomallei is known to enter a viable-but-not-culturable (VBNC) state in response to

certain environmental stressors [48]. If the process of aerosolization and/or sampling had

induced a VBNC state in the present study, this occurrence would have been indistinguishable

from reductions in viability with the culture-based assay that was used. However, while the

time required for B. pseudomallei to transition to a VBNC state has not been well character-

ized, it has been shown for other bacteria to take hours to days [49]. B. pseudomallei aerosol

tests in the present study were only ten minutes in duration, and the dry samplers were recov-

ered into liquid aliquots within ten minutes of the completion of each test. It is therefore

unlikely that transitions to a VBNC state contributed significantly to reductions in aerosol

concentrations measured by the samplers in this study, although further testing is needed to

confirm this.

Data from the present study demonstrate that the composition of the initial suspension

medium can significantly influence comparisons of sampler performance with B. pseudomal-
lei, and suggest that the results of previous studies may not be applicable to all cases of B. pseu-
domallei aerosol collection and analysis. Consideration of such factors is important for studies

involving this microorganism, including those attempting to quantify inhaled doses of B. pseu-
domallei in animal models of disease. For example, if such a study utilized LB broth as the sus-

pension medium for aerosol generation and a Mercer cascade impactor for sampling, the

estimated inhaled dose would be expected to be underestimated by a factor of approximately

100-fold compared to the estimate expected if a liquid impinger was utilized.
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Other parameters that were not evaluated in this study also have the potential to impact the

performance of sampling devices, including the airflow rate and duration used for sampling,

the collection medium used for sampling, the temperature and humidity of the test system,

and differences in bacterial growth phase prior to aerosolization [17,50–55]. Furthermore,

while relative performance for collecting and preserving bacterial viability is an important con-

sideration when selecting an aerosol sampling device, other factors should be considered as

well, including safety, ease-of-use, and durability. For instance, while the liquid impingers in

the present study performed better than the gelatin filter and Mercer cascade impactor for

aerosols generated from LB suspensions, their glass construction may not be sufficiently dura-

ble for some field applications, and may present a safety hazard in biocontainment environ-

ments. Additionally, sampling studies for B. pseudomallei in field or clinical settings may

benefit from the use of samplers that operate at higher air-flow rates than the laboratory-scale

samplers assessed in the present study, in order to maximize the probability of detecting the

organism. Based on the results of the present study, it is likely that there would be a higher

probability of culturing B. pseudomallei from air samples in such studies if the sampling device

collected directly into a liquid matrix. However, additional laboratory studies with higher-flow

air samplers would be required to confirm this hypothesis.

Results from the present study suggest that any of the four evaluated samplers could be

used to measure viable bacterial aerosol concentrations with equivalent accuracy in future

studies involving B. pseudomallei aerosolized from suspensions with supplemental glycerol.

However, studies without added glycerol in the aerosolization suspension medium would

obtain more accurate measurements of viable B. pseudomallei aerosol concentrations using a

liquid impinger instead of a filter or impactor. Additionally, collection into liquid may provide

the best chance to detect viable B. pseudomallei in field or clinical sampling studies where the

organism may be present in aerosol particles of unknown chemical composition.
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