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Abstract

Background

Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency,

but also to its mechanism. Parasexual genetic exchange has been proposed based on

laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition,

mitochondrial introgression has been reported several times in natural isolates although its

mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have

inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents.

Methodology/Principal findings

In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments

and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially

involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686

paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three

strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We

observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned

strain and the other two cloned strains were compatible as parental strains (or nearly related

to the true parents). The three clones had almost the same ploidy and the DNA content was

similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve

faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of

three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared

66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast,

the putative parental stocks shared less than 30% of the mHVR clusters between them.

Conclusions/significance

The results suggest a reductive division, a natural hybridization, biparental inheritance of

the minicircles in the hybrid and maxicircle introgression. The models including such phe-

nomena and explaining the relationships between these three clones are discussed.
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Author summary

Chagas disease, an important public health problem in Latin America, is caused by the

parasite Trypanosoma cruzi. Despite being a widely studied parasite, several questions on

the biology of genetic exchange remain unanswered. Population genomic studies have

inferred meiosis in T. cruzi, but this cellular division mechanism has not been observed

in laboratory yet. In addition, previous results suggest that mitochondrial DNA (called

kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain

and its potential parents to address the mechanisms of genetic exchange at nuclear and

mitochondrial levels. We observed that the hybrid strain had heterozygous patterns and

DNA content compatible with a meiosis event. Also, we observed that the evolutionary

histories of nuclear DNA and kDNA maxicircles were discordant and that the three

strains shared identical DNA sequences. Mitochondrial introgression of maxicircle DNA

from one genotype to another may explain this observation. In addition, we demonstrated

that the hybrid strain shared kDNA minicircles with both parental strains. Our results

suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Fur-

ther research is required to address such phenomena in detail.

Introduction

The trypanosomatids cause devastating diseases around the world [1–3]. Trypanosoma cruzi,
Trypanosoma brucei and Leishmania spp. species are the main human pathogens among the

trypanosomatids, although other members of this family are also relevant [4, 5]. Genetic

exchange has been proposed naturally occurring in these species [6], although its frequency is

still debated [7–16]. Genetic exchange by meiosis has been described in T. brucei [17, 18] and

Leishmania [19]. In spite of being recently proposed by genomic studies [14, 20] meiosis has

not been reported for T. cruzi in the laboratory yet. Alternatively, experimental tetraploid or

sub-tetraploid hybrids were observed in laboratory conditions [21, 22]. The fusion of diploid

cells to form a tetraploid and posterior random loss of chromosomes slowly returning to dip-

loidy was proposed as a model to explain genetic exchange in this species [21]. This mecha-

nism is similar to parasexuality in Candida albicans [23]. Interestingly, an homozygous state in

one-third of the chromosomes in parasexual hybrids is expected due to random loss of both

chromosomes of the same parent [24]. In T. cruzi, with more than 40 pairs of chromosomes

[25], the presence of chromosomes in a homozygous state in hybrid strains would be evident if

parasexuality was indeed the mechanism of genetic exchange. There are six major T. cruzi line-

ages (named TcI to TcVI) [26, 27]. Particularly, the natural hybrids TcV and TcVI appear to

be heterozygous in most loci which is unexpected under the parasexual model [28, 29] but fits

the hypothesis of a reductive division prior to cell fusion. A recent study based on sequencing

of 45 TcI genomes from a restricted geographical area showed that both mechanisms (sexual

and parasexual) may occur in natural populations [20].

The inheritance of the kDNA in hybrid strains also remains as an open question on the

reproductive biology of T. cruzi. Uniparental inheritance of maxicircles in natural occurring

hybrids [30] and in laboratory-made hybrids was previously suggested [21]. The hybrid DTUs

TcV and TcVI share nuclear genomes with the parental DTUs TcII and TcIII; whereas maxi-

circle sequences in both hybrid DTUs are derived from TcIII only [31]. On the other hand,

technical limitations caused by the great sequence variability of minicircle has hindered the

study of inheritance of these molecules [32]. Recently, we studied the hypervariable region

of the minicircles (mHVR) by deep sequencing and observed that TcV and TcVI share
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minicircles with both parental DTUs (TcII as TcIII) and not just with TcIII, as observed in

maxicircles. Based on these results we proposed that minicircle inheritance may be biparental

in natural occurring hybrids [33]. Biparental inheritance of the kDNA has also been proposed

for T. brucei [34–36].

Another question related to the mechanisms of genetic exchange in T. cruzi is the mito-

nuclear discordance observed in some DTUs. This phenomenon can be described as a signifi-

cant difference in levels of differentiation between nuclear and mitochondrial markers, where

nuclear phylogeny is more structured (higher number of and longer branches) than mitochon-

drial phylogeny (kDNA phylogeny in this case) [37]. In T. cruzi, mito-nuclear discordance is

clearly observed in TcIII. According to nuclear loci, TcIII is nearly related to TcI; although max-

icircle sequences cluster TcIII with TcIV from South America [31, 38]. In addition, mito-nuclear

discordance was also observed within TcI [39–41]. This phenomena in T. cruzi could be caused

by mitochondrial introgression i.e. successive backcrosses of a hybrid with one of the parents.

In previous studies, we described a TcI strain (TEDa2cl4) isolated from Chaco Province,

Argentina, as a potential hybrid. TEDa2cl4 presented some heterozygous patterns in isoenzy-

matic loci [42], a high number of heterozygous SNPs in the spliced-leader intergenic region

[43] and heterozygous patterns in nuclear loci revealed by MLST [29, 44]. We isolated—within

the same restricted geographical area—two strains (TEV55cl1 and PalDa20cl3) that could be

potential parents of such hybrid, considering also isoenzymatic loci [42], the SL-IR [43] and

MLST [29, 44]. Considering the above, this strain triplet is an interesting opportunity to

address the mechanism of genetic exchange in T. cruzi. Here, we analyzed the DNA sequence

for 14 nuclear loci of such strains along with 3 maxicircle regions and around 6.1 million

paired-end reads of the mHVRs. We also addressed ploidy of the strains by flow cytometry.

Materials and methods

Strains

Three laboratory cloned stocks isolated from Chaco province, Argentine, and belonging to TcI,

were analyzed. The stocks characteristics are summarized in Table 1. In addition, the TcI strains

Sylvio and TEV91cl5 were also cultured and used as controls. The stocks were maintained in

liver infusion-tryptose (LIT) medium supplemented with 10% fetal bovine serum. Parasites in

exponential growth phase were harvested by centrifugation (800 xg, 10 min, 4 ˚C) for DNA

extraction and flow cytometry. DNA was extracted by using a commercial kit (Inbio Highway).

Sequencing of nuclear and maxicircle gene fragments

The primers used to amplify eight nuclear regions and three maxicircle gene fragments are

shown in Table 2. Primer sequences described for first time in this paper were estimated by

using Primer3Plus [45] with default parameters. PCRs were carried out in reaction volumes

of 50 μl containing 50 ng of DNA; 0.2 μM of each primer, 1 U of goTaq DNA polymerase

Table 1. TcI stocks used in this study to address hybridization and kDNA inheritance.

Stock Host Geographical origin (Chaco Province, Argentine) SL-IR group1 / MLST cluster2

PalDa20cl3 Didelphis albiventris EL PALMAR, 12 de Octubre Chaco-3 / Chaco-3

TEDa2cl4 Didelphis albiventris TRES ESTACAS, Chacabuco Chaco-3 / potential hybrid3

TEV55cl1 Triatoma infestans TRES ESTACAS, Chacabuco Chaco-2 /Chaco-2

1. Group according to Spliced Leader Intergenic Region (SL-IR) sequence [43].
2. Cluster according sequence of 8 nuclear gene fragments as analyzed in [44].
3. MLST analysis suggested TEDa2cl4 is a hybrid between Chaco-2 and Chaco-3 Clusters [44].

https://doi.org/10.1371/journal.pntd.0007770.t001
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(Promega), 10 μl of 5X buffer (supplied with the goTaq polymerase) and a 50 μM concentra-

tion of each dNTP (Promega). Cycling conditions were as follow: 3 min at 94 ˚C followed by

30 cycles of 94 ˚C for 30 seconds; 50 ˚C for 30 seconds; and, 72 ˚C for 30 seconds, with a final

extension at 72 ˚C for 10 minutes. Amplified fragments were precipitated with 70% ethanol

and sequenced on both strands in an ABI PRISM_310 Genetic Analyzer (Applied Biosystems).

In addition, sequences from genes leucine aminopeptidase (LAP), glucose-6-phosphate isom-

erase (GPI), glutathione peroxidase (GPX), pyruvate dehydrogenase E1 component alpha sub-

unit (PDH), 3-hydroxy-3-methylglutaryl-CoA reductase (HMCOAR) and small GTP-binding

protein rab7 (GTP) were obtained in a previous work [44].

Flow cytometry

Pellets containing 1x107 parasites were resuspended in 300 μl of PBS and 700 μl of ice-cold

methanol. The tube was gently inverted and incubated on ice for 10 min. Fixed parasites were

Table 2. Gene fragments, genomic location and primers used in this study.

Gene Genomic location on

CLBrener

Forward primer Reverse primer Reference

Hypothetical protein TcChr6-S: 151495–

152340

GTTCCACTTCCTCCATTTGC GCATGGCTCTGAAACAACAA This paper

Hypothetical protein TcChr6-S: 152483–

153291

TTCCATTTGCTCCTCTCGTT TGTCTCCCTTTGGTGGTTACA This paper

glucose-6-phosphate isomerase TcChr6-S:153784–

154584

AGGCCATTTGTTGAAGAATCA GTCCGCCATTGGTTTATCTG This paper

glucose-6-phosphate isomerase TcChr6-S:154577–

154981

CGCCATGTTGTGAATATTGG GGCGGACCACAATGAGTATC [29, 44]

glucose-6-phosphate isomerase TcChr6-S:155006–

155562

TCCATTCACCTCTCCTGACC CCTGAAGGATTTGACGGTTC This paper

ATP synthase subunit TcChr6-S:155935–

156336

AAGCTCAAATAATCCCTCAACG AAAGATATAATGCCCACAATCC This paper

Hypothetical protein TcChr6-S:156512–

156877

AAGCAGGCAACTTTGAATCC TCAACAAGGACGGGAGAGC This paper

Small GTP-binding protein Rab7

(GTP)

TcChr12-S: 436418–

436978

TGTGACGGGACATTTTACGA CCCCTCGATCTCACGATTTA [29, 44]

Leucine Aminopeptidase (LAP) TcChr27-P: 223436–

223825

TGTACATTGTGCTTGGCTGAG GCTGAGGTGATTAGCGACAAA [29, 44]

3-Hidroxi-3-metilglutaril-CoA

reductase (HMCOAR)

TcChr32-S: 852060–

852613

AGGAGGCTTTTGAGTCCACA TCCAACAACACCAACCTCAA [29, 44]

glutathione peroxidase (GPX) TcChr35-S: 417886–

418172

TGCAAAAGGGACATGTGATG CCCGGTGTAATTGGAGAGTG This paper

glutathione peroxidase (GPX) TcChr35-S: 418148–

418507

CGTGGCACTCTCCAATTACA AATTTAACCAGCGGGATGC [29, 44]

pyruvate dehydrogenase E1

component alpha subunit (PDH)

TcChr40-S: 1048833–

1049323

GGGGCAAGTGTTTGAAGCTA AGAGCTCGCTTCGAGGTGTA [29, 44]

Hypothetical protein TcChr40-S: 1050394–

1051576

TGGGTTTCTTGGATTTGGAC GGCGTCTCTTACACCGACAC This paper

NADH dehydrogenase subunit 1

(ND1)

Maxicircle GCACTTTCTGAGATAATCGAAAA TTAATCTTATCAGGRTTTGTTAGCC This

paper1

Cytochrome c Oxidase II (COII) Maxicircle GTTATTATCTTTTGTTTGTTTTGTGTG AACAATTGGCATGAATCCATGT This

paper1

Mitochondrial unidentified Reading

frame 1 (MURF-1)

Maxicircle ACACCCATCCATTCTTCA CMTTTGATCTATTGTGAYTAACGGT This

paper1

1. DNA fragment sequenced in this study, but primers designed by [39].

https://doi.org/10.1371/journal.pntd.0007770.t002
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centrifuged at 800 xg and washed in 5 ml of PBS two times. The pellet was resuspended in 1 ml

of PBS. Propidium Iodide and RNAse A were added to a final concentration of 30 μl/ml and

10 μg/ml, respectively, and incubated 45 min at 37 ˚C. Samples were analyzed in a FACS

Canto II in FL2 channel. Around 50,000 events were recorded for each sample and the samples

were analyzed by duplicate. Flowing software (http://flowingsoftware.btk.fi) was used for data

analysis. After gating out debris and cell clumps the data were plotted as fluorescence area his-

tograms. Gates were created for G1/0 (2n) peaks and for G2/M (4n) peaks. Mean G1/0 values

were used to infer relative DNA content. The coefficient of variation (CV) was recorded for

each fluorescence peak. The DNA content for each stock was expressed relative to Sylvio

strain, a nearly diploid strain [46].

mHVR sequencing

The mHVRs for TEDa2cl4 were amplified according to the protocol and primers proposed in

[33]. Amplicons were then purified using the magnetic beads Agencourt AMPure XP-PCR

Purification (Beckman Genomics, USA). The concentration of the purified amplicons was

controlled using Qubit Fluorometer 2.0 (Invitrogen, USA). The library was validated using

the Fragment Analyzer system (Advanced Analytical Technologies, USA). The library was

sequenced on an Illumina MiSeq using a 500 cycle v2 kit (Illumina, San Diego, USA). The

mHVR reads from TEV55cl1 and PalDa20cl3 were previously published in [33].

Bioinformatics

The reads were demultiplexed, trimmed and filtered according to [33]. After filtering, the

sequences were clustered with the “pick_de_novo_otus.py” script in QIIME V1.9.1 [47]. The

de novo approach groups sequences based on sequence identity using the uclust algorithm

[48]. Default parameters were used, and sequences were clustered according to two identity

thresholds—85% and 99%—in order to determine different mHVR clusters. Output tables

were filtered at 0.005% using the “filter_otus_from_otu_table.py” script, in order to discard

mHVR clusters with low abundance which are probably PCR or sequencing artifacts [49]. The

remaining parameters of the “filter_otus_table.py” script were used by default. For each strain,

the presence of a mHVR cluster was discarded when its abundance was lower than 20 read

sequences. In order to compare stocks with different number of reads, the datasets were rare-

facted to the number of reads in the smallest dataset (TEDa2cl4 in this case) by using the “mul-

tiple_rarefactions.py” script available in QIIME. This script creates a series of subsampled

mHVR clusters by random sampling (without replacement) of the input mHVR clusters. The

“jackknifed_beta_diversity.py” script was used to estimate compositional dissimilarity among

stocks. Default parameters and the Bray-Curtis measure were chosen. The script calculates the

beta diversity between each pair of previously resampled input strains, building a distance

matrix. The distance matrix was visualized by using Principal Coordinate Analysis (PCoA).

Phylogenetic analysis

In order to address mito-nuclear discordance, the uncorrected p-distance and a model cor-

rected distance were calculated between pairs of strains (TEV55cl1-CL Brener, TEV55c1-Es-

meraldo, CL Brener-Esmeraldo, TEV55cl1-TEV91cl5 and TEV55cl1-PalDa20cl3) for each

gene fragment using MEGA v7 [50]. The CL Brener sequences for each nuclear gene fragment

were obtained from CL Brener (non Esmeraldo) genome [25] from TriTryp database. The

average distance (model corrected and uncorrected) and the standard deviation were calcu-

lated for nuclear and maxicircle DNA fragments in order to compare substitution rates. Model

corrected distances were calculated using MEGA v7 software by selecting the best substitution
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model for each gene fragment and calculating the pairwise distance between strains according

to the selected model. In addition, sequences for the 14 nuclear gene fragments and three max-

icircle genes from TcI strains JRcl4 and Dm28c (available genomes in TriTryp) were included

into the analyses in order to address mito-nuclear discordance in TcI. Nuclear and maxicircle

sequences were concatenated in two independent alignments using MLSTest [51]. The

concatenated sequences were analyzed using MEGA v7 to select the best substitution model

and to build phylogenetic trees with 1,000 bootstrap replications.

Accession numbers

Nuclear DNA sequences from [44] were downloaded from GenBank (KF264037, KF268604,

KF268636, KF268620, KF264005, KF264021, JN129573, JN129606, JN129639, JN129507,

JN129540, JN129672, JN129608, JN129509, JN129674, JN129641, JN129575, JN129542).

Nuclear and maxicircle DNA sequences obtained in this paper are available in GenBank with

the following accession numbers: MN413539-MN413581. The mHVR reads for the three

strains are available the NCBI SRA database (BioProject ID: PRJNA514922).

Results

Analysis of fourteen nuclear loci and DNA content reveals that TEDa2cl4 is

an almost diploid hybrid clone

A total of 7,135 bases corresponding to 14 gene fragments on 6 chromosomes were analyzed

in the stocks TEDa2cl4, PalDa20cl3 and TEV55cl1. The polymorphic sites for each fragment

are shown on Fig 1A. The number of polymorphisms was low (36–0.5% of the total analyzed

sites). Thirty (83.3%) polymorphic sites were heterozygous in TEDa2cl4. Moreover, in 29/30

(96.7%) of these heterozygous sites, the pattern was compatible with the hypothesis of Pal-

Da20cl3 and TEV55cl1 as parents (or at least closely related to the parents). This result rein-

forces the hypothesis of TEDa2cl4 as a hybrid. Additionally, heterozygous SNPs in TEDa2cl4

were found in different chromosomes (Fig 1A). On the other hand, the percentage of heterozy-

gous polymorphic sites was relatively lower in PalDa20cl3 (25%) and TEV55cl1 (13.9%) than

in TEDa2cl4. The flow cytometry analysis for the three strains showed that they had similar

DNA contents (Fig 1B) suggesting a reductive division as meiosis. Particularly, the DNA con-

tent of TEDa2cl4 (hybrid) and TEV55cl1 (putative parental) were almost identical. The esti-

mated ploidy level is similar to the one obtained in the almost diploid reference strain Sylvio

(Fig 1C). In addition, PalDa20cl3 showed the highest relative DNA content (2.3n expressed as

the relative DNA content in relation to a half of the DNA content in Sylvio).

Maxicircle genes analysis showed mito-nuclear discordance

In contrast to the polymorphic sites observed in the nuclear loci, sequences of three maxicircle

genes (1,335 bp) revealed no polymorphic sites among the three strains. This was an unex-

pected result because coding maxicircle genes mutate faster than nuclear coding genes. This is

revealed in Fig 2A showing such different substitution rates among different DTUs and within

TcI. When uncorrected p-distance or model corrected distances were considered for pairs of

strains, a higher average substitution rate in maxicircle loci than in nuclear loci was observed

for most comparisons (Fig 2A and S1 Fig). The exception was the pair TEV55cl1-PalDa20cl3,

which had more substitutions at nuclear loci than at mitochondrial loci. This result indicates

mito-nuclear discordance. A comparison between nuclear and mitochondrial phylogenetic

trees also reveals the mito-nuclear discordance (Fig 2B). In addition, the trees also showed dis-

cordance considering other TcI strains suggesting that it is not an uncommon phenomenon.
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mHVR deep sequencing reveals that minicircles are biparentally inherited

in TEDa2cl4

We performed deep sequencing of the mHVR amplicons for the three strains. The number of

reads obtained for each strain is observed in Table 3. Sequences were clustered according to

the percentage of sequence identity. Despite having no variation in the three maxicircle loci

analyzed (Fig 2), the number of mHVR clusters in these strains was highly variable (Table 3).

In addition, a rarefaction analysis showed that the number of clusters did not depend on the

number of reads for each strain.

A Principal Coordinates Analysis (PCoA) (Fig 3A and 3B) of Bray-Curtis dissimilarities

among strains revealed that TEDa2cl4 did not cluster closely to one of the parental-like

strains as would be expected under the hypothesis of uniparental inheritance of minicircles.

Fig 1. Polymorphic sites in 14 nuclear DNA fragments and flow cytometry analysis show TEDa2cl4 is a near-diploid hybrid strain. (A)

polymorphic sites in 14 nuclear DNA fragments for the strains TEV55cl1, TEDa2cl4 and PalDa20cl3 showing heterozygous sites (yellow bases). (B)

Proportion of cells with different DNA content measured by fluorescence intensity of propidium iodide in flow cytometry. (C) DNA content in

different cell-cycle stages in relation to the nearly diploid strain Sylvio.

https://doi.org/10.1371/journal.pntd.0007770.g001
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Fig 2. Phylogenetic analysis of nuclear and kDNA gene fragments reveals mito-nuclear discordance in TcI strains.

(A) Comparison of averaged model-corrected distances among nuclear loci and kDNA loci. Sequences from TcI

(TEV91cl5, TEV55cl1, PalDa20cl3), TcII (Esmeraldo-ESM), and TcIII (CLB, inferred from CL-Brener Non Esmeraldo

genome) where used in order to address relative substitution rates. Most comparisons showed higher genetic distances

for kDNA markers than for nuclear loci except for the comparison between TEV55cl1 and PalDa20cl3. Error bars

represent the standard error of the mean corrected distance. (B) Nuclear phylogeny (left) and kDNA phylogeny (right)

showing discordances between both markers. TEDa2cl4 haplotypes (h1 and h2) were manually inferred according the

parental genotypes. The trees were estimated based on the best substitution model for concatenated genes. Values

above branches indicate bootstrap support for 1,000 replicates. Note that location in different clusters of TEV91cl5

(highlighted) and different branch scales for both markers.

https://doi.org/10.1371/journal.pntd.0007770.g002
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Table 3. Deep sequencing of the minicircle hypervariable region (mHVR) in three TcI strains.

TEV55cl1 TEDa2cl4 PalDa20cl3

Number of paired reads 2,305,460 1,113,033 2,728,193

Filtered and merged 1,202,355 950,142 2,356,494

Number of mHVR clusters 285 217 350

Number of mHVR clusters rarefacted to 900,000 reads (standard deviation for 100 replicates) 284.8(0.4) 215.6(0.9) 346.8(0.4)

https://doi.org/10.1371/journal.pntd.0007770.t003

Fig 3. Amplicon sequencing of the mHVR reveals that minicircles of the hybrid strain TEDa2cl4 were biparentally inherited. (A-B) Principal

Coordinates Analysis based on Bray-Curtis dissimilarities for clusters at 85% identity threshold showing the first three axes for PalDa20cl3 (red dot),

TEV55cl1 (green dot), TEDa2cl4 (yellow dot) and the outgroup strains CANIIIcl1 (TcIV, grey dot) and X109/2 (TcIII, black dot). The three first axes

explain 84% of the observed dissimilarities. (A) Axis 1 vs Axis 2, the first two axes show the separation among different DTUs. (B) the third axis shows

the separation between TcI strains. Note that TEDa2cl4 was located between PalDa20cl3 and TEV55cl1. (C-D) Analysis of shared mHVR clusters

between the three strains using Venn diagrams. Each circle represents the total number of mHVR clusters in a strain. Overlapped regions among circles

represent shared mHVR clusters. (C) mHVR clusters defined at 85% of identity threshold showing few singletons in TEDa2cl4. (D) mHVR clusters

defined at 99% identity threshold.

https://doi.org/10.1371/journal.pntd.0007770.g003
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Conversely, PCoA showed that TEDa2cl4 located almost at the middle between both strains

(Fig 3B). In addition, we analyzed shared clusters at different identity thresholds (Fig 3C and

3D). At 85% identity threshold, most of the mHVR clusters in TEDa2cl4 (84%) were observed

in TEV55cl1 and/or PalDa20cl3 (Fig 3C) suggesting biparental inheritance of the minicircles

in this hybrid. On the other hand, TEV55cl1 and PalDa20cl3 had higher percentages (40.4%

and 63.1% respectively) of mHVR clusters which are singletons (i.e. clusters not shared with

any other strain) (Fig 3C). We also analyzed shared mHVR clusters at a more restrictive clus-

tering threshold (at 99% identity threshold). In this case, the number of mHVR clusters in

TEDa2cl4 that were observed in PalDa20cl3 and/or TEV55cl1 was reduced to 50% (Fig 3D).

This genetic divergence suggests that it is more likely that TEV55cl1 and PalDa20cl3 are not

related to TEDa2cl4 in a recent time (i.e. they are not direct parents). At this threshold,

TEV55cl1 and PalDa20cl3 shared very few mHVR clusters (8 clusters corresponding to 2.9%

and 2.2%, respectively), although they still shared a significant percentage of mHVR clusters

with the hybrid TEDa2cl4 (Fig 3D). Interestingly, from the mHVR clusters that TEDa2cl4

shared with any other strain, 54% were observed in TEV55cl1 but not in PalDa20cl3 and 42%

were observed PalDa20cl3 but not in TEV55cl1. Such results strongly support that minicircle

inheritance is biparental in the hybrid strain.

Discussion

Genetic exchange has been previously reported in natural populations of T. cruzi [14, 20, 39,

40, 52–54]. In addition, genomic population studies proposed meiosis in this parasite [14, 20],

although the experimental observation of gametes and laboratory meiotic hybrids is still elu-

sive. In addition, the frequency of genetic exchange and how the population structure is main-

tained is still under debate [7–16, 20]. Here, we analyzed three TcI strains that previously

showed evidence of genetic exchange events [29, 42, 43, 55]. In these three strains we analyzed

DNA sequences at nuclear, maxicircle and minicircle levels. Interestingly, the results showed

that the strain TEDa2cl4 would be the result of a hybridization between different TcI geno-

types maintaining diploidy, which suggests a reductive division. The strains TEV55cl1 and Pal-

Da20cl3 are, at least, genetically related to the parental genotypes of TEDa2cl4. In addition,

analysis of maxicircle genes revealed mito-nuclear discordance and suggests mitochondrial

introgression by backcrosses in TEV55cl1 and/or PalDa20cl3. Finally, we observed that the

hybrid TEDa2cl4 shared minicircles (mHVRs) with both putative parental genotypes, which

strongly suggests biparental inheritance of minicircles in hybrids.

The analysis of nuclear DNA fragments of at least five different chromosomes, revealed that

TEDa2cl4 is highly heterozygous suggesting that it was maintained by clonal propagation. We

have also detected other strains with the same genotype than TEDa2cl4 in the same area [55].

A recent paper revealed the existence of nuclear genetic exchange in natural populations of

TcI in Arequipa, Peru [14]. The authors proposed by sequencing 123 TcI genomes that several

rounds of inbreeding occurred after the origin of a highly heterozygous founder population.

Our data revealed no evidence of inbreeding in TEDa2cl4 and the related strains. Moreover,

our previous results for TcI in a restricted geographical area revealed well defined clusters with

high linkage disequilibrium, congruence among different genetic markers and no geographical

association [55]. However, another population genomic study in TcI stocks from Ecuador also

showed that almost panmictic populations and clonal populations may coexist [20]. It is prob-

able that the sexual exchange has been blocked in the hybrid TEDa2cl4 and the strain was

maintained by clonal propagation, as observed in TcV and TcVI. The reduced number of

mHVR clusters compared with its parents supports the above hypothesis since clonal propaga-

tion is expected to reduce minicircle diversity [56]. Such reproduction blockage may be related
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to hybrids that arose from genetically distant genotypes. However, mitochondrial introgres-

sion (caused by backcrosses) was observed between different DTUs [39–41] suggesting that

hybrids from genetically distant genotypes may still reproduce sexually.

The mechanism of genetic exchange is still debated. The model of parasexuality proposes

diploid fusion and posterior chromosome loss to return diploidy [21]. Fusion of diploid cells

has been observed in the laboratory [21]. However, the returning from tetraploidy to diploidy

was never observed in such hybrids [57]. Parasexuality appears to be infrequent in nature,

although it could not be discarded from a population genomic study where several aneuploid

stock were observed [20]. Despite this hybrid DTUs such as TcV and TcVI showed heterozy-

gous patterns more compatible with meiosis and gamete fusion than with the model of para-

sexuality [24, 38, 57]. An expected result of the parasexual model is the existence of strains

with high degrees of aneuploidy. Contrary to this, our results suggest meiosis since the hybrid

TEDa2cl4 had a DNA content compatible with diploidy: TEDa2cl4 had the same DNA content

than an almost diploid strain (Sylvio has 1/41 pairs of chromosomes in aneuploidy) [46]. How-

ever, sexual and parasexual modes of reproduction may both be occurring simultaneously in

natural populations [20].

The three strains also gave us the possibility to address kDNA inheritance in hybrids. Maxi-

circle inheritance is assumed to be uniparental according to previous results in hybrid DTUs

TcV and TcVI, since they share maxicircles with TcIII but not with TcII [31, 38]. We were

unable to address the hypothesis of uniparental inheritance of maxicircles because the DNA

fragments analyzed here were identical among the three strains. In this sense, entire maxicircle

sequencing may be required to address ancestry. However, the three strains shared identical

maxicircle DNA fragments, and this was surprising since substitution rates are higher in

kDNA coding genes than in nuclear ones. Under neutral theory, changes in nuclear and maxi-

circle DNAs are accumulated with different speed, but the ratio between the magnitude of

accumulation is expected to be the same regardless of divergence time between the lineages

[37]. This is not the case here. Theoretically, maxicircles could be fixed in the ancestral strain

and retained unchanged in the diverged genotypes for stochastic reasons or stabilizing selec-

tion. However, this last scenario is unlikely considering the accumulated mutation rate in max-

icircles (See Fig 2A). In addition, low divergency in maxicircles was also reported in TcI

populations with sexual reproduction [14, 20]. Consequently, mitochondrial introgression,

consisting in successive backcrosses of the hybrid with one of the parental genotypes, is the

most likely explanation for these observations. The successive backcrosses clean the genome of

information from one parental. However, maxicircles from such parental are maintained (see

Fig 4). According to this hypothesis, TEV55cl1 and/or PalDa20cl3 are probably descendants of

hybrids that backcrossed with one parental, which could explain why such strains share identi-

cal maxicircle sequences (Fig 4).

In this work, the inheritance of minicircles was also addressed. We evaluated the number

of shared mHVR clusters between strains. We observed that most of the mHVR clusters in

TEDa2cl4 (84%) were shared with TEV55cl1 and/or with PalDa20cl3 at 85% identity thresh-

old. In contrast, TEV55cl1 and PalDa20cl3 shared less than 30% of the mHVR clusters. These

results support that TEDa2cl4 has minicircles from two different sources corresponding to

two different genotypes. Our results also showed that TEDa2cl4 is not a direct descendant of

PalD20cl3 and TEV55cl1 considering that there was a 50% of mHVR clusters in TEDa2cl4

that were not present in the studied putative parental strains when a restrictive identity thresh-

old is used (i.e. 99% of sequence identity).

We have previously suggested biparental inheritance of minicircles in TcV and TcVI [33],

which, added to the results presented here, suggests that biparental inheritance of minicircles

could be the rule in T. cruzi. Maxicircle and minicircle biparental inheritance has been
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observed in T. brucei hybrids. However, maxicircles (less than fifty copies) are homogenized

by genetic drift resulting in the loss of maxicircles of one parental in few generations. On the

other hand, minicircles have much more copies (thousands) and they resist the fixation effect

of genetic drift for more time. Consequently, in T. bruceimaxicircle inheritance is biparental

and just seems to be uniparental due to genetic drift [34–36].

Concluding, this paper shows a natural TcI hybrid and it supports that genetic exchange

in T. cruzi likely implies a reductive division such as meiosis. In addition, genetic exchange

would also imply kDNA exchange. In this sense, mitochondrial introgression events appear

to be frequent in the population, evidencing outcrossing instead of inbreeding. This probably

occurs in regions where the different genotypes overlap their distributions. The mechanism

of mitochondrial DNA exchange needs to be clarified in future studies in order to determine

whether fusion of mitochondria is required to biparental inheritance of minicircles. Further

research on meiosis, gametes and experimental F1 hybrids in T. cruzi is still needed.

Supporting information

S1 Fig. Comparison of averaged uncorrected p-distances among nuclear loci and kDNA loci.

(TIF)

Fig 4. Model explaining shared maxicircles among the TEDa2cl4, TEV55cl1 and PalDa20cl3. Two parental strains

with different nuclear genomes (big red and green solid ellipses), different maxicircles (big red and green unfilled

ellipses) and different minicircles (catenated small circles) crosses to form an F1 hybrid. The F1 has mixes of

minicircles and both nuclear genomes but it has maxicircles from just one parental. Backcrosses of the F1 get the

descendants of the F1 more and more similar to the one of the parental genotypes but maintaining the maxicircle from

the other parental.

https://doi.org/10.1371/journal.pntd.0007770.g004
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