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Abstract

Background

Numerous urban villages (UVs) and frequent infectious disease outbreaks are major envi-

ronmental and public health concerns in highly urbanized regions, especially in developing

countries. However, the spatial and quantitative associations between UVs and infections

remain little understood on a fine scale.

Methodology and principal findings

In this study, the relationships between reported dengue fever (DF) epidemics during 2012–

2017, gross domestic product (GDP), the traffic system (road density, bus and/or subway

stations), and UVs derived from high-resolution remotely sensed imagery in the central area

of Guangzhou, were explored using geographically weighted regression (GWR) models

based on a 1 km × 1 km grid scale. Accounting for 16.53%–18.07% of residential area and

16.84%–18.02% of population, UVs possessed 28.55%–38.24% of total reported DF cases

in the core area of Guangzhou. The density of DF cases and the DF incidence rates in UVs

were 1.81–3.13 and 1.82–3.06 times of that of normal construction land. Approximately

90% of the total cases were concentrated in the UVs and their buffering zones of radius ran-

ged from 0 to 500 m. Significantly positive associations were observed between gridded DF

incidence rates and UV area (r = 0.33, P = 0.000), the number of bus stops (r = 0.49, P =

0.000) and subway stations (r = 0.27, P = 0.000), and road density (r = 0.39, P = 0.000).

About 60% of spatial variations in the gridded DF incidence rates were interpreted by the dif-

ferent variables of GDP, UVs, and bus stops integrated in GWR models.

Conclusions

UVs likely acted as special transfer stations, receiving and/or exporting DF cases during epi-

demics. This work increases our understanding of the influences of UVs on vector-borne
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diseases in highly urbanized areas, supplying valuable clues to local authorities making tar-

geted interventions for the prevention and control of DF epidemics.

Author summary

Due to the rapid urbanization of China, many villages in the urban fringe are enveloped

by ever-expanding cities and become so-called urban villages (UVs). UVs are widely dis-

tributed in not only the Guangzhou core areas but also the other cities in the highly urban-

ized region of China (e.g., Shenzhen, Wuhan). UVs are commonly featured by poor

sanitation, overcrowding population, absent infrastructure, and some environmental pol-

lution due to the development is neither authorized nor planned, resulting in a high envi-

ronmental suitability for some vectors (e.g., Aedes albopictus), as well as the vetor-borne

diseases (i.e., dengue fever) in these regions. In this study, we demonstrated that UVs may

serve as transfer stations for the transmission of DF epidemic in the regions with devel-

oped transportation, higher GDP and dense population. This is manifested as that the

rates of DF incidences were significantly positively associated with UV area. Furthermore,

the density of DF cases and the DF incidence rates in UVs were 1.81–3.13 and 1.82–3.06

times of that of normal construction land and about 90% of the total DF cases were con-

centrated in 500m radius of UVs’ buffers. And the aggregation effects of UVs on this epi-

demic in the central region were obviously affected by public traffic conditions at the grid

level. This study is the first quantitative analysis of the spatial relationship between UVs,

public transportation, road density, population density, GDP and DF epidemics, which

will provide a useful reference for accurately preventing and controlling DF epidemic in

urban regions with numerous UVs.

Introduction

Dengue fever (DF) is a febrile illness caused by the dengue virus, which is further classified

into four serotypes (Dengue virus 1–4), and transmitted by Aedes aegypti and Aedes albopictus
mosquitoes [1]. Dengue is the most prevalent mosquito-borne viral infection of humans in the

tropical and subtropical regions of the world. Approximately 2 to 4 billon people are at risk of

contracting dengue virus every year, resulting in nearly 100 million confirmed cases and caus-

ing ongoing wide concern [2–5]. After the founding of the People’s Republic of China, DF was

eliminated in mainland China. However, increased openness and movement across borders

have resulted in a recent revival of this tropical infectious disease, which is an imported epi-

demic to China [6, 7]. Approximately 94% of indigenous cases in mainland China were

reported from Guangdong Province, and 83% of these cases were in Guangzhou City [8], fol-

lowing an unprecedented dengue outbreak in Guangzhou in 2014 that has attracted the atten-

tion of relevant researchers.

Both domestic and foreign scholars have carried out a considerable amount of research into

DF epidemics, including into factors affecting the spread and prevalence of the disease and the

corresponding prevention and control measures [9–13]. These studies have shown that the

population, transportation, and living environment have undergone tremendous changes due

to rapid urbanization, which in turn has led to changing DF transmission characteristics. In

addition to some important natural environmental factors (e.g., temperature, precipitation)

[9–11], social and economic factors, such as population distribution and density, land
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urbanization level, and road network density will have an important impact on the temporal

and spatial patterns of DF epidemics [12, 13]. Furthermore, the presence of infected people

may accelerate the transmission of DF in regions with high population densities [14, 15].

Informal urban settlements in China are described as urban villages (UVs), unique areas of

high population density. Urban space has undergone dramatic transformation and reconstruc-

tion during China’s rapid urbanization, which has caused a large number of rural villages that

were originally on the edge of the city to be gradually surrounded or semi-enclosed by urban

land [16–20]. A lack of overall planning and scientific management of UVs has resulted in a

large number of irregular buildings scattered in urban areas, with subsequent poor sanitation,

lack of infrastructure and serious environmental pollution [21, 22]. These characteristics of

UVs, combined with their perennial humidity and relatively low temperature [23, 24], pro-

vides an ideal living environment for the breeding of Aedes albopictus, the sole vector of den-

gue transmission in Guangzhou. However, the current quantitative relationship between UVs

and DF epidemics has received very little attention.

Moreover, different factors influencing the DF epidemic have a spatial scale effect. Most of

the available research has been focused on analysis at a relatively large spatial scale, such as at

regional and prefecture level [25–28], with a small number of studies gradually expanding to

small scales, such as at county, township, and even community or regular grid scales [29, 30].

However, these small spatial scales are often the final nodes where prevention and control

measures can produce practical effects, and more research into the factors influencing DF and

its prevention is required at this scale.

Therefore, this study was based on high-resolution remotely sensed imagery extraction of

UVs in the central areas of Guangzhou, using epidemiological statistical methods and spatial

analysis to further analyze the spatial relationship between UVs, public transportation, road

density, population density, gross domestic product (GDP) and the DF epidemic according to

a 1 km×1 km grid scale. The aim was to provide effective guidance for relevant government

departments making targeted prevention and control measures on the DF epidemics in urban

regions with numerous UVs.

Materials and methods

Study area

The study area was located in the central areas of Guangzhou (113˚ 23’–113˚ 36’E, 23˚ 08’–23˚

14’N) and included the four districts of Liwan, YueXiu, Haizhu, and Tianhe. The regional loca-

tion is shown in Fig 1. The central area of the study was a highly urbanized area of Guangzhou,

with an urbanization level of 100% and a total area of 279.63km2. This area has a population of

5.24 million permanent residents according to the 2017 Guangzhou Statistical Yearbook and is

also the economic center of Guangzhou. In 2017, the GDP of the central area reached US

$151.73 billion [31]. The characteristics of its subtropical monsoon climate are obvious: warm

and rainy, enough light and heat, an annual average temperature of 21–23˚C, and an average

annual precipitation of 1800 mm. These suitable natural and social environmental conditions

are favorable to the growth of Aedes albopictus and to the transmission of DENV, making it a

high-risk area for DF [32]. In addition, Guangzhou, in particular the central area, has a large

number of UVs due to rapid urbanization over the past decades [33].

Data collection and processing

DF is a notifiable disease in China which means that, once diagnosed, cases must be reported

to the web-based National Notifiable Disease Reporting Information System (NIDRIS) within

24 h [34]. The DF case information includes age, sex, address, and time of onset. The DF

Urban villages as transfer stations for dengue fever epidemic

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007350 April 25, 2019 3 / 17

https://doi.org/10.1371/journal.pntd.0007350


epidemic data for this study were obtained from the Guangzhou Center for Disease Control

and Prevention, and included DF case data from 2012–2014 and from 2017. The targeted DF

cases in our study included clinically diagnosed (based on clinical manifestations and epidemi-

ologic exposure history) or laboratory-confirmed cases (“clinically diagnosed cases presenting

with any of the following lab test results relating to DF: a 4-fold increase in specific IgG anti-

body titer, positive on a PCR test or viral isolation and identification test”). The address infor-

mation of the confirmed cases, after desensitization, was used in conjunction with geocoding

(http://www.gpsspg.com/xGeocoding/) and coordinate deviation correction to produce case

data for a spatial point layer using ArcGIS 10.3 (ESRI, Redlands, CA, USA) software (Fig 2A).

In 2014, DF cases in the Guangzhou region reached a peak, with a total of 36 344 cases

reported, of which 18 350 were from the central area, accounting for 50.49% of the entire

Guangzhou city. Moreover, the ratio of the total DF cases in 2012–2017 to the population in

2015 was calculated so as to indicate the DF incidence rates during the study period on the 1

km × 1 km grid scale.

With consideration of the high degree of urbanization of the study area, land use types for

2012 and 2017 was divided into five categories: normal construction land (NCL), UV, water,

vegetation and unused land. NCL and UVs are collectively referred to herein as construction

land (CL) (Fig 2B). A total of 206 sample points were randomly selected to verify the classifica-

tion results for 2012 and 2017. The overall accuracy and the Kappa coefficients for 2012 and

2017 were 82.67%, 0.802 and 87.40%, 0.851, respectively. As far as the producer’s and user’s

accuracy were concerned, the UVs in 2017 possessed slightly lower accuracies (87.8% and

87.8%) than those of water (88.2% and 93.8%), and roads (90.0% and 87.1%), although the

omission and commission of UVs had been appropriately controlled by the texture selection

procedure. In a word, the present extraction accuracy can meet the requirements for further

analysis. Detailed information about the retrieval of land-use types can be found in an earlier

study [24].

The public transport system (bus stops, subway stations) greatly facilitates the travel of peo-

ple living in the central area. Population density and GDP data in 2015 were collected to indi-

cate population and economic status. The public transport, population density, GDP and road

network vector data in this study (Fig 2B and 2C) were all obtained from the Resources and

Fig 1. Study areas and GF-2 satellite data coverage of the central areas in Guangzhou.

https://doi.org/10.1371/journal.pntd.0007350.g001
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Environment Science Data Center (RESDC, http://www.resdc.cn). Road density was generated

from road network vector data, including all roads in the central region of Guangzhou (high-

ways, national ways, county roads, town roads, etc.), and it was the ratio of the length of road

in each unit (grid) to the corresponding unit’s area.

Spatial analysis of the DF epidemic

Spatial autocorrelation analyses are frequently utilized to explore the spatial patterns of inci-

dence or mortality in terms of Moran’s I with z-score and/or p-value because of their high sta-

tistical power [35–37]. Moran’s I is produced by standardizing spatial autocovariance by the

data variance using a measure of the connectivity of the data [38]. Generally, Moran’s I value

ranges from −1 to 1 and a high positive Moran’s I value with larger z-score and/or appropriate

p-value represents a tendency towards clustering, which means that adjacent units have similar

incidence rates, whereas a low negative value indicates a tendency towards dispersal, which

means that units with high incidence rates lie next to units with low incidence rates.

Fig 2. Spatial distribution and temporal variations of different data. (A): DF cases in 2012~2014 and 2017; (B): Spatial distribution of land use types, GDP and

population density; (C): bus stations, subway stations and road network in 2017.

https://doi.org/10.1371/journal.pntd.0007350.g002
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In addition, the choice of spatial scale is the basis of spatial analysis. In many studies of

infectious disease epidemiology, basic geographic units such as districts or townships/streets

are often disturbed by changing administrative divisions, and the creation of regular spatial

grids can effectively avoid this phenomenon [39]. With reference to our previous research

work [29, 30, 39], a spatial gridded unit of 1 km × 1 km was used as the spatial unit in this

study, and we analyzed the spatial autocorrelation degree of the DF epidemic at this grid scale.

Geographically weighted regression modeling

In view of the spatiotemporal heterogeneity of DF incidence rates, the DF epidemic may be

affected by its potential influencing factors in different ways and to various degrees, which is

appropriate to analyze using a geographically weighted regression (GWR) model. As an exten-

sion of the traditional multiple linear regression (i.e., ordinary least square, OLS), a GWR

model embeds the attributes’ spatial location into the regression parameter, yielding a local

regression together with local estimates of regression coefficients[40]. The local estimation of

the parameters with GWR is expressed by Eq (1) as below:

yi ¼ b0ðui; viÞ þ
Xn

k¼1
bikðui; viÞxik þ εi ði ¼ 1; 2; . . .; mÞ ð1Þ

where i = 1, 2,. . ., m denotes the number of spatial units in the central area of Guangzhou; yi is

the dependent variable (the DF incidence rates during 2012–2017) at location i; independent

variable xik is the value of the k parameter at location i, xik referred to the value of an affecting

factor k (such as land use types, GDP, and so on) at spatial unit i, which is specific for every

spatial unit; ui; við Þ is the position coordinate of the sample point; b0 is the intercept; bik is the

correlation coefficient for the independent predictor variable xik, which is to be estimated; and

εi represents random error. During the GWR modeling, the most important parameter,

named as bandwidth, that controls the degree of smoothing in the model was chosen by select-

ing the method of the corrected Akaike Information Criterion (AICc). Then, every spatial unit

has a set of specific parameters to reflect the relationship between dengue fever incidence rate

and influencing factors. In particular, the variance inflation factor (VIF) had also been

employed in this study to test the collinearity among these independent variables integrated in

the models, since these selected explanatory variables likely correlated with each other. Finally,

all the parameters derived from both GWR and OLS will be compared in terms of the values of

AICc, Sigma (i.e, residual standard deviation), VIF, and adjusted R2, on which the perfor-

mance of these models could be evaluated. At the same time, the spatial autocorrelation analy-

sis on the standardized residual (StdResid) values of these models was further employed to

evaluate the explanatory performances (e.g., spatial stability) of the OLS and GWR models.

The Moran’s I values close to zero indicated that there is no spatial autocorrelation of the

StdResid values, and the results would be more reliable and then recommended for subsequent

analysis.

By means of the exploratory regression tool, twenty-five OLS and GWR models with higher

Adjusted R2 and lower values of AICc, Sigma, and VIF were recommended. Integrating vari-

ous combinations of influencing factors in the OLS/GWR models with the lowest AICc and

Sigma, the highest adjusted R2, and lower VIF than 7.5, eleven univariate models and fourteen

multivariate models were respectively conducted for the comparison between CL, UV/NCL,

water, vegetation, public traffic, road density, population density and GDP grouped factors.

In addition, we created a series of buffering zones with increasing radii based on the bound-

aries of the UVs, in which the incidence rates, the proportion of the DF cases, as well as its

growth rates, in different years in each buffering zone were counted. Meanwhile, Pearson cor-

relation analysis was applied to explore the relationships between DF incidences and all of the
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potential variables (UVs, population density, GDP, bus stops, subway stations, and road den-

sity) at the significance level of 0.05 and 0.01, by which some appropriate potential variables

could be accordingly considered into the GWR models.

All of the above spatial analysis and modeling were completed in ArcGIS 10.3 software

(ESRI, Redlands, CA, USA). Typical correlation analysis was achieved using SPSS 19.0 (SPSS

Inc., Chicago, IL, USA).

Results

Spatial distribution of UVs

Land-use types across the central region, including Liwan, Haizhu, Yuexiu, and Tianhe dis-

tricts in Guangzhou City, typically featured impervious surfaces (i.e., NCL and UVs) according

to their dominant area percentage (53.80% in 2012 and 58.12% in 2017) (S1 Table). Among

these four central regions, in 2012, Haizhu District had the largest area of UV (10.91 km2) and

Yuexiu, Liwan, and Tianhe districts had 7.98, 4.06, and 8.80 km2 of UV. There were more than

450 UVs with areas varying from less than 0.001 km2 to 0.87 km2. As a result of urban renewal,

the total area of UV decreased from 31.75 km2 (2012) to 31.38 km2 (2017), with a clear reduc-

tion in Liwan (about 0.12 km2 in Xinglongfang and Dongjiao communities) and Tianhe (0.25

km2 or so near Pingyun Square, the Second Xintang communities, and Xinxu communities)

in particular, as shown in Fig 3. Since there were so fewer changes of UVs during 2012–2017,

the data of land-use information in 2012 was chosen for subsequent analysis.

In the region, the Pearl River fork zone across Yuexiu, Liwan, and Haizhu was the most typ-

ically spatially clustered with UVs. Dongpu Town in Tianhe and the central zone of Haizhu

were the other two representative zones. Unused land and water area decreased by 16.21 km2

and 1.95 km2, respectively, between 2012 and 2017, while vegetation and NCL increased by

4.03 km2 and 14.50 km2, respectively. In summary, the central area of Guangzhou City mainly

featured impervious surfaces, especially many widely distributed UVs.

Temporal and spatial distribution of the DF epidemic

There were a total of 20 059 local DF cases reported in the central districts, which accounted

for half of the total cases in the whole Guangzhou City during the study period. Meanwhile,

the distribution of DF was spatially different across this typical region. The ratio of DF cases in

each infected unit to the mean value of all the infected units (RDM) varied spatially on the 1

km × 1 km scale (close to the largest UV area) in 2012, 2013, 2014, and 2017. However, the

units with high RDM were mainly located around the Pearl River fork between Yuexiu, Liwan,

and Haizhu districts (Fig 4). Meanwhile, the DF epidemic during these four years was remark-

ably spatially clustered according to the spatial autocorrelation indices (0.174 < Moran’s

I< 0.673, 6.398 < z-score < 16.930, p-value< 0.001; S2 Table). These results obviously

showed that the DF epidemic in the central region was spatially featured on the grid scale.

The aggregation effect of UVs on the DF epidemic

Between 2012 and 2017, DF patterns in the UVs differed from those of the NCL areas. As

shown in Table 1, 61.76%– 71.45% of total DF cases in the CL zones were distributed in the

NCL zones with proportionally larger areas (81.93% in 2012 and 83.47% in 2017) across the

central four districts. By comparison, the rest (28.55%– 38.24%) were distributed in UVs with

proportionally smaller areas (18.07% in 2012 and 16.53% in 2017). Meanwhile, population

density (persons per km2) in the UVs was slightly higher than that of NCL in 2012 and 2017,

although the population size of NCL is 4.55–4.94 times that of the UVs. As a result, the density
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of DF cases and the DF incidence rates in UVs were respectively 1.81–3.13 and 1.82–3.06

times that of NCL between 2012 and 2017. It can be clearly seen that UVs possessed higher val-

ues of DF cases density, incidence rates, and population density in the central region of Guang-

zhou City. In other words, DF cases were more likely to be found in UV areas.

The sizes of the DF epidemic were associated with the UVs’ area. In the UVs with recorded

DF cases, the number of DF cases (the total in the study period) was strongly associated with

acreage of these UVs (r = 0.45, P = 0.015), as shown in Table 2. Similarly, on the grid scale, the

counts of DF cases were significantly correlated with the gridded UVs acreage (r = 0.33,

P = 0.000) in the infected units.

In addition, the regions surrounding UVs were obviously influenced by the DF epidemic in

the UVs with DF cases. Along with the radius of buffers increasing, accumulated DF case

count in regions including the UVs with DF cases and their surrounding buffering zones

showed an ascending trend (Fig 5). Until the radius of the buffer zones was 500m, about 90%

of the total DF cases were concentrated in these regions (i.e., UVs and buffer zones). In

Fig 3. Spatial distribution of UVs across the central districts in Guangzhou during 2012–2017.

https://doi.org/10.1371/journal.pntd.0007350.g003
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comparison, newly included DF cases in the extended buffers per 50 m (i.e., increasing slope)

displayed clear decreasing trends, especially in the first two buffers (50 m and 100 m). This

decline was alleviated in the 200 m buffers. Meanwhile, the incidence rates of DF in the buffer-

ing zones gradually decreased, although there was larger and larger population proportion due

to the increasing buffering distances. These results illustrated that UVs posed an obvious

aggregation effect on the DF epidemic across the central region in Guangzhou City.

Effects of transportation and UV area on the DF epidemic

Advanced traffic conditions, especially public transportation systems (such as bus services and

subway lines) facilitate contact among people living in UVs. DF case density in the units

(n = 272) with either bus stops or subway stations was much higher (73.21 cases per km2) than

those without any bus stops or subway stations (7.74 cases per km2) (n = 19). Moreover, as

given in Table 2, the gridded DF incidence rates were significantly positively associated with

UV area (r = 0.33, P = 0.000), number of bus stops (r = 0.49, P = 0.000) and subway stations

(r = 0.27, P = 0.000), and road density (r = 0.39, P = 0.000).

In comparison, the partial correlation coefficient between the gridded DF incidence rates and

UV area individually decreased from 0.33 to 0.24 when traffic conditions were controlled for

Fig 4. Spatial distribution of the gridded DF epidemic in 2012~ 2017. This is the spatial distribution of the ratio of DF cases in each infected unit to the mean value of all

the infected units.

https://doi.org/10.1371/journal.pntd.0007350.g004

Table 1. Comparison of DF epidemics and population in different CL types (NCL and UVs).

Year Proportion of DF cases Density

(cases per km2)

Population density

(person per km2)

DF incidence rates(cases / 105)

NCL UVs NCL UVs NCL UVs NCL UVs

2012 64.91% 35.09% 0.51 1.26 17732.83 18331.08 3.17 7.81

2013 62.64% 37.36% 3.96 10.71 / / 27.04 73.36

2014 71.45% 28.55% 78.74 142.65 / / 529.86 963.26

2017 61.76% 38.24% 1.77 5.54 17285.83 18386.52 12.09 36.95

Total 70.69% 29.31% 85.17 160.09 / / 552.69 1086.71

https://doi.org/10.1371/journal.pntd.0007350.t001
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(Table 2). These partial correlation coefficients between DF incidence rates and traffic conditions

(i.e., the number of bus stops, subway stations, all stops, and road density) were slightly decreased

to 0.43, 0.27, 0.41, and 0.38, respectively, when UV area was controlled for. Among them, bus

stops were the most suitable indicator of traffic conditions because of their high correlation coeffi-

cients. These results indicated that the aggregation effects on the gridded DF epidemic across the

central region were heavily influenced by the traffic system, especially the presence of bus stops.

Spatial modeling of DF epidemics

According to the adjusted R2, AICc and Sigma values (Table 3), spatial variations in the

gridded DF epidemic in the central region of Guangzhou City were appropriately explained by

the GWR/OLS models, which employed each influencing factor or their various combinations.

In comparison, the comprehensive explanatory performance of the GWR models was much

better than that of the OLS models due to the higher adjusted R2, lower AICc and Sigma val-

ues. About 46% or more spatial variation was interpreted by the univariate GWR models.

Among the potential influencing factors derived from the univariate GWR models, bus stops

and UVs possessed relatively higher adjusted R2, lower Sigma and AICc values. However, pop-

ulation density possessed a relatively lower adjusted R2, higher Sigma and AICc values.

Similarly, the GWR model (Com 1) integrating bus stops and UVs performed the best

among all of the bivariate models. When this model further integrated either GDP or population

density that possessed relatively weaker explanatory ability, the performances were increased

according to the rising adjusted R2 and declining values of AICc and Sigma in the GWR models

(Com 9 and Com 10 in Table 3). In comparison, the other multivariate GWR models (Com 7, 8,

and 11–14) had slightly weaker performances. In particular, the weakest performance was

observed in the model (Com 12) even though the best bivariate GWR model (Com 1) further

integrated both GDP and population density. And the reliability of its results quickly decayed

because the potential risk of collinearity (VIF) had increased from 1.23 to 4.82 (Table 3). In all of

the models, the GWR model (Com 9) integrating UVs, bus stops, and GDP possessed the high-

est adjusted R2 (0.59), the lowest AICc (5305.02), the lowest Sigma (272.80), and a lower VIF

value (<1.63). Moreover, according to the spatially random patterns of the StdResid values

(Moran’s I = 0.04, p = 0.26, Z-score = 1.12), the performance of this model was also spatially sta-

ble, although there were still a few units with absolute StdResid values> 2 (Fig 6).

In terms of the influence of the three variables (GDP, UVs, and bus stops) on the spatial

variation of DF infection, these variables were spatially differentiated across the central region

Table 2. Correlation coefficients between DF incidence rates and UVs, pop density, GDP, traffic conditions^.

Acreage of UVs Pop density� GDP� UVs’ area� Bus stops� Subway stations� Road density�

DF incidence ratesa 0.45� 0.17�� 0.10�� 0.33�� 0.49�� 0.27�� 0.39��

DF incidence ratesb / / / 0.24�� 0.22�� 0.33�� 0.31��

DF incidence ratesc / / / / 0.43�� 0.27�� 0.38��

Note:

^ denotes that the degrees of freedom for infected UVs and infected units were respectively 333 and 290.
� indicates that the research unit is the 1km×1km grid scale.

� This value is significant at the level of 0.05.

�� This value is significant at the level of 0.01.

a is all variable correlation analysis.

b is partial correlation coefficients between incidence rates and UV area while respectively controlling the traffic conditions.

c is partial correlation analysis between incidence rates and traffic conditions while controlling UV area.

https://doi.org/10.1371/journal.pntd.0007350.t002
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(Fig 6). The presence of bus stops was positively associated with the DF epidemics in most of

the units, especially the Liwan district. The influences of GDP displayed spatial disparities.

They were positive effect in most areas of Tianhe and Haizhu districts and negative effect in

Liwan, Yuexiu, and near the Pearl River fork of Haizhu district. In comparison, UVs tended to

have a greater association with DF, with more units with relative higher local coefficient values

in Liwan, Yuexiu, Haizhu, and Tianhe districts, although the association tended to be weaker

(less than 200) in the central Haizhu where there were relatively fewer DF cases (Fig 4), lower

road density, less population density, and sparser public transportation stations (Fig 2). These

results suggested that UVs were the most important factor in the spatial variations in the DF

epidemic across the central region of Guangzhou.

Fig 5. The aggregation effect of UVs on the DF cases across the central region in Guangzhou City. AVG is the average results of four years. Cases in buffer represent

that DF cases count in different buffer radius. Cases between buffer indicate the number of DF cases between different buffer zones. Percent in buffer indicate the

proportion of DF cases in different buffer radius. Increasing slope indicate the increasing rates of DF cases in different buffer radius.

https://doi.org/10.1371/journal.pntd.0007350.g005
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Discussion

Widely distributed urban settlements and serious DF epidemics are two major public concerns

in Guangzhou City. In this study, we analyzed the spatial and quantitative relationship

between the DF epidemic and UVs on a grid scale across the central region of Guangzhou.

The interesting findings provide valuable clues to enable local environmental health authori-

ties in targeted interventions in the prevention of this epidemic.

The size and spatial heterogeneity of the DF epidemics were probably associated with

numerous UVs widely distributed across the study region with developed public transporta-

tion (e.g., many bus stops), good economic status, and a dense population. Previous studies

across the entire joint Guangzhou-Foshan (GF) area have found that spatially clustered DF

cases in this region are associated with its higher land urbanization level, population size, road

density, and economic level (GDP per capita) [30, 41]. Our study found that this central region

typically featured by not only impervious surfaces (including NCL and UVs) but also spatially

differentiated DF epidemics on the 1 km × 1 km grid scale. Meanwhile, there was higher den-

sity of DF cases and incidence rates in UV areas than in NCL areas, and the DF epidemic was

significantly positively associated with UVs’ acreage both at the grid scale and the UV level.

There are two possible reasons for this. First, UVs, as a type of informal urban settlement,

Table 3. GWR and OLS modeling of DF incidence rates and different variables in the central region.

Models Independent variables GWR OLS VIF

AICc Adj- R2 Sigma AICc Adj- R2 Sigma

Uni1 Bus stops 5340.50 0.55 285.34 5451.95 0.34 345.48 -

Uni2 Subway stations 5391.17 0.50 300.17 5565.04 0.11 401.69 -

Uni3 Road density 5341.64 0.54 289.47 5483.28 0.28 360.21 -

Uni4 Gross domestic production (GDP) 5403.32 0.48 307.38 5593.32 0.04 417.14 -

Uni5 Construction land (CL) 5338.99 0.54 288.27 5482.26 0.29 359.72 -

Uni6 Urban villages (UVs) 5368.70 0.55 287.47 5535.84 0.18 386.36 -

Uni7 Normal construction land (NCL) 5385.21 0.49 305.09 5535.99 0.18 386.44 -

Uni8 Unused land (UL) 5417.63 0.46 314.42 5610.90 0.00 427.03 -

Uni9 Water 5401.58 0.48 307.68 5611.02 0.00 427.09 -

Uni10 Vegetation 5408.15 0.49 306.01 5580.17 0.08 409.89 -

Uni11 Population density (POP) 5412.26 0.47 311.05 5560.88 0.12 399.48 -

Com1 Bus stops; UVs 5331.99 0.58 276.89 5432.77 0.38 336.29 1.23

Com2 Bus stops; Road density 5344.52 0.54 290.32 5439.96 0.37 339.52 2.18

Com3 Bus stops; Subway stations 5352.45 0.55 286.50 5453.39 0.34 345.66 1.39

Com4 Bus stops; NCL 5364.79 0.52 296.93 5451.70 0.35 344.88 1.70

Com5 Bus stops; GDP 5323.48 0.56 283.19 5448.03 0.35 343.20 1.36

Com6 Bus stops; POP 5340.35 0.55 285.39 5453.74 0.34 345.82 1.66

Com7 Bus stops; UVs; Road density 5334.96 0.55 284.87 5421.47 0.40 330.79 <2.37

Com8 Bus stops; UVs; Subway stations 5344.61 0.56 274.12 5433.13 0.38 335.98 <1.69

Com9 Bus stops; UVs; GDP 5305.02 0.59 272.80 5429.72 0.39 334.45 <1.63

Com10 Bus stops; UVs; POP 5321.19 0.59 272.86 5434.04 0.37 336.38 <1.84

Com11 Bus stops; UVs; POP; Subway stations 5330.78 0.57 278.59 5434.05 0.38 335.92 < 2.18

Com12 Bus stops; UVs; GDP; POP 5337.36 0.53 293.25 5429.25 0.39 333.77 <4.82

Com13 Bus stops; UVs; POP; Road density; GDP; 5318.74 0.55 285.34 5410.83 0.42 325.22 <5.12

Com14 Bus stops; UVs; POP; Subway stations; Road density; GDP 5318.48 0.55 284.62 5411.91 0.42 325.22 < 5.12

Adj-R2: Adjusted R-Squared; AICc: the corrected Akaike’s Information Criterion; VIF: Variance Inflation Factor.

https://doi.org/10.1371/journal.pntd.0007350.t003
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provide Aedes albopictus mosquitoes with a suitable environment for survival and breeding,

featuring slightly lower land surface temperature than NCL areas [24], especially in the sum-

mer months. Second, the denser population in UVs and its flowing traits were two core impe-

tuses of UVs’ influences on the DF epidemic. In particular, UVs have a high density of low-

cost accommodation rented by migrant workers from local house owners, which provided

local citizens with a steady source of revenue and resulted in a large floating population [21,

42]. This increases the probability of being bitten by mosquito vectors, causing rapid transmis-

sion of this disease. DF is also more frequent within a specific 200–300 m radius around UVs,

which is probably determined by the mosquitoes’ maximum flying range of approximately 300

m [43, 44]. Thus, it can be seen that widely distributed UVs have an important influence on

the DF epidemic, not only within the specific UV areas but also within their surrounding

zones, crucially associated with the severity and obvious spatial disparities in DF incidence

across the central region in Guangzhou City. We cautiously suggest that both UVs and their

surrounding zones should receive considerable focus during DF epidemics.

A convenient public traffic system meets the commuting demands of local residents,

including the floating population who reside in UVs but work outside of them. Earlier studies

reported that traffic conditions impose important effects on DF transmission [13, 41, 45], simi-

lar to our findings that public transportation (the presence of bus stops in particular) was not

only directly associated with the DF incidence rates on the grid scale, but also influenced the

aggregation effect of UVs on the DF epidemic, especially in zones with numerous UVs. We

cautiously speculate that DF cases in infected UVs or units (grids) may have been potential

infection sources when they entered other zones via the public traffic system. In other words,

these UVs or units/grids with infections presence likely acted as transfer stations (receiving

and/or exporting DF cases) during DF transmission. In a sense, it can be supposed to some

degree that the infected cases/patients would also act as the disease’s vector, since local resi-

dents are the other crucial element in the DF transmission and the flying distance of mosqui-

toes (Aedes albopictus) is far less than human mobility due to developed public transportation.

Accordingly, we recommend that targeted and effective interventions should be implemented

Fig 6. Standardized residual (StdResid) values and local coefficients of selected variables. This is derived from the GWR model with GDP, UVs and bus stops.

https://doi.org/10.1371/journal.pntd.0007350.g006
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in zones with numerous UVs and public traffic stations across the central region in Guang-

zhou City during the DF epidemic.

Use of generalized additive models has revealed that associations between DF infection

and GDP were nonlinear at the township level across the Pearl River Delta [13]. Our earlier

investigation found that GDP had a weak but spatially differentiated correlation with DF

infection across the GF area [29]. We found similar in this study, employing GWR models

at a fine spatial scale (1 km × 1 km) and taking three spatially differentiated variables (UVs

and bus stops as special influencing factors, as well as GDP) into consideration. GDP had a

clear protective effect in the west zones (including in Liwan, most of Yuexiu, and west

Haizhu) where there were more serious DF epidemics and larger areas of UV. This effect is

likely related to the UVs in these areas being surrounded by NCL, with a higher economic

status and the better promotion of public health services (e.g., education and publicity

about hygiene) in these well-developed zones. On the contrary, GDP tended to be a risk fac-

tor for DF transmission in the east zones (i.e., most of Tianhe and northeast Haizhu) where

there were relatively small DF outbreaks and many construction sites (categorized as

unused land in this study), especially in the district of Tianhe, which is experiencing rapid

economic development and urban construction. However, whether the positive correlation

between GDP and DF incidence rates was related to the wide distribution of unused land

needs further investigation. Nevertheless, our findings are sufficiently reasonable and

detailed to infer that the influence of economic status on DF transmission was spatially dif-

ferentiated. We advise that the protective influences of GDP on DF infection in Liwan and

Yuexiu districts are further investigated to explore how its protective effects can be

expanded to Tianhe and Haizhu districts with their growing economies.

There were some limitations to the study. First, many more important influential factors

should be further explored and included in the GWR models to interpret much more spatial

variation in the DF epidemic, since less than 60% was explained at present. In particular, an

appropriate variable should be acquired to comprehensively reflect both public transporta-

tion and population density so as to further interpret the remained (40% or so) spatial varia-

tion in the current study. For this point, data derived from mobile devices, metro cards and/

or bus cards could be used to capture information about mode of travel and the movement

of local residents, both for confirmed and suspected DF cases. This is particularly relevant

to the UVs, as the effects of the public transportation system and UVs on DF transmission

could be further investigated and high intercept values (Fig 6) decreased. Second, reliable

monitoring data on the vectors’ population or density in the study area should be continu-

ously collected and then used fully for a further comprehensive analysis of the link between

DF epidemic and all the influencing factors in the future. Finally, the time series of the DF

case data and the spatiotemporally matched remote sensing images should be longer. This

would enable better validation of the typical influence of UVs, as DF epidemics have period-

ically occurred in the central region of Guangzhou City, with rapid land urbanization, since

the 2000s.
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18. Taubenböck H, Kraff NJ. The physical face of slums: a structural comparison of slums in Mumbai, India,

based on remotely sensed data. Journal of Housing & the Built Environment. 2014; 29(1):15–38.

19. Goebel A. Sustainable urban development? Low-cost housing challenges in South Africa. Habitat Inter-

national. 2007; 31(3):291–302.

20. Hofmann P, Strobl J, Blaschke T, Kux H. Detecting informal settlements from QuickBird data in Rio de

Janeiro using an object based approach: Springer Berlin Heidelberg; 2008. 531–53 p.

21. Liu H, Huang X, Wen D, Li J. The Use of Landscape Metrics and Transfer Learning to Explore Urban Vil-

lages in China. Remote Sensing. 2017; 9(4).

22. Huang X, Liu H, Zhang L. Spatiotemporal Detection and Analysis of Urban Villages in Mega City

Regions of China Using High-Resolution Remotely Sensed Imagery. IEEE Transactions on Geoscience

& Remote Sensing. 2015; 53(7):3639–57. https://doi.org/10.1016/j.jenvman.2006.04.023

23. Guo Q, Zou Z, Hongyong LI, Qiu G. Analysis on the Thermal Environment of Urban Village in Shen-

zhen. Ecology & Environmental Sciences. 2015.

24. Wu W, Ren H, Yu M, Wang Z. Distinct Influences of Urban Villages on Urban Heat Islands: A Case

Study in the Pearl River Delta, China. Int J Environ Res Public Health. 2018; 15(8). Epub 2018/08/08.

https://doi.org/10.3390/ijerph15081666 PMID: 30082641; PubMed Central PMCID: PMCPMC6121422.

25. Peterson AT. Ecological niche modelling and understanding the geography of disease transmission.

Veterinaria Italiana. 2007; 43(43):393–400.

26. Machado-Machado EA. Empirical mapping of suitability to dengue fever in Mexico using species distri-

bution modeling. Applied Geography. 2012; 33:82–93.

27. Peterson AT, Martı́nezcampos C, Nakazawa Y, Martı́nezmeyer E. Time-specific ecological niche

modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the

Royal Society of Tropical Medicine & Hygiene. 2005; 99(9):647–55.

28. Cardoso-Leite R, Vilarinho AC, Novaes MC, Tonetto AF, Vilardi GC, Guillermo-Ferreira R. Recent and

future environmental suitability to dengue fever in Brazil using species distribution model. Trans R Soc

Trop Med Hyg. 2014; 108(2):99–104. https://doi.org/10.1093/trstmh/trt115 PMID: 24463584

29. Li Q, Ren H, Zheng L, Cao W, Zhang A, Zhuang D, et al. Ecological Niche Modeling Identifies Fine-

Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China. International Journal of Envi-

ronmental Research & Public Health. 2017; 14(6):619.

30. Ren H, Zheng L, Li Q, Yuan W, Lu L. Exploring Determinants of Spatial Variations in the Dengue Fever

Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-

Foshan Area, China, 2014. International Journal of Environmental Research & Public Health. 2017; 14

(12):1518.

31. Municipality. SBoG. Guangzhou Economic and Social Development Statistics Bulletin 2017. http://

www.gdstats.gov.cn/tjzl/tjgb/.

Urban villages as transfer stations for dengue fever epidemic

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007350 April 25, 2019 16 / 17

https://doi.org/10.1371/journal.pntd.0004633
https://doi.org/10.1371/journal.pntd.0004633
http://www.ncbi.nlm.nih.gov/pubmed/27105350
https://doi.org/10.1371/journal.pntd.0004159
http://www.ncbi.nlm.nih.gov/pubmed/26506616
https://doi.org/10.1016/j.scitotenv.2008.11.034
http://www.ncbi.nlm.nih.gov/pubmed/19157509
https://doi.org/10.1111/j.1468-2427.2010.00979.x
https://doi.org/10.1111/j.1468-2427.2010.00979.x
http://www.ncbi.nlm.nih.gov/pubmed/20827848
https://doi.org/10.1016/j.jenvman.2006.04.023
https://doi.org/10.3390/ijerph15081666
http://www.ncbi.nlm.nih.gov/pubmed/30082641
https://doi.org/10.1093/trstmh/trt115
http://www.ncbi.nlm.nih.gov/pubmed/24463584
http://www.gdstats.gov.cn/tjzl/tjgb/
http://www.gdstats.gov.cn/tjzl/tjgb/
https://doi.org/10.1371/journal.pntd.0007350


32. Wu JY, Lun ZR, James AA, Chen XG. Dengue fever in Mainland China. American Journal of Tropical

Medicine & Hygiene. 2010; 83(3):664.

33. He JB. The Research on the Transformation of Urban Village in Pearl River Delta Developed Area Base

on Case Study on the Xihu Village. Master’s Thesis,. 2013.

34. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Peng G. Climate and the Timing of Imported Cases

as Determinants of the Dengue Outbreak in Guangzhou, 2014: Evidence from a Mathematical Model.

Plos Neglected Tropical Diseases. 2016; 10(2):e0004417. https://doi.org/10.1371/journal.pntd.

0004417 PMID: 26863623

35. Walter SD. Assessing spatial patterns in disease rates. Statistics in Medicine. 1993; 12(19–20):1885–

94. PMID: 8272668

36. Antunes JL, Biazevic MG, de Araujo ME, Tomita NE, Chinellato LE, Narvai PC. Trends and spatial dis-

tribution of oral cancer mortality in Sao Paulo, Brazil, 1980–1998. Oral Oncology. 2001; 37(4):345–50.

PMID: 11337266
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