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Abstract

Background

Aedes albopictus is an important dengue vector because of its aggressive biting behavior

and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely

used for adult mosquito control, and resistance to pyrethroids should be carefully monitored

because vector control is the only effective method currently available to prevent dengue

transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and

mutations in this gene cause knockdown resistance (kdr). Previous studies reported various

mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of

kdrmutations in Ae. albopictus has not been systematically examined, and the association

between kdrmutation and phenotypic resistance has not been established.

Methods

A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America

and Europe were examined for mutations in the voltage-gated sodium channel gene. Three

domains for a total of 1,107 bp were sequenced for every individual. Two populations from

southern China were examined for pyrethroid resistance using the World Health Organiza-

tion standard tube bioassay, and the association between kdrmutations and phenotypic

resistance was tested.

Results

A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC

gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 pop-

ulations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome,
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Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was

detected in southern China and Florida, USA with a frequency ranging from 9.5–22.6%.

TheWHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two

populations from southern China, suggesting resistance and probable resistance. Positive

association between kdrmutations with deltamethrin resistance was established in these

two populations.

Conclusions

Two novel kdrmutations, I1532T and F1534S were found in Ae. albopictus. This is the first

report of I1532T mutations in Italy and F1534S mutation in China and US. Significant asso-

ciation between kdrmutation and protection from deltamethrin raised the possibility that kdr
mutation may be a viable biomarker for pyrethroid resistance surveillance in Ae. albopictus.
The patchy distribution of kdrmutations in Ae. albopictusmosquitoes calls for developing

global surveillance plan for pyrethroid resistance and developing countermeasures to miti-

gate the spread of resistance.

Author Summary

Aedes albopictus is a major dengue and Chikungunya vector and highly invasive. In the
absence of effective treatment for the arbovirus infections, vector control is the only viable
option. Pyrethroids are the most widely used insecticide for vector control programs due
to low mammalian toxicity and rapid knockdown action. Extensive and prolonged use of
pyrethroids imposes selection pressure on mosquito populations and eventually increases
the potential of resistance. Monitoring pyrethroid resistance is essential to effective man-
agement of resistance. The voltage-gated sodium channel gene is the target site of pyre-
throids, and mutations in this gene result in knockdown resistance (kdr). Previous studies
reported various mutations in the VGSC gene, but the spatial distribution of kdrmutations
in Aedes albopictus has not been systematically examined, and the association between kdr
mutation and resistance has not been established. In the present study, we examined kdr
mutation distribution in 12 populations from Asia, Africa, America and Europe. We
found two novel and abundant kdrmutations, and established significant positive associa-
tion between kdrmutations with deltamethrin resistance. This finding raised the possibil-
ity that kdrmutation may be a viable biomarker for pyrethroid resistance surveillance in
Ae. albopictus. The patchy distribution of kdrmutations in Ae. albopictusmosquitoes calls
for developing global surveillance plan for pyrethroid resistance and developing counter-
measures to mitigate the spread of resistance.

Introduction
Aedes albopictus, also known as Asian tiger mosquito, is notorious for its ability to transmit a
number of arboviruses including dengue, Chikungunya and Zika virus as well as filarial nema-
todes [1–11]. The aggressive dispersal and thus world-wide invasiveness in recent years [5,6],
in addition to increased vector competence to Chikungunya viruses [9,10,12–15], have proved
high public health impact of Ae. albopictus. For instance, global spread of Ae. albopictus is
linked to Zika virus outbreaks in urban areas of central Africa, Asia and the Pacific [16–18].
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At present, there are neither effective vaccines nor therapeutic treatments targeted for
viruses vectored by Ae. albopictus, making vector population control the only option to limit
disease transmission [1,2,4–6,16]. Current vector control strategies primarily rely on the source
reduction of larval breeding sites and use of insecticides targeting the larval and adult stages
[4,16–25]. Among the four major synthetic insecticides groups, pyrethroids are the most
widely used adulticide due to their low mammalian toxicity and their rapid knockdown effect
[22–24,26]. Pyrethroids have been intensively used for space spray to control Aedesmosquitoes
and dengue transmission [1,10,26–30]. Extensive and prolonged use of pyrethroids imposes
selection pressure on Ae. albopictus populations and eventually increases the potential of resis-
tance [2,3,9,10,25–28,31].

Pyrethroids target the VGSC gene, also known as voltage-gated sodium channel (VGSC) of
insect neurons [28,32,33]. Generally among insects, there are two major mechanisms for con-
ferring resistance against these insecticides. One is increased metabolic detoxification of insec-
ticides, which is the most common form of resistance mechanism because of the higher
expression or presence of more efficient detoxification enzymes [34]. The other known mecha-
nism is reduced target site sensitivity resulting from non-synonymous mutations in the VGSC
gene, leading to single amino acid substitutions, which has been shown to be correlated to phe-
notypic resistance to pyrethroids [35]. This form of resistance, known as knockdown resistance
(kdr), has been observed in a number of insects, including Anopheles gambiae [33,34], An.
sinensis [35,36], Culex quinquefasciatus [37,38] and Ae. aegypti [32,39].

In An. gambiae, L1014F and L1014S in domain II of Subset 6 (IIS6) of the voltage-gated
sodium channel (VGSC) gene are the most well-known mutations related to pyrethroids and
DDT resistance [33,34,37,38]. In Ae.aegypti, V1016G and V1016I mutation in IIS6 are positively
related to pyrethroid resistance, and F1534C was found conferring pyrethroid resistance
[40–42]. In Drosophila melanogaster, M1524I substitution has been associated with knockdown
resistance [43] and in other arthropods and mammals, F1538I mutation was associated with
reduced sensitivity to deltamethrin [44,45]. In Ae. aegypti, V1016I and V1016G mutations alter
VGSC configuration and subsequently prevent insecticide binding. Codon 1530 and 1529 on
IIIS6 of VGSC have been proposed to be r sensitivity to pyrethroids [46,47]. Two residues
nearby codons 1535 and 1538 have been implicated in resistance to pyrethroids in other insect
species [48,49]. For Ae. albopictus, F1534C was first reported in Singapore in 2011 [28], and the
same mutation was subsequently found in Malaysia as well as in the United States but with a dif-
ferent allele (F1534L) [25, 43]. Along with the emergence and spread of kdrmutations, recent
studies have demonstrated pyrethroid resistance in Ae. albopictus adults from different parts of
southeast Asia such as Malaysia and Thailand and from Central Africa [1,25,27,31,50,51]. Previ-
ous studies examined kdrmutations in limited number of populations, systematic examination
of kdrmutations in Ae. albopictus populations from a broader geographic range would provide
important information on kdrmutation distribution and potential risk of resistance spread.

In the present study, we examined mutations in the VGSC gene of Ae. albopictus across
Asia, Europe, and North America, encompassing almost the entire range of its distribution. In
addition, the association between kdrmutation and phenotypic resistance was assessed in a
subset of populations to provide a deeper insight into the role of kdrmutations on pyrethroid
resistance.

Materials and Methods

Mosquito sampling sites
Aedes albopictus samples were collected between 2011 and 2014 in 12 sites from 6 countries
(S1 Table). These sites were selected based on the global distribution of Ae. albopictus and
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willingness of in-country collaborators. These sampling sites included the native home range
in Southeast Asia (i.e. Guangzhou, Shenzhen [China], Nagasaki [Japan] and Serangoon [Singa-
pore]), and derived populations (i.e. Hawai’i [USA], La Reunion [France], California, Texas,
Florida [USA]], Arco, Rome [Italy], and Athens [Greece]). At all sampling sites, pyrethroids
were the commonly used insecticide for vector control and agricultural pest control [52,53].
Historically, organophosphates were used for vector control since 1950s [5,54,55] in these sites.
For each sample site, immature Ae. albopictus (larvae and pupae) were collected from more
than 50 different aquatic habitats, such as discarded plastic containers, flower pots and used
tires except that in La Reunion adult mosquitoes were collected using the BG-sentinel trap
(Biogents, Regensburg, Germany). In each site mosquitoes were collected in one time point as
indicated in Table 1. The field collected larvae/pupae were reared to adults and preserved for
subsequent DNA analysis.

DNA extraction and kdrmutations detection
Genomic DNA was extracted from individual mosquitoes using the SYBR Green Extract-
N-Amp Tissue PCR Kit (Sigma Aldrich) following the manufacturer’s protocol. Extracted
DNA was stored at 4°C or used immediately for PCR.

All the specimens were identified as Ae. albopictus using PCR with species-specific primers
for the ribosomal internal transcribed spacer (ITS1 and ITS2) and 18S rDNA regions [45]. A
total of 597 Ae. albopictusmosquitoes, ranging from 26–76 individuals per population, were
subjected to kdr genotyping. Portions of domains II, III, IV of the VGSC gene were amplified,
following protocols and primers developed by Kasai et al [28] (covering 989, 1011, 1016 and
1534 codon positions). PCR products were purified with ExoSAP-IT (USB, Cleveland, Ohio,
USA) according to the manufacturer’s protocol and directly sequenced by Genewiz Inc. (South
Plainfield, NJ). The sequences were aligned and analyzed using BioEdit (http://www.mbio.
ncsu.edu/BioEdit/bioedit.html) and Codon code (http://www.codoncode.com/).

Table 1. Genotyping results of F1534 alleles in the voltage-gated sodium channel gene in 12 Aedes albopictus populations.

Population N F1534 genotype Allele frequencies (%) P* (HWE)

FF FC CC FS SS FL LL F1534 F1534C F1534S F1534L

Nagasaki, Japan 44 44 0 0 0 0 0 0 100 0 0 0 -

Guangzhou, China 62 37 0 0 2 5 4 14 63.5 0 9.5 25.4 <0.0001

Shenzhen, China 51 30 0 0 11 6 3 1 72.6 0 22.6 4.9 <0.0001

Singapore, Singapore 40 40 0 0 0 0 0 0 100 0 0 0 -

La Reunion, France 56 56 0 0 0 0 0 0 100 0 0 0 -

Arco, Italy 48 47 0 0 0 0 1 0 99.0 0 0 1.0 -

Rome, Italy 76 76 0 0 0 0 0 0 100 0 0 0 -

Athens, Greece 62 39 16 7 0 0 0 0 75.8 24.2 0 0 <0.05

California, USA 58 58 0 0 0 0 0 0 100 0 0 0 -

Texas, USA 32 32 0 0 0 0 0 0 100 0 0 0 -

Hawai’i, USA 26 26 0 0 0 0 0 0 100 0 0 0 -

Florida, USA 42 32 0 0 10 0 0 0 88.1 0 11.9 0 >0.05

Laboratory 60 60 0 0 0 0 0 0 100 0 0 0 -

HWE = Hardy-Weinberg equilibrium

* P refers to P value for chi-square test.

doi:10.1371/journal.pntd.0004696.t001
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Insecticide susceptibility bioassay
To determine resistance level of Ae. albopictus in the field, we conducted pyrethroid suscepti-
bility bioassay in two populations from southern China (Shenzhen and Guangzhou). Briefly, in
each location ~8,000 larvae were collected from 400 natural habitats and reared to adults in
insectary. All specimens were identified to species by morphology. Adult females 3–5 days post
emergence were subjected to insecticide susceptibility test against 0.05% deltamethrin follow-
ing the standard WHO tube test protocol [10]. Control tests were performed using silicone oil,
pre-impregnated papers. Adult bioassays were conducted with 20–25 mosquitoes per replicate,
and 8–20 replicates per population. The number of mosquitoes being knocked down was
recorded every 10 minutes during the 60 min exposure period. Mortality was scored after 24 hr
recovery period. Overall, 420 female adults from Guangzhou and 150 individuals from Shen-
zhen were subjected to susceptibility bioassay. The susceptible Foshan strain of Ae. albopictus
originated from Foshan city (40 Km away from Guangzhou) and has been maintained in the
laboratory since 1981 with no insecticide exposure, was used as a susceptible reference popula-
tion. Insecticide susceptibility bioassay was performed in China only, but not in other countries
due to logistic constraints.

To establish association between kdrmutations and phenotypic resistance, we screened
2017 female adults from Guangzhou and 1350 from Shenzhen for deltamethrin resistance
using the standard WHO tube bioassay. Here resistant individual is defined as a mosquito
being alive after the 24 hr recovery period, and susceptible mosquito is defined as being dead
after the 24 hr recovery period. This definition of resistance is reasonable because the 0.05%
deltamethrin diagnostic dose kills 99.9% susceptible mosquitoes [56]. This screening yielded 79
and 115 resistant mosquitoes from Guangzhou and Shenzhen respectively. All these resistant
mosquitoes and 153 susceptible mosquitoes were genotyped for kdrmutation at 1534 codon by
direct sequencing.

Statistical analysis
For kdrmutation survey in multiple populations, mutation frequencies at each codon were cal-
culated for each population. Frequencies of synonymous and non-synonymous mutations
were presented. For non-synonymous mutations, Hardy-Weinberg equilibrium test was per-
formed using Fisher’s Exact test with Bonferroni corrections to determine the heterozygote def-
icit in each population. To determine the association between kdrmutations and resistance in
the two populations from southern China, Fisher’s Exact test was performed and odds ratio
was determined between resistant and susceptible mosquitoes for each kdr allele.

To determine population resistance status to pyrethroids, mortality rates of the two popula-
tions from southern China was calculated. Resistance status was classified according to WHO
(2013) criteria: resistant for<90% mortality, probable resistant for 90–98% mortality, and sus-
ceptible for>98% mortality [56]. The 50% and 95% knockdown time, KDT50 and KDT95,
were determined based on exponential decay model.

Results

Frequency of kdrmutations
Sequences of domains II (480 bp), III (exon 1; 2,347 bp), and IV (280 bp) of the VGSC gene
were obtained from a total of 597 mosquitoes. All mutations in codons 989, 1011 and 1016
within domains II or IV were synonymous (codon nomenclature is based onMusca domestica
VGSC gene according to the accepted kdr codon nomenclature method). In domain III non-
synonymous mutations were detected at codons 1532 and 1534. At codon 1532, a change from
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wildtype codon ATC (isoleucine) to ACC (threonine) was detected in one population only
(Rome, Italy). Thirteen out of the 40 samples were heterozygotes and one was a homozygote
TT, giving an I1532T mutation frequency of 19.7%. At codon 1534, polymorphism was
detected in five (Guangzhou, Shenzhen, Arco, Athens and Florida) populations out of the 12
populations examined (Table 1 and Fig 1). A total of three mutated alleles were detected. Muta-
tions from wildtype TTC (Phe) to either TCC (Ser) or TTG (Leu) was detected in southern
China (Guangzhou and Shenzhen populations), with a frequency ranging from 4.9–25.4%.
Mutation from TTC (Phe) to TTG (Leu) was detected in one individual from Arco, Italy as a
homozygote, giving a mutation frequency of 2.6%. Mutation from TTC (Phe) to TGC (Cys)
was detected in 12 Athens individuals, of which six are heterozygous F/C and six are homozy-
gous C/C, giving a mutation frequency of 24.2%. Mutation from TTC (Phe) to TCC (Ser) was
detected in 10 individuals from Florida, of which all are heterozygotes giving a mutation fre-
quency of 11.9%. Compared to published kdrmutation frequency in Ae. albopictus, the muta-
tion frequency at the 1534 codon found in our populations, particularly those from southern
China and Athens, Greece very high. Also, considerable number of homozygous mutant indi-
viduals was found (30.6% in Guangzhou, 13.7% in Shenzhen, and 11.3% in Athens).

Fisher’s Exact test found that three out of four populations (Guangzhou, Shenzhen and
Greece) were not in Hardy—Weinberg equilibrium for genotypes in codon 1534. Significant
departure from Hardy—Weinberg equilibrium resulted from a heterozygote deficit.

A total of 29 synonymous mutations across domain II, III and IV were recorded [S2 Table].

Susceptibility bioassay and association with kdrmutations
Insecticide susceptibility bioassay found that Ae. albopictusmortality rate after the 24 hr
recover period was 90.1% and 96.1% for Shenzhen and Guangzhou populations (Table 2).
Based on the WHO criteria, Ae. albopictus population from Shenzhen was classified as “resis-
tant” and the Guangzhou population as probably resistant. The 50% knockdown time (KDT50)
was 2.3 times in Shenzhen population compare to the susceptible laboratory colony, and 1.7

Fig 1. Distribution of mutation frequencies of Voltage-gated SodiumChannel gene at F1534 locus in 12 field Aedes albopictus populations.

doi:10.1371/journal.pntd.0004696.g001
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for the Guangzhou population (Table 2). Similar increase in knockdown time was also found
in the 95% knockdown time (KDT50) in field population compared to the control population.
This pattern of delayed knockdown in Shenzhen and Guangzhou populations was consistent
with bioassay mortality rates and population resistance classification (Fig 2).

Association between kdrmutation at 1534 codon and pyrethroid
resistance
We genotyped 1534 codon of the VGSC gene for a total of 347 female mosquitoes from the two
southern China populations that have been phenotyped for resistance to deltamethrin. Among
them, 194 individuals were classified as “resistant” (being alive after the 24 hr recovery period
in the WHO tube bioassay), and 153 were “susceptible”. Three alleles (wildtype F1534, F1534S
and F1534L) and five genotypes were detected indicating two mutations at this codon
(Table 3). To determine the impact of kdrmutation at 1534 codon on pyrethroid resistance,
F1534S and F1534L alleles were analyzed separately for their associations with deltamethrin

Table 2. Knockdown time andmortality rate of Aedes albopictus populations from southern China using the standardWHO tube susceptibility bio-
assay against 0.05% deltamethrin.

Population n KDT50 (95% CI) KDT95 (95% CI) KRR50 (95% CI) KRR95 (95% CI) 24 hr mortality (95% CI)

Laboratory 175 10.5 (9.5–11.5) 15.5 (13.7–20.5) 1 1 100% (n.a.) †

Guangzhou 420 18.2 (16.4–19.6) 40.2 (36.4–46.5) 1.7 (1.7–1.7) 2.6 (2.3–2.7) 96.1% (94.0–98.2%)

Shenzhen 150 24.7 (19.1–29.4) 60.1 (55.5–66.1) 2.3 (2.0–2.6) 3.9 (3.2–4.1) 90.1% (83.5–96.7%)

KDT50: Time in minutes when 50% of the tested mosquitoes were knocked down; 95% CI refers to 95% confidence interval.

KRR50: Knockdown resistant ratio was calculated as KDT50 field population divided by KDT50 of laboratory strain;

KDT95: Time in minutes when 95% of the tested mosquitoes were knocked down;

KRR95: KRR95 was calculated as the ratio of KDT95 of field population to KDT95 of laboratory strain.
† n.a., not applicable.

doi:10.1371/journal.pntd.0004696.t002

Fig 2. Cumulative mortality of Aedes albopictus against exposure time in two field population from
southern China and the laboratory susceptible population.

doi:10.1371/journal.pntd.0004696.g002
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resistance. We found that F1534S mutation frequency was significantly higher in the resistant
population than in the susceptible population for both Shenzhen and Guangzhou. F1534S
mutation showed increased protection against deltamethrin in both populations (odds ratio for
Guangzhou 3.3, p<0.0001; odds ratio for Shenzhen 2.7, p<0.0001) (Table 3). On the other
hand, F1534L mutation was not significantly associated with deltamethrin resistance in both
populations (P> 0.05).

Discussion
The present study is by far the most comprehensive survey of kdrmutations in Ae. albopictus
mosquitoes from broad geographical regions. Two important findings arose from this study.
First, we identified two novel kdrmutations: I1532T and F1534S. Along domains II, III and IV
of the VGSC gene, non-synonymous mutations were detected only at two codons (1532 and
1534). A novel I1532T mutation that has not been previously reported in Ae. albopictus was
found uniquely present in Rome, Italy among the 12 populations examined, and it was preva-
lent with a frequency of 19.7%. Interestingly, this mutation was not found in the Arco popula-
tion, which is 570 km away from Rome in Italy. It is worth mentioning that the mosquitoes
from Arco were collected in 2011, two years prior to those collected at Rome. Hence, the differ-
ence in collection time and/or limited sample size may influence detection of this mutation at
the population level. The second novel F1534S mutation was found abundant in the two popu-
lations from southern China and Florida with a frequency ranging from 9.5–22.6%. The second
important finding is that distribution of kdrmutations in Ae. albopictus was patchy as evi-
denced by that fact among the 12 field populations examined, five populations exhibited poly-
morphism at codon 1532 or 1534, and 7 populations were monomorphic. Surprisingly modest
F1534C mutation frequency was found in the Greece population. Pyrethroids were used pri-
marily for personal protection in domestic applications in the urban environments. Ultra low
volume sprays and long-term use of pyrethroids in surrounding agricultural fields may have
accelerated the selection for pyrethroid resistance. However, whether the F1534C mutation can
be used as a biomarker for pyrethroid resistance monitoring in Ae. albopictus populations in
Greece need further evidence from pyrethroid resistance bioassay.

Using the mosquito samples from southern China, we established that kdrmutation con-
ferred protection against deltamethrin in Ae. albopictus by an odds ratio of 3.3 in Guangzhou
and 2.7 in Shenzhen (Table 3). This finding was consistent with studies on Ae. aegypti which
reported that F1534C mutation was significantly deltamethrin resistance [25,29,32] The role of
F1534C mutation in insecticide resistance was further confirmed in Xenopus oocyte by the
demonstration of this mutation reduced the channel sensitivity to pyrethroids [32,57,58]. The

Table 3. Genotyping results of voltage-gated sodium channel gene at 1534 codon and association between kdrmutation and phenotypic resis-
tance in two deltamethrin resistant and susceptible Aedes albopictus populations from southern China.

Population Phenotype N Genotypes Odd ratio (95% CI) Fisher Exact
Probability Test: P

FF FS SS FL LL F1534S F1534L F1534S F1534L

Guangzhou R 79 39 37 0 3 0 3.3 (2.03–5.42) 0.2 (0.08–0.47) <0.0001 >0.05

S 81 50 13 4 11 3

Shenzhen R 115 37 66 5 7 0 2.7 (1.75–4.13) 0.4 (0.18–0.73) <0.0001 >0.05

S 72 34 26 1 11 0

R, Resistant; S, Susceptible; NA, not applicable.

doi:10.1371/journal.pntd.0004696.t003
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present study established significant association between F1534S mutation and pyrethroid
resistance in Ae. albopictus in the two south China populations. We found a modest frequency
of kdrmutations in the two southern China populations. This modest frequency of kdrmuta-
tions may be related to intense pyrethroids usage in the past two decades in the area where
major dengue outbreaks have occurred [26,59–64]. Pyrethroids have been the major insecticide
used for city-wide aerial spray for adult mosquito control to contain dengue outbreaks
[26,54,59–62,65]. Therefore, monitoring the kdrmutation frequency may aid the surveillance
of pyrethroid resistance in Ae. albopictus.

We recognize several limitations in our study. First, only two out of 12 populations were
bioassayed for pyrethroid resistance. Due to logistic constrains, it was not possible for us to col-
lect a large number of Ae. albopictus larvae and conduct resistance bioassay. Second, survey on
kdrmutation frequency on more countries would be ideal. Third, the association between kdr
mutations and resistance was examined based on two populations, and the generality of the
finding should be tested.

The findings from this study have important implication on Ae. albopictus control. First, the
patchy distribution of kdrmutations in Ae. albopictusmosquitoes calls for developing global
surveillance plan for pyrethroid resistance and developing countermeasures to mitigate the
spread of resistance. It is entirely possible that many Ae. albopictus populations in the field are
susceptible to pyrethroid, containing the spread of pyrethroid resistance would greatly preserve
the effectiveness of pyrethroid insecticides. Second, significant association between kdrmuta-
tion and protection from deltamethrin raised the possibility that kdrmutation may be a viable
biomarker for pyrethroid resistance surveillance in Ae. albopictus. We do not discount the
potential role of metabolic detoxification enzymes and other resistance mechanisms in pyre-
throid resistance, rather we emphasize that more research is needed to validate the correlation
between kdrmutation and pyrethroid resistance at the population level.
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