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Abstract

Group C orthobunyaviruses are single-stranded RNA viruses found in both South and North
America. Until very recently, and despite their status as important vector-borne human path-
ogens, no Group C whole genome sequences containing all three segments were available
in public databases. Here we report a Group C orthobunyavirus, named El Huayo virus, iso-
lated from a pool of Culex portesi mosquitoes captured near Iquitos, Peru. Although initial
metagenomic analysis yielded only a handful of reads belonging to the genus Orthobunya-
virus, single contig assemblies were generated for L, M, and S segments totaling over
200,000 reads (~0.5% of sample). Given the moderately high viremia in hamsters (>10” pla-
que-forming units/ml) and the propensity for Cx. portesi to feed on rodents, it is possible that
El Huayo virus is maintained in nature in a Culex portesi/rodent cycle. El Huayo virus was
found to be most similar to Peruvian Caraparu virus isolates and constitutes a novel sub-
clade within Group C.

Author Summary

Arthropod-borne viruses remain a significant cause of human and domestic animal dis-
ease and new viruses are constantly being discovered. RNA virus discovery and assembly
remains a challenge due to highly polymorphic genomes, current lack of breadth and
depth of publicly available viral genomes, and confounding factors due to host sequence
and sequencing biases. We describe the discovery and genome assembly of El Huayo virus,
a group C orthobunyavirus isolated from a pool of Culex portesi mosquitoes captured near
Iquitos, Peru, and named for the Jardin Botanicao Arboretum El Huayo near where the
Cx. portesi from which the virus was isolated were captured. Although orthobunyaviruses
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are not commonly associated with human disease, Group C members are widespread in
Central and South America and known to cause febrile illness. The discovery, and genome
assembly, of El Huayo virus may help to explain numerous dengue-like illnesses where
Aedes aegypti are not commonly found.

Introduction

The Orthobunyavirus genus comprises a diverse set of viral species, represented by multiple
serogroups, including: Bunyamwera, California, Group C, and Simbu [1]. Their RNA genome
includes three segments (Small [S], Medium [M], and Large [L]). The L segment encodes a
RNA polymerase (RdRP); the M segment encodes two glycoproteins (Gc and Gn) in addition
to a non-structural protein (NS); and the S segment encodes both a nucleocapsid protein (NP
or N protein) and a non-structural protein (NSs) [2, 3]. Group C viruses were first identified in
Brazil around 1950. Members of the California serogroup, including La Crosse, California
encephalitis, Inkoo, and Tahyna viruses, are known to cause disease in humans [4-8]. Simi-
larly, members of the Bunyamwera serogroup, including Cache Valley and Bunyamwera
viruses [9, 10], Simbu serogroup, including Akabane, Iquitos, and Schmallenberg viruses [11-
13], and Group C, including Caraparu, Itaya, Marituba, and Oriboca viruses [14-16], are
known to cause disease in humans or domestic animals. Because infection with Group C
viruses results in a non-differentiated febrile (dengue-like) illness and the lack of available diag-
nostic assays for these viruses, it has been difficult to associate these viruses with human dis-
ease. However, a study by Forshey et al. [17] identified 30 cases of human illness associated
with Group C orthobunyaviruses, many of them Caraparu-like, and estimated that about 2.5%
of febrile illnesses in the region were due to infection with an orthobunyavirus. The goal of our
study was to sample, sequence and assemble a novel member of the genus Orthobunyavirus
that had been isolated from a pool of Culex portesi mosquitoes captured in Peru in order to
provide further genomic insights of this potentially disease-causing virus.

Materials and Methods
Ethics statement

The animal work was approved by the USAMRIID Institutional Animal Care and Use Com-
mittee. Research was conducted under an IACUC approved protocol in compliance with the
Animal Welfare Act, PHS Policy, and other Federal statutes and regulations relating to animals
and experiments involving animals. The facility where this research was conducted is accred-
ited by the Association for Assessment and Accreditation of Laboratory Animal Care, Interna-
tional and adheres to principles stated in the Guide for the Care and Use of Laboratory
Animals, National Research Council, 2011.

Virus isolation

Mosquitoes were captured at Aotus monkey-baited traps as part of an enzootic dengue study
conducted in the vicinity of Iquitos, Peru [18]. Mosquitoes were identified to species, pooled
(up to 25 specimens/pool), frozen on dry ice, and kept at -70°C until tested for infectious virus.
Mosquito pools were triturated in 2 ml of diluent [10% heat-inactivated fetal bovine serum in
Medium 199 with Earle's salts, NaHCOj3 and penicillin (100 U/ml), streptomycin (100 pg/ml),
and nystatin (100 U/ml)]. The suspensions were clarified by centrifugation (3,000 rpm for 10
min) and tested for virus by plaque assay on Vero (African green monkey kidney, ATCC
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CCLS81) cell monolayers. A 0.1-ml aliquot of each original mosquito suspension and a 1:100
dilution of these suspensions were inoculated into duplicate wells of Vero cell monolayers. A
second overlay, containing neutral red stain, was added 2 or 6 d later. If plaques were observed,
the agar was removed, and the cells washed with fresh diluent and the resulting viral suspen-
sions aliquoted into cryovials and frozen at -70°C. An aliquot of each suspension was inocu-
lated onto confluent monolayers of Vero cells grown in a T-25 culture flask with 5 ml of liquid
cell culture medium and observed daily for evidence of cytopathology. Cell cultures showing
cytopathic effects were frozen at -70°C. Later, they were thawed, the suspension clarified by
centrifugation at 3,000 rpm for 5 min, and then stored as 0.5-ml aliquots at -70°C for virus
identification studies. The Vero passage 2 stock of one of these viruses, PE-M-0139 (isolated
from a pool of 25 Cx. portesi mosquitoes captured in June 2002), was used in these studies.

Sequencing

Total RNA from the Vero passage 2-cell culture supernatant was reverse transcribed using ran-
dom hexamers, and the resulting cDNA was amplified using multiple displacement amplifica-
tion. A sequencing library was prepared using the Nextera XT protocol, and sequenced on an
[lumina HiSeq 2500 instrument. An initial HiSeq run of 47,871,860 reads was supplemented
with a second HiSeq run of 204,323,558 reads, yielding 252,195,418 total 100bp paired-end
reads (NCBI BioProject PRINA290192).

Metagenomic analysis

Initial analysis of the metagenomic sample involved a de novo assembly and taxonomic classi-
fication approach via MetAMOS [19], IDBA_UD [20], Kraken [21] and Krona [22]. However,
initial inspection of the classified contigs and unassembled reads provided a convoluted picture
of sample constituents, with only two reads classified as a member of the genus Orthobunya-
virus (S1 Fig). LMAT [23](v1.2.3) was run on the dataset, only 5 reads were assigned to the
genus Orthobunyavirus.

Quality trimming and adapter removal

The reads were adapter clipped and quality trimmed using ea-utils, part of MetAMOS [19]
(fastq-mcf command, default parameters) using the Nextera XT adapter sequence CTGTCT
CTTATACACATCT.

Targeted assembly and orthobunyavirus identification

To complement the de novo approach, putative orthobunyavirus reads were recruited to a
diverse set of orthobunyavirus genomes via blastn [24](e-value 0.1, word size 7) using a custom
orthobunyavirus database (Caraparu, Zungarococha, Oropouche viruses, containing L, M and
S segments) downloaded from RefSeq [25]. The reference-based strategy filtered the nearly 50
million reads down to 234,280 paired-end reads (0.5% of the sample); blast did not report any
read alignments to existing S segment sequences. Assembly of the recruited subset was per-
formed with IDBA-UD (—pre_correction—num_threads 8—step 10); assembly was also
attempted with SOAPdenovo [26] and Velvet-SC [27], but these produced fragmented
assemblies.

The assembly was inspected for misassemblies by mapping all recruited reads back to the
assembled contigs using Bowtie 2 [28]; a total of 121,901 reads mapped to the L segment
(1762X avg. coverage) and 29,599 reads mapped to the M segment (617X avg. coverage). Cov-
erage plots of the read mappings were visualized in IGV [29]. One junction in the assembled M
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segment was found to lack read support and was not consistent with related M segments (54
Fig red arrow). A second round of recruitment was performed, including reads from the full
assembly covering the region containing the erroneous deletion. The misassembled region was
corrected after including these additional reads and rerunning IDBA_UD, resulting in consis-
tent read support across both L and M segments.

Full dataset de novo assembly

In addition, a full de novo assembly of the 50 million reads was performed (IDBA-UD [20],
default parameters), resulting in 340,327 total contigs. Contigs assembled with the full HiSeq
dataset were screened against the Human genome (hg19) and Green Monkey (BioProject
PRJNA215854) draft sequence to identify host sequence and misassembled contigs. The
recruited assembly was compared to the IDBA-UD [20] assembly on the full dataset using
NUCmer [30].

Sequence classification of S, M, and L segments

Orthobunyavirus (L and M) contigs were identified using both blastx and HMMER. An
exhaustive search for the 900-1000bp S segment was performed, without success, using
HMMER [31] (HMM profile http://pfam.xfam.org/family/PF00952, against all contigs using
hmmpress and hmmscan).

Detection of S segment. As we failed to detect the S segment in the initial HiSeq run, we
performed an additional sequencing run to facilitate the detection of the S segment of this
novel Orthobunyavirus isolated from a pool of mosquitoes captured near Iquitos, Peru. The
additional run provided over 200 million 100bp reads. All 200 million reads were first assem-
bled with SOAPdenovo2 [32], and HMMER [31] (hmmsearch-E 1000 —cpu 4 HMM pfamseq)
was used to align the 8,359,463 assembled contigs (translated to all 6-frames) against the
nucleocaspid and non-structural protein HMMs. A single 608bp contig was shown to have sig-
nificant hit (blastx, e-value = 2e-121) to Caraparu FMD0783 nucleocaspid protein
(AGW82160.1), aligning at 89% aa identity across its entire length.

Detection of terminal hairpin sequences

Based on known conserved terminal hairpin sequences found in the UTR regions in Orthobu-
nyavirus genomes [33, 34], we searched for terminal hairpin sequences (AGTAGTGTGCT)
near both 5’and 3’ends in the L, M, and S segments (within the first 300 nt) using BLAST [24]
(e-value = 10, word size = 7), to determine if the assembly was complete on both ends.

Sequence alignment and phylogenetic reconstruction

Amino acid (aa) sequences were aligned using MUSCLE [35] (default parameters), back trans-
lated to the original nucleotide sequences, edited to trim sequences from both ends that could
not be reliably aligned, and then realigned with MUSCLE. Phylogenetic trees were subse-
quently reconstructed for both a global set of 101 orthobunyavirus genomes (L segment) and
also on six Group C orthobunyavirus genomes (L and M segments), with FastTree2 [36].
Default parameters were used, and bootstrap support was determined by resampling the site
likelihoods 1000 times and applying Shimodaira-Hasegawa test [37].

Ability of El Huayo virus to replicate in a vertebrate host

To determine the potential for El Huayo virus to replicate in a vertebrate host, we inoculated
three Syrian hamsters intraperitoneally with 0.2 ml of a suspension containing 10°> PFU/ml
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(10>® PFU/hamster) of the Vero passage 2 stock of El Huayo virus. The hamsters were anesthe-
tized daily and three mosquitoes were allowed to take a blood meal from each of the hamsters.
These engorged mosquitoes were then triturated individually in 1 ml of diluent and tested for
infectious virus by plaque assay on Vero cells as described above. Hamsters were observed for
21 days for signs of illness.

Results
El Huayo virus sequencing

The El Huayo assembly yielded three contigs (Table 1) with alignments to orthobunyavirus
sequences, with best hits for all three segments to Peruvian Caraparu strains [38]. We were
unable to identify the known terminal hairpin sequences in the UTR regions, suggesting
incomplete assembly of the segments and/or increased divergence in the known conserved
region. The de novo assembly of the L and M segments with the first HiSeq dataset was more
fragmented than the recruitment approach (95 contigs vs. 2 contigs) with >95% of aligned de
novo contigs identical to the recruited assembly. However, the recruitment approach signifi-
cantly reduced depth of coverage (50-fold average reduction in coverage for both segments),
with a more dramatic effect on the M segment (100-fold) compared to L segment (5-fold), due
to the high level of divergence from the reference strain. Differences between the two assem-
blies were investigated further with dnadiff [39]; the full de novo assembly had multiple small
insertions with respect to the reference-recruited assembly. These insertions were found to
have high identity hits to Rhesus macaque and Green monkey genomes, yet were lacking from
both Caraparu genomes and the reference-recruited assembly. Closer inspection of these inser-
tions identified them as retroviral sequences and contained within likely misassembled contigs
(S3 Fig).

Phylogenetic analysis of the L segment suggests that this virus is closely related to Caraparu
viruses comprising Group C orthobunyaviruses (Fig 1). We placed it within the Group C phy-
logeny, consistent with previously published phylogenetic relationships of orthobunyaviruses
isolated from Peru [1]. El Huayo virus therefore appears to represent a novel, previously
uncharacterized subclade of Group C viruses.

Orthobunyaviruses are known to have high rates of reassortment [40], and although both L
and M segments were most closely related to Caraparu virus (Fig 2, Table 2), there is increased
polymorphism observed in M relative to L compared to other orthobunyavirus genomes. In
addition, Caraparu virus strain FMD0783 was found to be the most similar (nt/aa) to both the
M and S segments, while strain IQD5973 (from Iquitos, Peru) was the most similar (nt/aa) to
segment L.

Ability of El Huayo virus to replicate in a vertebrate host

El Huayo virus replicated to moderate titers in Syrian hamsters, with peak viremias of about
1072 PFU/ml occurring on day 3 after infection (Fig 3, Table 3). None of the hamsters dis-
played signs of illness, and all were well 21 days after infection.

Table 1. Assembly statistics. ‘all’ indicates assembly generated from the full HiSeq dataset; ‘rec’ indicates assembly generated from the recruited subset;
Cov indicates the combined coverage of each segment for both HiSeq runs.

doi:10.1371/journal.pntd.0004440.t001

# Contigs (all) # Contigs (rec) Cov Length (nt)
65 1 1792X 6,746 bp
30 1 667X 4,721 bp
1 NA 25X 608 bp

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004440  April 13,2016 5/13



NEGLECTED
TROPICAL DISEASES

©PLOS |

Genomic Analysis of a Novel Orthobunyavirus

giBOT11553IgbIKCTS0122.11
gilzT: n
i Al

IgblAF 484424,

L

7142,
14711

g Igedl

IO

'5603.51

154.11

—
=g

o

i|823354253labl KFEST157.11

FB97153.11

L

gblIKFE97139.
6715011

158IgbIHME27178.11

I—(

{EB00141.11

GHOITT

{ETS5087.1

Qil40TT 795099.11

gila01 77 9509311

gil401 77201 TlembIHETA5108.11

GMOITT 795096.1|
| SSIHOBBIGbIKCISAST. 1

955454.1|

gil4434185721gblIXB53178.11
GilaT72285264lembIHEE49912.11
gil44424734BIgbIKC 139365, 11
gll44424735210bIKC139367.11
gil44424T350IgbIKC138366.11
gildd42473421gbIKC 13938211
Gil4442473441gbIKC139363.1)
gH444247346IgbIKC139364.11

IMB27179.11

80,11
0il562069IgbILI1 2396, 1ILCU1 2396
gil146230119IgbIEF485032.11
gil28185094IgblAF525489.11
git2Z2127811gblAF528165.1]
gil1462301261gbIEF485035.11
0il292495567IgbIGUSIE378.11
il292495571IgbIGUSS6380.11
Gil2824955631gbIGUISHEITE. 11

gil 1GL206140.11
gil2924955651gbIGUS96377.11
gil2824055601gbIGUSSE3T. 11
Gil7T7920B85IgbIDQ196118.11
gil296280809IgHIGLI206125.11
0ll2962808971g0IGL206128.11
gil296280891 IgbGLI206137.11
146230133IgbIEF485038.11
giL2oEZR0ATSIghIGU206113.11

[ gll2962808871gbIG!

git3a2

LI206143.11

g 1591166.11
L giizssazzearnighiGusaties.l

Gil296ZB0BEIghIGU206149.11

gi IGU206146.11
gil2962B0B7 3IgbIGUI206110.11
il2862B0BTSIgbIGLI206119.11
Gil2062B0881IgbIGU206122.1)
gil296280895IgbIGL206131.11
gilS842075631gbIKF 71922611
gil5B420T582IgbIKFT15235.1]
GiI5B429756IGbIKFT19229.11
gil584297576IguIKF719232.11
gilSB420T55TIgbIKFT19223.11
GiIlB3eTTTI0IGLIHOT 2481811
GiI3OTTTIBIGLIHOTI4E17.1|

4

gil J203678.21

gi ot A
[ gil300827461IgbIHMO0T358.11
1 Al

S

BIEU7B9573.11

gl
oil

N gil3743494011gblUNBO1038.11
gil430721615gblQ743066.11
i3

prone
’_,—'_H;?mwlgmms?znn.u

{1s 080.11
GilaT424a370IgbLINST2077.11

—

IgblJNST2068.11

gil3

L s

Al
INST2071.11

p
JNST2065.11

g
ik

2062.11
gil5071162111gbIKCE08155.11
gil635174578IgbIK 542635, 11
GiIB351T4576IghIKIS42632.1]
qilE35174574IgbIKI542629.11
GilB35174572IgbIKJ542626.11

gilS072083601g0IKC168048.11

gil47 S436106.11

g J943510.11

9!

Al

gil226374371IgbIEF122411.21

gil545933263IgbIKF254776.11
1l

- Gi545933296101KF254790.11
I545033289IgbIKF254787.11

g 254793.11

gil gbIKF254779.11

1

gil3731 3
F254773.11

El

0.1

IgbIKF254770.11

Huayo virus -es

0il529367537IgbIKCB54418. 11

Simbu
Serogroup

California
Serogroup

Bunyamwera
Serogroup

Group C
Serogroup

Fig 1. Maximum-likelihood phylogenetic placement (FastTree2) of El Huayo virus (Segment L). Strains colored in blue represent Group C
orthobunyavirus genomes. Nodes with low bootstrap support (less than 0.8, Shimodaira- Hasegawa) are colored red. The strain in bold and indicated by the

arrow indicates El Huayo virus, the novel strain sequenced in this study.

doi:10.1371/journal.pntd.0004440.9001
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Segment M Segment L
Brazoran virus Brazoran virus
| El Huayo virus El Huayo virus
Marituba BeAn15 —— Marituba BeAn15
Zungarococha IQE7620 L Zungarococha IQE7620
Caraparu FMD0783

—— Caraparu FMD0783

Caraparu FVB0426 L Caraparu IQD5973

¢ IQD5973
araparu 1Q Caraparu FVB0426

Caraparu BeAn3994
Caraparu BeAn3994

0.05 0.05

Fig 2. Group C phylogeny of orthobunyaviruses listed in Table 2, for both segment M and L. S segment not shown due to partial assembly (608 nt out
of 1000-1100 nt). Nodes with low bootstrap support (less than 0.8, Shimodaira- Hasegawa) are colored red.

doi:10.1371/journal.pntd.0004440.9002

Discussion

This is the first report of El Huayo virus, a novel member of the Group C orthobunyaviruses.
Although rarely associated with human disease in nature, Group C viruses are known to cause
febrile illness [13, 41]. The lack of reported cases is almost certainly due to a lack of diagnostic
assays available for this group, and members of this group may be responsible for much of the
dengue-like illnesses reported in areas of South and Central America where Aedes aegypti are
not common [42]. In fact, Forshey et al. [17] estimated that about 2.5% of febrile illnesses in
the region were due to infection with an orthobunyavirus, but were misdiagnosed as dengue.
Culex portesi, the species from which El Huayo virus was isolated, is a common species
known to preferentially feed on rodents and marsupials [43, 44] and numerous viruses, including
Caraparu-like viruses have been isolated from this species [45-47]. The ability of El Huayo virus
to replicate to fairly high titer in hamsters indicates that like many other Group C virus, rodents
may be involved in the natural maintenance cycle for this virus [48]. Thus, the natural cycle for
El Huayo virus appears to be between Cx. portesi and rodents in the Amazon Basin region.
Because these viruses have a segmented genome, and because genetic reassortment has been
demonstrated in this family/genus [49], the orthobunyaviruses are an ideal model for studying
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Table 2. Nucleotide and amino acid similarity to the most closely related Group C orthobunyavirus genomes. Values in parenthesis indicate % iden-
tity calculated on segment M aligned regions without the highly polymorphic region located between positions 1500-2500.

Segment Virus

-

Brazoran
Caraparu
Caraparu
Caraparu
Caraparu
Marituba
Zungarococha
Brazoran
Caraparu
Caraparu
Caraparu
Caraparu
Marituba
Zungarococha
Brazoran
Caraparu
Caraparu
Caraparu
Caraparu

doi:10.1371/journal.pntd.0004440.t002

o nnmon =SS rrrCrr

(%)

Description Location Length (nt) nt aa
Houston USA 6911 bp 64% 81%
1QD5973 Peru 6794 bp 70% 84%

BeAn3994 Brazil 6855 bp 69% 84%
FVB0426 Bolivia 6850 bp 69% 83%
FMD0783 Peru 6849 bp 69% 84%
BeAn15 Brazil 6894 bp 69% 83%
IQE7620 Peru 6936 bp 68% 83%
Houston USA 4659 bp 62% 49% (70%)
1QD5973 Peru 4290 bp 64% 53% (73%)
BeAn3994 Brazil 4290 bp 63% 53% (70%)
FVB0426 Bolivia 4352 bp 63% 53% (72%)
FMDO0783 Peru 4349 bp 64% 53% (74%)
BeAn15 Brazil 4305 bp 62% 51% (71%)
IQE7620 Peru 4538 bp 62% 52% (71%)
Houston USA 1672 bp — —
1QD5973 Peru 1090 bp 80% 87%

BeAn3994 Brazil 1048 bp 82% 89%
FVB0426 Bolivia 1102 bp 81% 87%
FMDO0783 Peru 1068 bp 82% 89%

the evolution of novel viruses by genetic reassortment. How reassortment affects disease in
humans and the ability of these viruses to replicate in vector species are key open questions.

In our initial comparative analysis, the best matches in our reference database shared ~60-
80% nucleotide identity and 70-90% identity at the amino acid level with the (translated) novel
S, M and L segment sequences, respectively. Given the low sequence identity of segment M rel-
ative to segment L, segment M might represent a novel reassortment; the region from 1500-
2500bp contains a dramatic reduction in similarity to all known segment M strains available in
RefSeq.

High divergence relative to existing genomes is a challenge for homology detection meth-
ods; sensitivity must be increased to detect divergent matches, but the increase in sensitivity
also leads to potential misclassifications. Sensitive profile alignment methods based on hidden
Markov models can detect protein domain signatures in cases where extreme divergence
makes other methods infeasible [18], such as in the case of the highly divergent S segment
recently reported for Brazoran virus [26] which was double the size of previously published
orthobunyavirus S segments. Its S segment contained no known homology to existing segment
S proteins; however, similar to what we report here, it did have conserved orthobunyavirus
domains that were detected via InterProScan [27]. While insufficient sequencing depth in our
initial HiSeq run prohibited detection of the S segment, adding another HiSeq run allowed for
the detection of this small viral segment. This result highlights that lower abundance sequences
in environment samples may often be missed, and sequencing depth is still an important tool
for uncovering low abundance novel viruses from metagenomic samples.

Based on amino acid sequence similarity, the orthobunyavirus genome of El Huayo virus
reported in this study is most closely related to Caraparu virus Peruvian strains IQD5973 and
FMD0783 [38], both recently deposited in GenBank. This recent growth in publicly available
Group C orthobunyavirus genomes enabled the reliable placement of our novel strain within
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Fig 3. Viremia titers in Syrian hamsters by day after infection with El Huayo virus. Error bars indicate standard error.

doi:10.1371/journal.pntd.0004440.9003

the Group C serogroup. Prior to Huang et al. 2014, there were no complete genomes (including
all three segments) from within Group C. Lack of complete genomic sequences of serogroups
of interest can lead to misclassification or misidentification, evidenced by a recent study that
reported that a collection of Group C genomes likely require further validation [38]. This high-
lights the importance of efforts to populate reference databases. There exists a vast underrepre-
sentation of viral diversity for various clades, and of particular interest to this study, there are

Table 3. Replication of El Huayo virus in Syrian hamsters.

Hamster number

Day after infection 1 2 3 Mean (Std. Dev.)
1 5.8*% 5.7 3.8 5.3 (1.0)
2 6.5 6.4 6.0 6.3 (0.5)
3 7.3 7.2 71 7.2 (0.2)
4 5.9 4.7 7.0 5.8 (1.1)

*Log40 plaque-forming units of virus per ml of blood

doi:10.1371/journal.pntd.0004440.t003
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only a small number of South American orthobunyavirus sequences. Continuing efforts are
required to fill out viral reference databases to ensure reliable identification and characteriza-
tion of novel Bunyaviridae genomes.

An additional confounding factor for novel virus identification and assembly is host endog-
enous retroviral elements [50] (S2 Fig and S3 Fig). Aggressive assembly strategies can result in
chimeric host-plus-virus assemblies in which sequence shared by both virus and host results in
false joins between the two genomes; specifically, retroviral elements integrated into host
genomes. We have shown that a recruitment-based strategy, even at relatively high levels of
amino acid divergence, can prove useful for avoiding co-assembly of host and target virus.
However, this approach requires the presence of reference strains in the database and is prone
to under-recruitment of reads in highly polymorphic regions. In summary, while advances in
sequencing technology allow for the discovery of novel viruses present at low abundances in a
sample, care must be taken to properly address confounding factors.

Supporting Information

S1 Fig. A. Krona visualization of Kraken-based classification of entire sample. Chlorocebus
aethiops (Green Monkey) is the host sequence used for cell cultures; Unknown indicates 77%
of the reads were unable to be classified. There were 4770 total reads (0.01%) classified as
Viruses (including RNA Viruses). B. Krona visualization of Kraken-based classification of
putative viral reads. Of the 4770 viral reads, only 0.03% were assigned to the genus Orthobu-
nyavirus, representing two reads out of the nearly 50 million total (0.000003%).

(PNG)

S2 Fig. Illustration of an identified segment L misassembly. Assembly on the full dataset
resulted in a handful of misassembled contigs that incorrectly joined orthobunyavirus segment
L with host retrovirus elements. The horizontal black line at the top represents a region from
the Green Monkey genome, the red line indicates a shared k-mer (20) between Segment L and
the endogenous retroviral element, the green line represents the retrovirus and blue lines repre-
sent segment L.

(PNG)

S3 Fig. IGV plot showing a misassembled contig produced by the full de novo assembly.
The read pileup on the right hand side of the figure corresponds to a high coverage assembly of
a small region of segment L, while the read pileup at reduced coverage found on the left-hand
side corresponds to Green Monkey chromosome 9 (aligns across entire length at 99% identity).
(PNG)

S$4 Fig. IGV plot of the read pileup of segment M reference-recruited assembly. The red
arrow indicates the false join at positions 995-1005bp in the assembly, lacking clear read sup-
port.

(PNG)
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