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Abstract

The leptospiral LigA protein consists of 13 bacterial immunoglobulin-like (Big) domains and is the only purified recombinant
subunit vaccine that has been demonstrated to protect against lethal challenge by a clinical isolate of Leptospira interrogans
in the hamster model of leptospirosis. We determined the minimum number and location of LigA domains required for
immunoprotection. Immunization with domains 11 and 12 was found to be required but insufficient for protection.
Inclusion of a third domain, either 10 or 13, was required for 100% survival after intraperitoneal challenge with Leptospira
interrogans serovar Copenhageni strain Fiocruz L1-130. As in previous studies, survivors had renal colonization; here, we
quantitated the leptospiral burden by qPCR to be 1.26103 to 86105 copies of leptospiral DNA per microgram of kidney
DNA. Although renal histopathology in survivors revealed tubulointerstitial changes indicating an inflammatory response to
the infection, blood chemistry analysis indicated that renal function was normal. These studies define the Big domains of
LigA that account for its vaccine efficacy and highlight the need for additional strategies to achieve sterilizing immunity to
protect the mammalian host from leptospiral infection and its consequences.
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Introduction

Pathogenic Leptospira species are globally distributed spirochetes

that cause 350,000–500,000 severe human infections annually

with an incidence of .10 cases per 100,000 population in humid,

subtropical regions of the world and a mortality rate of 10%

[1,2,3]. These figures are likely to be underestimates because

leptospirosis is a neglected tropical disease that occurs more

commonly among medically underserved populations [4,5]. The

infection is endemic wherever there is exposure to urine of

reservoir host animals that harbor the organism in their renal

tubules [6]. At least 18 species and more than 200 leptospiral

serovars have been described, many of which were isolated by

cultivation of kidneys from a wide diversity of infested wild and

domestic animals [1,7]. Environmental contamination of water

and soil results in frequent outbreaks of leptospirosis among the

poor in developing countries. Leptospirosis is also emerging

among participants of aquatic sports and adventure tourism [8,9].

In the urban setting, Rattus norvegicus is the most important vector of

human leptospirosis [5]. Serovars of Leptospira interrogans carried by

rats cause life-threatening hepatorenal failure and pulmonary

hemorrhage syndromes in tropical regions, especially where heavy

rainfall occurs in urban areas with poor sanitation and flood

control infrastructure [10]. Commercially available whole-cell

bacterin vaccines for prevention of leptospirosis in animals provide

relatively short-term serovar-specific protection and require

frequent boosters [11]. Although inactivated whole-cell vaccines

have been administered to humans, they are rarely used today

because of their reactogenicity. Thus, there is an urgent need for

development of novel vaccine strategies that provide safe, long-

term, cross-protective immunity.

Recombinant surface-exposed outer membrane proteins (OMPs)

are attractive subunit vaccine candidates because in contrast to the

lipopolysacchride, leptospiral OMPs are relatively well conserved

and those that are surface-exposed represent potential targets for

immune-mediated defense mechanisms. We have developed a suite

of complementary approaches for determining which leptospiral

OMPs are surface-exposed, including surface immunofluorescence,

surface biotinylation, surface proteolysis, surface immunoprecipita-

tion, and surface ELISA [12,13,14,15]. Using these approaches, a

number of transmembrane OMPs and surface lipoproteins have

been identified [16,17]. Despite the rapid increase in knowledge

about leptospiral OMPs, progress in understanding their vaccine

potential has been slow. Although LipL32 is the most abundant

pathogenic leptospiral OMP [18], purified, recombinant LipL32 has

no detectable vaccine efficacy [19]. Nevertheless, hamsters immu-

nized with recombinant bacillus Calmette-Guerin expressing LipL32

were partially protected from lethal challenge [20] and there is
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evidence for immunoprotection employing lipL32-containing viral or

DNA-based vectors [21,22]. Synergistic immunoprotection has been

observed using a combination of leptospiral OMPs, OmpL1 and

lipidated LipL41, expressed as membrane proteins in E. coli [23].

Leptospiral immunoglobulin-like (Lig) proteins are of great

interest as mediators of leptospiral pathogenetic mechanisms, as

serodiagnostic antigens, and as effective recombinant vaccinogens

[24,25,26,27,28]. At least two of the three members of the Lig

protein family are outer membrane lipoproteins containing a

tandem series of bacterial immunoglobulin-like (Big) domains [29].

Lig protein expression is associated with virulence and is strongly

and rapidly induced by increasing the osmolarity of the culture

medium to physiologic levels found in the mammalian host,

suggesting that they may be involved in the initial stages of host

tissue colonization [30,31]. LigA consists of 13 Big domains, the

first six of which are nearly identical in sequence to those in LigB,

while the last seven are unique to LigA [32] and mediate inter-

actions with host extracellular matrix proteins and fibrinogen

[24,33]. One study has found that the region shared by LigA and

LigB was not immunoprotective [27], while another study

reported that this region conferred some immunoprotective

activity [34]. In contrast, several groups have reported that

immunization with the LigA-unique region induced protection

from lethal infection either in a mouse model [28] or in the

hamster model [27,35] of leptospirosis. Although hamsters

surviving leptospiral challenge were found to have sublethal

kidney infection, both the extent of infection and its effects on the

kidney, the key target organ in leptospirosis, were not well

understood. In this study, we determined which LigA domains are

most strongly associated with immunoprotection and the effect of

LigA immunization on the burden of infection and the

histopathology in the kidney. Our results show that protection

from lethal infection required immunization with domains 11 and

12 along with a third domain, either 10 or 13.

Materials and Methods

Leptospiral strain and cultivation
L. interrogans serovar Copenhageni strain Fiocruz L1-130 was

maintained in Ellinghausen-McCullough-Johnson-Harris (EMJH)

medium [36] supplemented with 1% rabbit serum (Rockland

Immunochemicals, Gilbertsville, PA) and 100 mg/ml 5-fluoroura-

cil at 30uC in a shaker incubator. Organisms were passaged no

more than five times prior to hamster challenge. Hamster tissues

were cultured in semi-solid EMJH or semi-solid Probumin

Vaccine Grade Solution (Millipore, Billirica, MA) containing

0.2% Bacto agar (BD, Franklin Lakes, NJ) and 100 mg/ml 5-

fluorouracil in a stationary incubator at 30uC and were examined

for leptospiral growth for up to two months.

Preparation of recombinant proteins
PCR primers were designed to amplify gene fragments en-

coding various immunoglobulin-like domains from ligA of L.

interrogans serovar Copenhageni strain Fiocruz L1-130 (Table 1).

DNA amplicons, which included Nde I and Xho I restriction

endonuclease sites, were ligated into pET-20b(+) (Novagen), pro-

viding a carboxy-terminal His6 tag, and used to transform

Escherichia coli BLR(DE3)pLysS (Novagen). Protein expression

was induced with isopropyl-b-D-thiogalactopyranoside at 30uC
and soluble proteins were released with BugBuster (Novagen) and

purified with nickel-affinity chromatography as previously de-

scribed [25]. All proteins were stored at 4uC after dialysis in PBS.

Hamster immunization
Groups of four female Syrian hamsters, 5 to 6 weeks of age

(Harlan Bioscience, Indianapolis, IN), were immunized subcuta-

neously with 100 mg of recombinant protein, PBS, or 16108 heat-

killed (56uC for 1 h) leptospires (HKL) in a total volume of 0.5 mL

on days 0, 14 and 28 with Freünd’s adjuvant (complete adjuvant

for the first immunization, incomplete adjuvant for subsequent

immunizations). Blood samples were obtained two days before the

first immunization and 10 to 12 days after each immunization via

the retro-orbital route. All animal procedures were approved by

the Veterans Affairs Greater Los Angeles Healthcare System

Institutional Animal Care and Use Committee and adhere to the

United States Health Research Extension Act of 1985 (Public Law

99–158, November 20, 1985, ‘‘Animals in Research’’), the National

Institutes of Health’s Plan for Use of Animals in Research (Public Law

103–43, June 10, 1993), U.S. Government Principles for the

Utilization and Care of Veterbrate Animals Used in Testing,

Research, and Training, Public Health Service Policy on Humane

Care and Use of Laboratory Animals, the United States Depart-

ment of Agriculture’s Animal Welfare Act & Regulations, and

Veterans Health Administration Handbook 1200.7.

ELISA. Ninety-six-well ELISA microtiter plates (Immulon

4HBX,Thermo Fisher, Waltham, MA) were coated either with

100 mL of 10 mg/mL of recombinant LigA protein or 16109 heat-

inactivated leptospires/mL diluted in PBS, pH7.2 (Invitrogen,

Carlsbad, CA), by overnight incubation at 4uC. The plates were

allowed to warm to room temperature (RT), washed once with

200 mL of PBS, and blocked with Protein-Free Blocking Buffer

(PFBB, Thermo Fisher, Rockford, IL) for 1 to 2 h at RT. Wells

were washed with PBS, sera diluted with PFBB were added in a

volume of 100 mL, and plates were incubated for 1 h at 37uC.

Non-binding antibodies were removed with three PBS washes, and

Horseradish peroxidase (HRP)-conjugated anti-Syrian hamster

immunoglobulin secondary antibody (Jackson ImmunoResearch,

West Grove, PA) 1:5000 was incubated for 30 min at RT.

Following three washes with PBS, 100 mL of 1-Step Turbo TMB

HRP substrate (Thermo Fisher) was added and incubated for 30

min at RT with shaking. The reaction was stopped by the addition

of 50 mL of 2 M H2SO4, and plates were immediately read in a

Bio-Rad 550 Microplate Reader at 450 nm. End-point titers were

defined as the highest titer that yielded a reading two standard

Author Summary

Leptospirosis is the most widespread bacterial infection
transmitted to humans from host animals that harbor the
bacteria in their kidneys. Human infections caused by the
bacterium, Leptospira interrogans, frequently result in a life-
threatening illness characterized by jaundice and kidney
failure. Vaccines are urgently needed to prevent leptospi-
rosis in populations at risk. The leptospiral protein, LigA, is
a promising vaccine candidate because it is the first
purified protein to be shown to protect animals from fatal
leptospirosis. The goal of this study was to determine
which of LigA’s 13 domains are required for the protective
effect. Immunization with domains 11 and 12 was found to
be required, but was insufficient, for protection. A third
domain, either 10 or 13, was required for 100% survival. As
in previous studies, residual bacteria were cultured from
the kidneys of survivors. However, in contrast to previous
studies, we determined the amount of bacterial DNA in the
kidneys as a measure of vaccine efficacy. We also
examined the kidneys microscopically for signs of damage
and measured blood chemistries to assess kidney function.
These are important steps towards developing vaccines
that provide protection from kidney damage and infection.

Immunoprotective Three-Domain Region of LigA
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deviations above the result with sera from PBS-immunized

hamsters. Geometric mean end-point titers were calculated as

previously described [37].

Challenge and sample collection
Fourteen days after the third immunization (day 42), hamsters

were challenged intraperitoneally with 16103 L. interrogans serovar

Copenhageni strain Fiocruz L1-130 in 0.5 mL of EMJH. The

animals were weighed daily and observed for end-point criteria,

including loss of appetite, gait or breathing difficulty, prostration,

ruffled fur, or weight loss of $10% of the animal’s maximum

weight. Animals that reached end-point criteria were euthanized

with isoflurane and tissue samples were collected in formalin for

histopathology or incubated overnight at 4uC in RNAlater

(Ambion, Austin, TX) and stored at 280uC. Processing tissues

for histopathology involved formalin fixation, paraffin embedding,

sectioning, and periodic acid Schiff (PAS) staining in a Dako

automated slide processor. Blinded scoring of kidney sections used

a scale of 0 to 5 for the extent of histopathology, ranging from

normal to severe renal tubular damage, based on the degree of

hyaline cast deposition, interstitial inflammation, mitosis, Bow-

man’s space dilation, tubular atrophy and associated capsular

depression. Blood was collected for serology and chemistry analysis

(Antech Diagnostics, Irvine, CA). 100 mL of blood or pulverized

kidney or liver were inoculated into semi-solid medium at dilutions

of 1:100 and 1:10,000 and incubated at 30uC.

Microscopic agglutination test (MAT)
Sera collected at euthanasia were examined at a 1:50 dilution by

MAT as previously described [38] with live L. interrogans serovar

Copenhageni strain Fiocruz L1-130. Briefly, heat-inactivated serum,

diluted in physiologically buffered water, pH7.6, was incubated

overnight at 4uC with 2 to 46108 leptospires/mL and examined

under dark-field microscopy for .50% reduction in the number of free

leptospires when compared with serum from uninfected animals.

Quantitative PCR (qPCR)
Kidneys were stored in RNAlater and DNA was extracted with

DNeasy Blood and Tissue kit according to the manufacturer

instructions (Qiagen, Valencia, CA) with modifications. 15 to

25 mg of kidney were immersed in 360 mL of ATL buffer and the

tissue was homogenized in a 24-Fast Prep tissue homogenizer (MP

Biomedicals, Solon, OH) using lysing matrix A with a setting of

6 m/s for 40s. 40 mL of proteinase K at a concentration of 15 mg/

mL of protein were added and the samples were incubated for 3 h

at 37uC. Two volumes of AL buffer-ethanol (1:1) were added and

the mixture was applied to a spin column, on which the bound

DNA was washed with washing solutions 1 and 2 and eluted with

200 mL of AE buffer-water (1:4). The purified DNA was stored at

280uC until use.

The extracted DNA was used in a qPCR using the Bio-Rad iQ5

Real-time System (Bio-Rad, Hercules, CA). 100 ng of total DNA

was combined with 1 mM of each primer and 12.5 mL iQ SYBR

Green Supermix (Bio-Rad) and brought to a final volume of 25 mL

with nuclease-free water (Ambion). 4 samples were run per group

and each sample was run in duplicate. qPCR primer pairs were

LipL32-f, 5-CGCGTTACCAGGGCTGCCTT-39, and LipL32-r,

59-CGCTTGTGGTGCTTTCGGTG-39, and hamster GAPDH-

f, 59-CTGGTTACCAGGGCTGCCTT-39, and GAPDH-r, 59-

CCGTTCTCAGCCTTGACTGTGC-39, resulting in amplicons

of 152 bp and 146 bp, respectively. The PCR protocol consisted

of an initial incubation step at 95uC for 12.5 min followed by 40

cycles of amplification (95uC for 15 s, 57uC for 30 s and 72uC for

30 s). The level of the lipL32 gene of L. interrogans was normalized

to that of hamster gapdh, using Bio-Rad iQ5 software and

Microsoft Excel. Standard curves were generated for each gene

ranging from 10 to 1.66106 copies of Leptospira (20-fold dilutions)

and 0.02 to 200 ng (10-fold dilutions) of hamster DNA.

Statistics
Survival differences between groups were analyzed by Fisher’s

Exact Test using GraphPad InStat version 3.10 (GraphPad

Software Inc., La Jolla, CA). One-way analysis of variance

(ANOVA) was used to test for differences between multiple ($3)

groups using a P value,0.05. For ordinal data, such as the

histopathology scores, the Kruskal-Wallis one-way ANOVA with

Dunn’s post-test was included. The unpaired, two-tailed Student’s

Table 1. Recombinant LigA proteins.

Proteina Amino acidcoordinatesb MW (Da) Primersc

LigA79-13 L631-P1224 63,422 f-AACATATCTCATATGCTTACCGTTTCCAACACAAACGCCAA
r-TTCCTCGAGTGGCTCCGTTTTAATAGAGGCTAAT

LigA79-11 L631-A1033 42,991 f-AACATATCTCATATGCTTACCGTTTCCAACACAAACGCCAA
r-GACGTCCTCGAGAGCAGAAGTGACATACAAGGTAGTAGA

LigA79-9 L631-A851 24,034 f-AACATATCTCATATGCTTACCGTTTCCAACACAAACGCCAA
r-AGTCTCGAGCGCTGCGGTAACGGATAATTTGGA

LigA10-13 E852-P1224 40,602 f-ACGCTTACGCATATGGAACTTACTGAGATTGTGCTAAATCC
r-TTCCTCGAGTGGCTCCGTTTTAATAGAGGCTAAT

LigA10-12 E852-E1124 30,085 f-ACGCTTACGCATATGGAACTTACTGAGATTGTGCTAAATCC
r-GCGTAGCTCGAGCTCGTCATTGACGAATATCCA

LigA11-13 R943-P1224 31,233 f-CATCAATGACATATGAGAATAGCTTCAATCGAAGTAACACC
r-TTCCTCGAGTGGCTCCGTTTTAATAGAGGCTAAT

LigA11-12 R943-E1124 20,716 f-CATCAATGACATATGAGAATAGCTTCAATCGAAGTAACACC
r-GCGTAGCTCGAGCTCGTCATTGACGAATATCCA

LigA12-13 V1034-P1224 21,645 f-ATACAGTCTCATATGGTCCTTATTGACATAGAAGTCAAGCC
r-TTCCTCGAGTGGCTCCGTTTTAATAGAGGCTAAT

aLigA protein designations list the first and last domains included in the construct; 79 indicates a half domain.
bCoordinates refer to the first and last amino acids in the LigA protein of L. interrogans serovar Copenhageni strain Fiocruz L1-130.
cForward (f) and reverse (r) primer sequences, including an Nde I or Xho I site, respectively, are listed in the 59 to 39 direction.
doi:10.1371/journal.pntd.0001422.t001
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t-test assuming unequal variance was used to test for differences

between two groups using a P value,0.05.

Results

Recombinant LigA proteins and hamster response to
immunization

Eight clones were designed to express recombinant proteins

corresponding to various LigA domains from the second half of

domain 7 to domain 13 (Table 1) of L. interrogans serovar

Copenhageni. All proteins were expressed and purified as soluble

proteins and found to be stable at 4uC after dialysis in sterile PBS.

These proteins were employed as hamster immunogens in two

independent experiments (#1 and #2) and as antigens in an

indirect ELISA to measure the corresponding antibody response.

As shown in Figure 1, hamsters had higher antibody titers after the

third immunization than after one or two immunizations (one-way

ANOVA with test for linear trend, P,0.05), except in the HKL

(experiment #2) and LigA79-11 groups. There was no correlation

between the antibody titer and the number of domains in the LigA

protein (Pearson correlation coefficient 0.29, P.0.05).

Immunoprotective LigA domains
Hamsters were challenged with virulent L. interrogans via the

intraperitoneal route and observed daily, with a 10% decrease in

body weight included as an end-point criterion. Body weight was

found to be a useful measure of the response of animals to

challenge; a decrease in body weight was the earliest observable

sign of clinical leptospirosis. In contrast to animals that were

immunized with LigA79-13 and exhibited 100% challenge survival

(Figure 2A, Table 2), non-surviving animals that were sham-

immunized with PBS began to lose weight on day 8 after the

challenge and reached -10% of peak weight within 48 h

(Figure 2B).

Immunization with different recombinant LigA protein con-

structs (Table 1) resulted in dramatically different challenge

outcomes (Table 2 and Figure 3). In both experiments, there

was 100% survival in hamsters immunized with either the LigA79-

13 or LigA10–13 proteins. In experiment #1, immunization with

either the LigA79-11 protein or the LigA12-13 protein resulted

in,50% survival. This result indicated that no single LigA domain

was sufficient to afford 100% immunoprotection. For this reason,

a second experiment was performed to identify the LigA domain(s)

and the minimum number of domains required to protect

hamsters from lethal challenge. Interestingly, both the LigA10-

12 and the LigA11-13 proteins were both effective immunogens,

while the LigA11-12 protein consisting of their shared domains

afforded only 25% survival. Taken as a whole, these data indicate

that LigA domains 11 and 12 are required but not sufficient to

induce 100% survival. A recombinant LigA protein construct

consisting of at least three specific Big domains is needed to induce

a maximally protective immune response. The protective effect

was not merely a reflection of antibody titer; as there was no

correlation between survival and geometric mean end-point titer

(Figure 1, one-way ANOVA, P . 0.05).

Effect of LigA immunization on organ colonization
As previously reported [27], immunization with LigA proteins

provided non-sterilizing immunity, as organisms were isolated

from the kidneys of animals surviving challenge. Cultures of

kidney tissue from all hamsters surviving to 28 days were positive

(Table 2). In contrast, only 3 and 10 of 56 animals had positive

liver and blood cultures, respectively (data not shown). One non-

surviving animal immunized with LigA11-12 had a positive blood

Figure 1. Antibody response in hamsters immunized with recombinant LigA proteins or heat-killed leptospires (HKL). Total hamster
immunoglobulin responses to immunogens were measured by ELISA. Geometric mean end-point titers and standard deviations (n = 4) are shown
after the first (gray), second (blue), and third (black) immunizations. In all cases, pre-immune sera were negative. Recombinant LigA proteins are
represented by their domain numbers. Asterisks indicate proteins that provided 100% protection against lethal challenge.
doi:10.1371/journal.pntd.0001422.g001

Immunoprotective Three-Domain Region of LigA
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culture but negative cultures of the kidney and liver. The residual

kidney infection was reflected in lower weight gain of hamsters

after challenge (Figure 4). Among the surviving hamsters, those

immunized with LigA10-13 had a non-statistical trend of gaining

less weight after challenge than those immunized with LigA79-13

or heat-killed leptospires. Infection resulted in the formation of

agglutinating antibodies; the MAT was positive in nearly all LigA-

immunized animals surviving for 28 days (Table 2). The only

exceptions were one animal from the HKL control group and two

from the LigA12-13 group that met end-point criteria early, the

latter presumably because these animals had insufficient time to

develop agglutinating antibodies.

To more accurately assess the leptospiral burden, DNA from

kidneys was analyzed by qPCR. As shown in Table 2 and Figure 5,

groups immunized with LigA fragments had a mean of 1.26103 to

86105 copies of leptospiral DNA per microgram of kidney DNA.

As expected, kidneys from animals immunized with heat-killed

leptospires had a lower leptospiral burden than groups immunized

with LigA proteins such as LigA10-12, LigA11-13, LigA10-13

(experiment #1) and LigA79-13 (experiment #1) (non-parametric

ANOVA, Dunns post-test, P,0.05). Leptospiral burden appeared

to have a significant effect on animal health as reflected in the

weight of surviving hamsters; there was an inverse correlation

(Pearson correlation coefficient -0.51, P,0.05) in experiment #2

between the percent weight gain during the last week of the

experiment and the copies of leptospiral DNA per mg of kidney

tissue DNA. However, there were no significant differences in the

leptospiral burden among groups with 100% survival immunized

with different LigA proteins (Non-parametric ANOVA, P.0.05).

Figure 2. Hamster weight as an end-point for leptospiral
infection. Animals were weighed at the time of challenge and daily
thereafter for 28 days. Data are shown for experiment #2. A. Animals
immunized with recombinant LigA79-13 progressively gained weight
(lines represent individual animals). B. Control animals sham-immu-
nized with phosphate-buffered saline (PBS) had stable or increasing
weights until day 8 or 9 after challenge, after which they lost weight
and met the end-point criterion of a 10% weight decrease (lines
represent individual animals).
doi:10.1371/journal.pntd.0001422.g002

Table 2. Summary of immunoprotection outcomesa.

Immunogen
(LigA Domains)

Survivalb

(%)
MAT
(Positives/Total)

Culturec

(Positives/Total)
Histologyc

(Mean Score)
qPCRc,d

(Log10)

Experiment 1

79-13 100 3/3 4/4 ND 5.7962.0

79-9 0* 1/3 4/4 ND 3.9260.3

79-11 50 2/4 2/4 ND 3.10**60.8

10-13 100 4/4 4/4 ND 5.9260.8

12-13 50 0/4 4/4 ND 5.5361.3

HKL 100 3/3 0/4 ND 2.48**60.6

PBS 0* 0/1 4/4 ND 4.6661.0

Experiment 2

79-13 100 4/4 4/4 1.0 4.1360.2

10-13 100 4/4 4/4 2.5 4.9061.0

10-12 100 4/4 4/4 3.3** 4.8160.4

11-13 100 4/4 4/4 1.75 5.6161.2

11-12 25 4/4 1/4 3.3** 4.2960.8

HKL 100 3/4 0/4 1.25 2.39**60.2

PBS 0* 3/3 2/4 ND 2.72**6 0.2

aAbbreviations: HKL = heat-killed leptospires, PBS = phosphate-buffered saline, ND = not done.
bFour animals per group. *Statistically different from the LigA79-13 group (Fisher’s exact test, P,0.05).
cData refer to kidney analysis. Means are shown for Histology and qPCR (n = 4).
**Statistically different from the LigA79-13 group (ANOVA, Dunn post-test, P,0.05).
dExpressed as copies per microgram of tissue DNA.
doi:10.1371/journal.pntd.0001422.t002
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Pathology
Hemorrhagic areas were frequently noted on gross examination

of the kidney and lungs of animals that did not survive challenge.

Organs of survivors were usually normal in appearance but the

kidneys occasionally appeared shrunken, pale, or had surface

depressions indicating underlying infarction. Histopathological

changes in the kidneys were largely limited to tubulointerstitial

damage. Glomeruli were uniformly unaffected, except for one case

of hyaline deposition seen in an HKL-immunized hamster.

Although Bowman’s space was dilated in some cases, the cells of

the glomerulus were unaffected. Tubulointerstitial changes

included renal tubular damage, encompassing changes of thinning

of renal tubular epithelial cells (compare Figures 6A and 6B),

increasing hyaline cast deposition, mitosis, tubular atrophy

(Figure 6C), interstitial inflammation (Figure 6D), and associated

capsular retraction (Figure 6E). Renal tubular obstruction was the

most likely cause of hyaline cast deposition of the material staining

intensely with PAS (Figure 6F). Other changes due to tubular

obstruction were dilated Bowman’s space with or without hyaline

casts. Mitoses were seen in only 2 cases, which further supported

tubular injury because the rate of tubular cell turnover is normally

close to zero. As shown in Table 2, scores based on the extent of

renal tubular damage were higher in groups immunized with the

LigA10-12 and LigA11-12 proteins, suggesting that immunization

with these constructs was associated with relatively more

histopathology than other LigA constructs. Groups immunized

with HKL and the LigA79-13 protein had lower renal histopa-

thology scores (Table 2) and there was an inverse correlation

between renal histopathology score and weight gain (Pearson

correlation coefficient -0.75, P,0.01). There was also an inverse

correlation between renal histopathology score and leptospiral

burden (Pearson correlation coefficient 20.84, P,0.01) for

animals with.1.56104 copies of leptospiral DNA/mg of tissue

Figure 3. Mapping of the immunoprotective segment of LigA. Recombinant LigA proteins were tested for protective efficacy. The number of
animals surviving (survivors/total) and days to endpoint after challenge are shown. Surviving animals were observed for up to 28 days. Ig-like
domains of fully protective proteins are represented by dark symbols with green numbers while Ig-like domains of partially protective and non-
protective proteins are represented by white symbols with red numbers.
doi:10.1371/journal.pntd.0001422.g003

Figure 4. Percentage weight gain in hamsters immunized with
protective immunogens. Mean and standard deviation (n = 4) of
percent weight gain from challenge to 28 days in groups that had 100%
survival, including hamsters immunized with recombinant LigA proteins
(represented by their domain numbers), heat-killed leptospires (HKL)
and a non-immunized and unchallenged control (CTRL) group.
doi:10.1371/journal.pntd.0001422.g004
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Figure 5. Leptospiral burden in kidney tissue. Kidney tissue was subjected to DNA extraction and real-time PCR to measure the leptospiral
burden per microgram of tissue DNA. Means are depicted as bold horizontal bars along with standard deviations. Animals that survived to 28 days
(blue diamonds) had higher leptospiral burdens than those that met end-point criterion early (red circles). Of the groups with 100% survival to 28
days, animals immunized with heat-killed leptospires (HKL) had lower bacterial burdens than those immunized with LigA fragments. LigA-immunized
groups that survived up to 28 days were used for statistical comparisons (one-way ANOVA, P,0.05).
doi:10.1371/journal.pntd.0001422.g005

Figure 6. Renal histopathology showing tubulointerstitial changes. Representative PAS-stained kidney sections obtained from hamsters 28
days after leptospiral challenge showing, A. Normal tubular epithelium (40x); B. Moderate tubular damage (40x); C. Severe tubular atrophy (40x); D.
Interstitial inflammation (arrow, 40x); E. Tubular scarring with depressed renal capsule (arrow, 4x); and F. Tubular deposition of intensely PAS-positive
material consistent with Tamm-Horsfall glycoprotein (arrowheads, 40x).
doi:10.1371/journal.pntd.0001422.g006
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DNA, suggesting that a more intense immune response (reflected

by interstitial nephritis) may be partially effective at clearing

residual infection.

Serum chemistries were measured to evaluate liver and kidney

function of the hamsters (Table 3). Alanine aminotransferase and

alkaline phosphatase levels were moderately elevated in all groups,

consistent with hepatitis and cholestasis, respectively. However,

bilirubin levels were universally normal, indicating that hepatic

cholestasis had not progressed to biliary obstruction. Blood urea

nitrogen (BUN) levels were increased in all groups and extremely

elevated in the PBS control, while creatinine was low in all groups

and elevated in the PBS control group (one-way ANOVA with

Dunn’s post test, P,0.05), indicating that renal dysfunction and/

or dehydration contributed to mortality in these animals. In

contrast, serum creatinine and BUN levels were universally

normal in survivors, indicating that the renal tubular damage

observed by histopathology had not progressed to frank kidney

failure.

Discussion

In this study, we identified the LigA domains involved in

protecting hamsters from lethal leptospiral infection. Intraperito-

neal inoculation was performed with 1000 L. interrogans serovar

Copenhageni strain Fiocruz L1-130, resulting in a lethal infection

in all control animals (Table 2, Figure 3). This is the same

challenge dose used in a previously successful LigA protection

study and is estimated to be ,20-fold over the LD50 for this strain

[27]. We found that a LigA protein construct consisting of at least

three Big domains is required for immunoprotection and that the

11th and 12th specific Big domains must be included in this

construct. Given that the average pairwise sequence identity

among LigA Big domains is only 37% [32], the domains identified

here are likely to be antigenically unique and contain unique

immunoprotective epitopes. Compared to maximally protective

proteins, less protective LigA proteins elicited similar antibody

titers in hamsters (Figure 1), suggesting that protection was not

solely due to the antigenicity of the respective LigA vaccine. The

mechanism of LigA mediated immunoprotection has not been

elucidated, but may involve the disruption of a key function of

LigA in leptospiral pathogenesis and/or the enhancement of host

defense mechanisms. One key function of LigA is to mediate

binding of Leptospira to host molecules such as fibronectin and

fibrinogen [24]. Fibronectin- and fibrinogen-binding activity is

found within domains 7 through 13 of LigA, with the carboxy-

proximal domains 10 to 13 being required for fibronectin binding

(unpublished study, H. A. Choy). Finer mapping of the LigA

binding activities may give clues as to the possible immunopro-

tective mechanism.

As noted previously, LigA immunization converts an otherwise

lethal infection into a sublethal kidney infection [27]. The burden

of infection and its effects on vaccinated hamsters, qPCR and a

histopathology scoring system were included as quantitative

outcome measures. To our knowledge, this is the first vaccine

study to use qPCR to quantitate leptospiral burden in animals

after challenge. The application of qPCR to leptospiral vaccine

studies allows for the accurate determination of the leptospiral

burden, especially in the kidney, where colonization can lead to

kidney damage and/or urinary shedding of the pathogen. We

found that the heat-killed leptospires may not confer sterilizing

immunity. Although the kidneys from the immunized animals

were culture negative, leptospiral DNA was detected by qPCR.

Reverse transcription-qPCR studies are needed to determine

whether the low levels of DNA in these kidneys represent viable

spirochetes or are remnants of leptospires killed by the host

immune system. Comparison of quantitation results among

surviving hamsters shows that immunization with as few as three

LigA domains did not result in significantly higher levels of renal

colonization than immunization with longer constructs such as the

seven-domain LigA79-13 protein (Figure 5). However, immuniza-

tion with LigA10-12 did lead to greater histopathology, indicating

different protective effects of the LigA10-12 and LigA11-13

constructs (Table 2).

Histopathology analysis of kidney sections was performed using

PAS staining, which is useful for evaluating many different types of

nephropathology, including the severity of tubulointerstitial

damage in our study. PAS staining facilitated identification of

proximal tubules by their carbohydrate-containing brush border,

evaluation of tubular basement membrane changes, as well as

tubular atrophy (Figures 6A, B, and C). A striking finding of our

study was the identification of intensely staining protein casts in the

tubules of 32% of animals, both in solid and ‘‘bubbly’’ deposition

Table 3. Chemistry resultsa.

Group
(LigA Protein)

BUNb

(mg/dL)
AlkPhosb

(IU/L)
Calcium
(mg/dL)

Creatinine
(mg/dL)

Phosb

(mg/dL)
SGPTb

(IU/L)
Total bilirubin
(mg/dL)

Total protein
(g/dL)

79-13 2162 12768* 1360.7 0.360.1 7.660.5 64611 0.160 6.660.4

10-13 2565 78614 12.862.2 0.260 6.861.5 57626 0.160 5.661

10-12 2666 7264 11.661.8 0.260 6.661 39620 0.160 5.360.6

11-12 67 677 71618 9.761.3 0.861.2 7.5 6 3.3 49610 0.160 4.660.6

11-13 2262 9864 1360.9 0.260.1 7.660.6 51616 0.160 6.260.5

HKLc 2362 73610 12.560.9 0.260 6.861 4262 0.160 6.260.5

PBSd 235649* 130615* 13.761.4 6.861.6* 18.161 4865 0.360.1 6.760.4

Ref. range 9–30 15–45 8–12 0.5–2.2 4.2–8.5 10–35 0–1 4.5–6.5

aMeans with standard deviations from Experiment 2 are displayed (n = 4). Bold numbers: Significantly different from group immunized with heat-killed leptospires (one-
way ANOVA with Dunn’s post test, P,0.05). *Significantly different from group immunized with heat-killed leptospires (one-way ANOVA with Dunn’s post test,
P,0.01).

bAbbreviations: BUN, blood urea nitrogen; AlkPhos, alkaline phosphatase; Phos, phosphorus; SGPT, serum glutamic pyruvic transaminase.
cHeat-killed leptospires.
dPhosphate buffered saline.
doi:10.1371/journal.pntd.0001422.t003
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patterns (Figure 6E). These protein casts probably represent

Tamm-Horsfall glycoprotein (THP), also known as uromodulin or

TAMM protein, a glycoprotein that is produced by renal tubular

epithelial cells [39]. THP is the most abundant protein in

mammalian urine and though its deposition, in and of itself, is

not pathologic, the high frequency of THP deposition in our study,

including one case with extensive tubular deposition that occurred

in an animal that succumbed to acute leptospirosis, suggests that

increased THP deposition is related to the pathogenesis of lep-

tospiral renal pathology. These physiologic hyaline deposits are

usually solid, but in our study all cases demonstrated both a solid

and ‘‘bubbly’’ deposition pattern. This ‘‘bubbly’’ pattern appeared

to be due to a pathological process rather than an artifact of

fixation and/or embedding, but further studies are needed to

confirm this conclusion.

Insufficient information is currently available to understand how

broadly LigA immunoprotection can be applied. Whereas ligB has

been found in all pathogenic Leptospira species, ligA has been found

in only L. interrogans and L. kirschneri [32]. L. interrogans serovar Lai is

the only L. interrogans isolate found not to contain ligA [40]. If ligA

deficiency is confirmed in other Lai isolates, this would be a

notable exception because the organism is both highly virulent

and epidemiologically important. Recently, it was reported that

homologous immunization with LigA7-13 that was expressed and

purified under denaturing conditions did not protect hamsters

against lethal infection by L. interrogans serovar Manilae strain

L495, an organism that expresses LigA [19]. This result stands

in stark contrast to previously successful immunization studies

involving L. interrogans serovars Manilae (strain UP-MMC-NIID),

Copenhageni and Pomona [27,28,41]. Although there were

differences in the strains and adjuvants used, the finding that

denatured LigA did not protect against lethal challenge could

indicate that the protective epitope is conformational rather than

linear. Accordingly, our finding that protective segments include

domains 11 and 12 plus a third domain (10 or 13) on either end,

suggests that three domains may be required for proper con-

formational folding. Additional research is needed to further de-

fine the structural requirements for LigA vaccine efficacy.

We strongly recommend daily weighing of animals in leptospiral

challenge experiments, including studies evaluating vaccine effi-

cacy. We found that 10% weight loss effectively identified animals

with leptospiral infection that had advanced to a premorbid

condition. A similar result was observed in a recent study of

leptospirosis in guinea pigs [42]. Weight loss is an objective end-

point criterion that avoids uncertainty about whether an animal is

able to eat and drink sufficient amounts of food and water. Thus,

weight should be monitored along with other clinical parameters

as different challenge doses or different strains may not present the

same pattern of disease.

In summary, we have mapped the immunoprotective segment

of LigA and determined the minimal number of domains ne-

cessary to protect hamsters from lethal infection. This work also

extends previous studies by quantifying the sublethal burden of

infection and by defining the renal histopathological consequences

of infection. It is worth noting that the immunoprotective domains

we identified are contained within a segment that is known to

mediate interactions with host extracellular matrix proteins [24].

This suggests that LigA-mediated immunoprotection may involve

interference with key leptospiral-host interactions rather than a

bactericidal mechanism. Further studies to define the kinetics of

leptospiral infection in immunized animals may provide insight

into both the mechanism of LigA-mediated immunoprotection

and the development of vaccines for sterilizing immunity against

leptospirosis.
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