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Abstract

Background: Dengue has become a major concern for international public health. Frequent epidemic outbreaks are
believed to be driven by a complex interplay of immunological interactions between its four co-circulating serotypes and
large fluctuations in mosquito densities. Viral lineage replacement events, caused for example by different levels of cross-
protection or differences in viral fitness, have also been linked to a temporary change in dengue epidemiology. A major
replacement event was recently described for South-East Asia where the Asian-1 genotype of dengue serotype 2 replaced
the resident Asian/American type. Although this was proposed to be due to increased viral fitness in terms of enhanced
human-to-mosquito transmission, no major change in dengue epidemiology could be observed.

Methods/Results: Here we investigate the invasion dynamics of a novel, advantageous dengue genotype within a model
system and determine the factors influencing the success and rate of fixation as well as their epidemiological consequences.
We find that while viral fitness overall correlates with invasion success and competitive exclusion of the resident genotype,
the epidemiological landscape plays a more significant role for successful emergence. Novel genotypes can thus face high
risks of stochastic extinction despite their fitness advantage if they get introduced during episodes of high dengue
prevalence, especially with respect to that particular serotype.

Conclusion: The rarity of markers for positive selection has often been explained by strong purifying selection whereby the
constraints imposed by dengue’s two-host cycle are expected to result in a high rate of deleterious mutations. Our results
demonstrate that even highly beneficial mutants are under severe threat of extinction, which would suggest that apart from
purifying selection, stochastic effects and genetic drift beyond seasonal bottlenecks are equally important in shaping
dengue’s viral ecology and evolution.
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Introduction

Dengue virus (DENV) is the most wide-spread arbovirus

affecting human populations. During the last decades it has

increasingly become a major public health problem with

significant economic and social impact [1–3]. It is transmitted

between humans in urban and peri-urban settings predominantly

by the Aedes aegypti and Aedes albopictus mosquitoes vector [4]. Ae.

aegypti is extremely well adapted to urban environments where it

efficiently breeds in artificial water containers, such as flower pots,

plastic bags or discarded car tires, near human habitations. Both

vectors have undergone rapid expansion worldwide in the last

couple of decades leading to DENV endemicity in more than 100

countries [5].

There are four closely related and potentially co-circulating

serotypes of DENV (DENV1-DENV4) [6,7] and recovery from

infection is believed to provide life-long immunity to the infecting

serotype but only a brief period of heterologous protection to all

other serotypes [8]. Most primary infections are self-limited and

clinically silent but can occasionally result in a short-lived febrile

illness which is commonly known as dengue fever (DF). In some

cases this may progress to more severe and life-threatening illness

such as dengue haemorrhagic fever (DHF) or dengue shock

syndrome (DSS) [9]. While several risk factors for developing

DHF/DSS have been described, including host genetic back-

ground, viral genotype, order of infecting serotype, time between

infections or age of infection [1,9], the most widely cited

explanation is that of Antibody Dependent Enhancement (ADE)

(e.g. [10–13]) whereby subneutralizing antibodies from primary

infection can mediate viral entry into host cells leading to

increased replication and disease manifestations [14–18].

The temporal epidemiological pattern of dengue is character-

ized by semi-periodic outbreaks whilst the inter-epidemic cycles in

DF/DHF incidence highly correlate with the seasonal variations in

vector population size (see e.g. [19]). Furthermore, individual

serotype prevalences show cyclical replacements in dominance

(Figure 1A) which are believed to be induced by the immune

profile of the human population [20,21].

Phylogenetic studies based on complete sequences of structural

genes of all 4 serotypes have demonstrated the existence of
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multiple lineages in which different genotypes can be clustered

[6,7]. Despite a general bias in the literature towards studies based

on single-gene approaches, spatio-temporal patterns of genotype

replacement in endemic regions have been widely recovered from

data [6,7,22–24]. With the extrinsic pressures on DENV, such as

seasonal or human-forced reductions in vector population size or

abundance and mobility of susceptible hosts, it has been proposed

that genetic drift plays a major role in the observed phylodynamics

[22,25]. Furthermore, most studies have reported that DENV

recent molecular evolution is marked by strong purifying selection,

possibly due to the requirement of its two-host life cycle, and few

reports have been able to show convincing evidence for positive

selection either by the existence of non-synonymous mutations or

in measures of fitness advantage in viral traits [6,7,23,24,26].

Following earlier reports of inter-serotypic difference in virulence

(see e.g. [27]) one of the first convincing evidences for genetic

determinants in disease outcome came from epidemiological studies

suggesting that the DENV2 Asian genotype was associated with

higher frequencies in DHF compared to the American genotype

[28]. In vitro studies have since shown that the replication rate in

both human monocyte-derived macrophages and dendritic cells as

well as the vector’s susceptibility were higher for the Asian genotype

[29,30]. It was also found that the Asian genotype of DENV2 had a

slightly higher replication rate within the mosquito and a shorter

extrinsic incubation period [31]. These results provided a rational

explanation for the replacement patterns observed in the Americas,

where displacement of the American genotype by the Asian

genotype has taken place in several countries in recent years

[28,29,32]. A similar lineage replacement event has also occurred in

SE Asia, with Asian-1 lineage viruses having displaced Asian/

American viruses from Viet Nam (Figure 1B), Cambodia and

Thailand. This displacement was proposed to be due to difference

in in vivo fitness, with higher viraemia levels observed in Asian-1

infected patients that could lead to an enhanced probability of

human-to-mosquito transmission [33].

The study by Hang et al. [33] demonstrated some other

intriguing aspects about the invasion dynamics of Asian-1. A

phylogenetic analysis suggested that the Asian genotype was

introduced into the population years before it had been detected,

and once it was detected it reached fixation within a relatively

short period of time. The rate at which this genotype replaced the

Asian/American type would suggest a significant fitness advantage

not only over the resident genotype but possibly also over the other

circulating serotypes; however, there was no discernible difference

in the overall epidemiological dynamics in the period before or

after fixation. Although these results suggested that a fitness

advantage in a specific viral trait played a decisive role, the

emergence of advantageous genotypes are as likely to be driven by

the level of transmission and the underlying immune status of the

human population.

Here we have constructed an epidemiological model of dengue

to qualitatively address the impact of immunity and transmission

on the invasion and replacement patterns of a novel advantageous

dengue genotype. Our results suggest that the observed replace-

ment events can be explained by competition between genotypes

of relatively small fitness differences which, although sufficient for

displacement, do not interfere with the overall serotype dynamics.

Furthermore, we show that invasion success and total time

required for fixation are strongly influenced by inter- and intra-

serotype competition at the time of introduction.

Methods

Description of the model
The model is an extension of the 4-serotype mathematical

framework analysed by Recker et al. [34] and includes a mosquito

vector component, temporary cross-immunity after primary

infection and seasonal forcing in mosquito biting. In summary,

we disregard the effect of maternal antibodies and instead assume

that human individuals are born susceptible to all 4 serotypes.

After recovery from primary infection they acquire life-long

immunity to the infecting serotype and cross-immunity to any

other serotype for a short period of time. As temporary immunity

wanes, individuals become susceptible to secondary heterologous

infection. For simplicity and because of the relative rarity of

reported third and fourth infections we assume that after recovery

from secondary infections individuals remain fully protected

against further challenges [4,35]. The system can then be given

by the following set of differential equations describing the rate of

change in humans either susceptible, infected with, temporarily

immune or recovered from dengue serotypes i, i~DENV1,

DENV2, DENV29, DENV3 or DENV4:

dS

dt
~mNh{

X
i

lv
i zm

 !
S ð1Þ

dIi

dt
~lv

i S{(sizm)Ii ð2Þ

dXi

dt
~siIi{(azm)Xi ð3Þ

dRi

dt
~aXi{

X
j=i

clv
j zm

 !
Ri ð4Þ

dIji

dt
~clv

i Rj{(sizm)Iji ð5Þ

Author Summary

Dengue fever and the more severe dengue haemorrhagic
fever and dengue shock syndrome are mosquito borne
viral infections that have seen a major increase in terms of
global distribution and total case numbers over the last
few decades. There are currently four antigenically distinct
and potentially co-circulating dengue serotypes and each
serotype shows substantial genetic diversity, organised
into phylogenetically distinct genotypes or lineages. While
there is some evidence for positive selection, the
evolutionary dynamics of dengue virus (DENV) is supposed
to be mostly dominated by purifying selection due to the
constraints imposed by its two-host life-cycle. Motivated
by a recent genotype replacement event whereby the
resident American/Asian lineage of dengue virus serotype
2 (DENV2) had been displaced by the fitter Asian-1 lineage
we investigated some of the epidemiological factors that
might determine the success and invasion dynamics of a
novel, advantageous dengue genotype. Our results show
that although small differences in viral fitness can explain
the rapid expansion and fixation of novel genotypes, their
fate is ultimately determined by the epidemiological
landscape in which they arise.

Dengue Genotype Replacement

www.plosntds.org 2 November 2010 | Volume 4 | Issue 11 | e894



dR

dt
~
X
j=i

siIji{mR ð6Þ

with the force of infection of serotype i affecting the human

population, lv
i , given as

lv
i ~gbv?h

i

I v
i

Nv
: ð7Þ

We denote g as the mosquito biting rate and bv?h
i as the vector-to-

human transmission probability; 1=si and 1=a are the respective

durations of infection and cross-immunity. Given the short period

of infection we do not account for the possibility of co-infections by

two or more serotypes. We assume a constant human population

size Nh~Sz
P

i (IizXizRiz
P

j Iij)zR and further assume

that infection has a negligible effect on the average death rate, m.

To account for seasonal variation we assume a periodically forced

biting rate, that is we set

g~g0 1zE sin (pt)k
� �

, ð8Þ

where k is a positive integer influencing the ‘seasonality’ where

kw1 results in shorter and more pronounced seasons.

The dynamics of the mosquito population is given as follows:

dSv

dt
~mvNv{

X
i

lh
i zmv

 !
Sv ð9Þ

dIv
i

dt
~lh

i Sv{mvIv
i ð10Þ

Figure 1. Dengue epidemiology in Southern Viet Nam. (A) The total number of hospitalised cases between 1994–2008 (bars) show the
characteristic fluctuations in disease incidence with a big epidemic outbreak in 1998 followed by years of relatively low disease. The sequential
replacement in dominance of one of dengue’s four co-circulating serotypes (DENV1-DENV4) is clearly visible. (B) In the time between 2002 and 2008
Asian-1 genotype of serotype DENV2 (blue bars) competitively replaced the resident Asian/American type (red bars). Data for 1999 and 2000 missing;
figure reproduced from Hang et al. [33].
doi:10.1371/journal.pntd.0000894.g001
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with the force of infection from humans to mosquitoes given as

lh
i ~g

bh?v
i

Nh
Iiz

X
i

wIji

 !
ð11Þ

In accordance with our previous model [34] we assume that

antibody-dependent enhancement acts to increase both suscepti-

bility to and transmissibility of secondary heterologous infection by

factors c and w, respectively, with values described in Table 1.

To investigate the invasion patterns of a novel and fitter dengue

genotype we assume that DENV2 is represented by two genotypes

which differ in relative fitness but are antigenically equivalent. That

is, individuals previously infected by DENV2 are immune to type

DENV29 and vice versa. We consider four different fitness traits

which we can vary independently: (i) transmissibility from human to

mosquito, e.g. through increased viral load, bh?v
2’ , (ii) longer life-

expectancy of mosquitoes infected with DENV29 to emulate a

shorter extrinsic incubation period (EIP), mv
2’, (iii) longer infectious

period in humans, 1=s2’, and (iv) an increased level of enhancement

of secondary infections, w’2. These can simply be given using:

bh?v
2’ ~bh?v

2 (1zrb) ð12Þ

mv
2’~mv

2’=(1zrm) ð13Þ

s2’~s2=(1zrs) ð14Þ

w2’~w2(1zrw) ð15Þ

That is, ri, can be considered as the degree of the fitness advantage.

In line with the suggestion by Hang et al. [33], most of our analysis is

concentrated on the fitness advantage due to increased viral load

and thus transmissibility from the infected human individual to the

mosquito vector, bh?v
2’ . In fact, we found that the results presented

here are invariant to the actual viral trait that is enhanced; results

obtained under changes to other viral traits can be found in the

supporting material.

Stochastic simulations
To address certain aspects of the invasion process of a more

probabilistic nature, such as invasion success rates and fixation

events, we also implemented the above model as a stochastic

framework using a tau-leap Gillespie algorithm [36]. Stochastic

simulations were initialized with equilibrium population status

derived from the deterministic framework with parameter values

the same as given in Table 1 (see Figure S7 and S8 for general

model behaviour).

Results

We used a simple epidemiological model of dengue to

investigate the effect of host population immunity structures and

transmission settings on the invasion pattern of a novel DENV2

genotype, hereby denoted as DENV29. The model is based on a

previously introduced deterministic, multi-serotype framework

(e.g. [34,37,38]) but extended to include the mosquito vector

population, with seasonal fluctuations in biting frequencies, and a

period of temporary cross-immunity; full model details are given in

the Methods section. We verified our model predictions within a

stochastic framework which allowed us to more adequately address

and further explore certain aspects of the invasion and replace-

ment dynamics and their determinants [39].

The general dynamics generated by our model under parameter

values given in Table 1 and prior to the introduction of a novel

DENV2 genotype are characterised by semi-regular epidemic

outbreaks and asynchronous cyclical behaviour in serotype

prevalence (Figure 2). In accordance with previous studies (e.g.

[34,37,40]) a wide range of incidence and serotype dynamics with

different inter-epidemic periods can also be found under changes

to key parameters values, especially those relating to the degree of

enhancement of secondary infection or the period of temporary

cross-immunity (Figures S1 and S2). For the remainder of this

work, however, we kept most parameter values constant to allow

for better comparisons between invasion patterns and their

epidemiological determinants.

Genotype invasion and replacement
We examined the dynamics of a novel genotype introduced into a

dengue endemic population by either an infected human individual

or via an infected mosquito. The novel genotype is here denoted as

DENV29, to represent the Asian-1 genotype of serotype 2, whereas

the resident type is denoted as DENV2 to represent the Asian/

Table 1. Model Parameters.

parameter definition value

m host lifespan 70 years

a temporary heterologous immunity 5 months

s infectious period 3.65 days

c susceptibility enhancement 1.33

w transmissibility enhancement 1.66

rb increase in probability of human-to-
mosquito transmission

0ƒrbƒ1

rs increase in infectious period 0ƒrsƒ1

rw increase in enhancement of
secondary infections

0ƒrwƒ1

Nh host population size 9 million

Nv vectore population size 22.5 million

mv vector lifespan 16 days

E amplitude in seasonality 0.3

g0 biting rate 115 per year

bh?v transmission probability
human?mosquito

0.9

bv?h transmission probability
mosquito?human

0.8

k speed in seasonality change 2

detection threshold
(relative frequency)

10%

deterministic fixation threshold
(relative frequency)

99%

deterministic number of
introduced DENV29 (cases)

1 infected
mosquito

stochastic fixation threshold (cases) 0

stochastic number of introduced
DENV29 (cases)

2 per infectious
class

Parameter values used in the deterministic and stochastic simulations.
doi:10.1371/journal.pntd.0000894.t001
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American type. Figure 3 shows the result of an invasion scenario

where the invading genotype has a small fitness advantage over the

resident type (rb~0:045, corresponding to a fitness advantage of

4:5%). In this case, higher viral fitness was realised through

enhanced transmissibility from infected human individuals to the

mosquito vectors, i.e. bh?v
2’ wbh?v

2 . In agreement with the data, two

important features of the invasion dynamics can be observed and

are highlighted in Figure 3B. Despite the eventual fast rate at which

the advantageous genotype replaces the resident type, there is a

significant lag between the point of introduction and the time when

DENV29 genotype would reach a detectable level of prevalence

within the population; we refer to this level of prevalence as

detection threshold. Furthermore, despite the expected temporary

rise in dengue incidence, compared to the situation without

invasion, the overall dynamics in both disease incidence and

serotype prevalence remain largely invariant (Figure 3A). This

suggests that both the time lag between introduction and first

detection and also the rapid exclusion of the resident genotype, such

as reported by Hang et al. [33], can be explained by a relatively small

fitness advantage of the invading genotype.

The same qualitative behaviour can be also found when

changing other viral traits which could determine the fitness

advantage. That is, shortening the extrinsic incubation period, rm,

increasing the duration of infection, rs, or the level of

enhancement of secondary infection, rw, have the same effect as

increasing the transmission probability from infected humans to

mosquitoes, rb. Notably, though, when considering low advan-

tages, smaller differences in terms of viral fitness are required to

achieve the same rate of fixation if the fitness advantage manifests

itself in longer infectious periods compared to an increase in

transmissibility (Figure S3). Interestingly, while similar levels of

fitness advantages in either EIP or transmissibility result in the

same fixation times (Figure S4), the disturbance on the

epidemiological pattern of dengue is less severe when the fitness

advantage is expressed in the mosquito (Figure S5). From now on,

we concentrate only on a fitness advantage through the proposed

increase in human-to-vector transmission.

The effect of viral fitness and time of introduction
As shown in Figure 3, a small increase in transmissibility from

human to mosquito seems sufficient for a novel genotype to

displace a resident type within a short period of time. The actual

rate of competitive exclusion and overall time from introduction of

the advantageous genotype to its fixation in the population is likely

to depend on various factors including fitness advantage, rate of

transmission and immune profile within the human population. As

shown in Figure 4A, increasing viral fitness accelerates the rate at

which the invading genotype drives the resident type, DENV2, to

extinction, resulting in a shorter period between introduction and

fixation. For example, increasing the fitness advantage from 8% to

28% reduces the time to fixation from &8 years down to &2
years. However, this increase in viral fitness has a major effect on

dengue incidence patterns and the dynamics of the other

serotypes. In this case it leads to a significantly bigger epidemic

outbreak at the time of replacement followed by a long period of

low transmission and low prevalence of serotype 2 which could

endanger its continuous persistence; this is highlighted in Figure 4B

(compare to Figure 3A).

We next addressed the effect of the time of introduction on the

invasion dynamics. This was simply motivated by the fact that

serotype competition is not constant over time but is strongly

affected by the level of transmission which itself is dependent on

host immunity level and seasonal variation in mosquito densities.

Not surprisingly, we found that the time of introduction can

significantly alter the time taken for a novel genotype to reach

fixation. Figure 5A shows the decrease in the frequency of

DENV2, relative to the fitter genotype DENV29, for two different

time points of introduction. However, while the overall duration

from invasion to fixation is dependent on the time when DENV29

gets introduced, the actual rate of replacement remains constant.

In other words, the time taken from DENV29 passing a detection

threshold, relative to DENV2, to reaching fixation is independent

of the time of introduction (Figure 5B) and therefore independent

of the overall epidemiological dynamics. This, on the other hand,

suggests that the time lag between introduction and the point

when it has spread sufficiently for detection, or waiting time, is

strongly influenced by the epidemiological profile at that time.

To investigate further the determinants for fixation time we

simulated a number of invasion events at various time points over

a four year period and recorded the total time to fixation for each

event with respect to (i) the number of naive individuals, (ii)

serotype 2 susceptible individuals, (iii) disease prevalence and (iv)

mosquito biting frequency. While we could not find a clear

correlation between any of these population profiles and fixation

Figure 2. General model behaviour. Under parameter values given in Table 1 the model reproduces the typical epidemiological pattern of dengue,
showing the cyclical behaviour in serotype prevalence (coloured lines) and semi-regular epidemic outbreaks (total incidence per month, grey line).
doi:10.1371/journal.pntd.0000894.g002
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time, we observed a trend for longer fixation times during the time

window where the relative prevalence of serotype 2 was increasing

(Figure S6).

The effect of serotype competition on emergence time
and invasion success

The results from our deterministic model suggest that novel

genotypes can face long periods at very low prevalence before

breaching a detection threshold and going to fixation. Within a

more realistic setting these periods signify an enhanced risk of

stochastic extinction of the novel type despite its fitness advantage

over the resident type. To better address the invasion success of

DENV29 we used a stochastic formulation of our model (see

Methods) and simulated a number of invasion events over a period

of four years and recorded the success rate of invasion, here

defined as the successful introduction into a population followed

by competitive exclusion of the resident type. As demonstrated in

Figure 6A we observed that invasion success shows an oscillatory

behaviour whose phase seems negatively correlated to total dengue

prevalence at time of introduction. This suggests that the invasion

of a newly advantageous genotype can be hampered by serotype

competition during epidemics and favoured during off-season

periods. Moreover, the amplitude of oscillation, i.e. the maximum

success rate, is dependent on and again negatively correlated to

serotype 2 prevalence. Figure 6B shows the increase in relative

prevalence of DENV2 over the 4-year period which clearly

correlates with a decline in the success rate of DENV29.

Since the time taken from passing a detection threshold to

reaching fixation was shown to be independent of the time of

introduction (Figure 5B), we focused on the relationship between

serotype 2 prevalence and the time to emergence, i.e. the period

between introduction and reaching a 10% prevalence threshold.

Figure 7 clearly illustrates that a novel and advantageous genotype

entering the population during periods of high DENV2 prevalence

will face significantly longer emergence times than those introduced

during periods of low prevalence. Together our results indicate that

Figure 3. Dynamics of an invading genotype. (A) Plotting the frequency of DENV29 relative to DENV2 highlights two phases of the invasion
process: a period of very low frequency and a subsequent rapid shift in dominance and competitive exclusion. The fitness advantage in both plots is
due to increased human-to-vector transmission rate (rb~0:045) over the resident type. (B) The cyclical serotype behaviour remains invariant to the
introduction of a fitter genotype of serotype 2, DENV29 (cyan line), which enters the population at time t~1259:5 (pink arrow) and drives the resident
type, DENV2 (blue line), to extinction after &13 years. Comparing the equivalent time series in Figure 2, no major changes in disease levels or inter-
epidemic period can be observed. Other parameters as in Table 1.
doi:10.1371/journal.pntd.0000894.g003
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the fate of a novel genotype is strongly determined by both inter-

and intra-serotype competition at the time of introduction.

Discussion

We analysed the invasion pattern of a novel dengue genotype

into an endemic population with 4 co-circulating serotypes. Within

our framework we assumed that the invading genotype, repre-

senting the Asian-1 genotype of dengue virus serotype 2, possesses

a fitness advantage over the resident type, the Asian/American

genotype, through enhanced transmissibility from infected human

individuals to the mosquito vectors. This assumption was based on

the findings by Hang et al. [33] which showed increased plasma

viraemia levels in patients infected by Asian-1 DENV2 viruses. In

contrast to other studies [30,41], Hang and colleagues did not find

increased infectivity of Asian-1 viruses to Ae. aegypti mosquitoes per

se; however, it is easy to envisage how higher viral titers could

enhance the ‘per bite’ probability of human-to-vector transmis-

sion. By thus focusing on the hypothesis of a small increase in

transmissibility during primary and secondary infections, and in

agreement with the data, we observed that the total time for

genotype replacement is composed of a period during which the

invading type can circulate at very low prevalence levels for several

years, followed by a rapid shift in dominance and competitive

exclusion after the invading genotype had emerged; here we

defined ‘emergence’ as a threshold level of prevalence where

widespread detection would be highly likely.

Of particular interest is the time lag between introduction and

emergence, or waiting time, when the detection of the new dengue

genotype might be difficult by surveillance systems based on low

viral sampling numbers and/or infrequent genotyping. Not

surprisingly, we found that this period is strongly and positively

affected by the difference in viral fitness between the resident and

novel genotype. In the case of small fitness advantages several

years could pass before the invading type has spread sufficiently to

outcompete the resident type on a population-wide level.

Furthermore, as the epidemiological pattern would remain largely

invariant, passive surveillance systems based simply on case

numbers could also easily fail to detect this intra-serotype

replacement event. These results therefore support the findings

of Hang et al. [33] who hypothesised that a small enhancement of

human-to-mosquito transmission through increased viral load is

Figure 4. The effect of viral fitness on fixation time and epidemiological patterns. (A) The graph demonstrates the increased rate in
competitive exclusion of the resident genotype, DENV2, for increasing levels of viral fitness of the invading type, DENV29, with rb[f0:08,0:18,0:28g.
Higher fitness advantages significantly reduce the period of low level prevalence and the overall time to fixation. (B) Higher fitness advantages, here
rb~0:28, can have a significant effect on both incidence and serotype dynamics, causing a big epidemic outbreak followed by a severe trough in
serotype 2 frequency. Other parameter values as in Table 1.
doi:10.1371/journal.pntd.0000894.g004
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sufficient to explain the observed invasion pattern in Southern

Viet Nam where Asian-1 was first detected in 2003 despite the

phylogenetic analyses dating the introductory event sometime

during the late 1990’s.

Apart from increased transmission from infected humans to the

mosquito vectors we also considered other viral traits that could be

enhanced in the Asian-1 genotype, such as longer infectious periods

or shorter extrinsic incubation periods (EIP). The latter is of

particular interest as it can potentially lead to a significantly increase

in vectorial capacity [31]. While the actual viral trait which is

enhanced does not alter the overall invasion pattern or results

presented in this work (Figures S3, S4, S5, S9, S10, and S11), we

found that viral fitness traits have an additive effect (Figure S4). This

means that even smaller individual enhancements are sufficient to

explain the observed invasion dynamics of the Asian-1 genotype,

especially under the assumption that this replacement event did not

have a major effect on the sero-epidemiological pattern of dengue.

Interestingly, though, our results suggest that dengue incidence and

serotype dynamics are less disturbed when the fitness advantage is

manifested through shorter EIP than increased infectivity or

transmissibility (Figure S5).

In addition to viral fitness, the time point at which a novel

genotype enters a population is crucially important in determining

its invasion dynamics and ultimately success. Whereas the relative

fitness advantage affects the overall time between introduction and

fixation, the epidemiological profile more strongly determines the

period of low level prevalence before the advantageous genotype

emerges. We tested various epidemiological factors for their

influence on the waiting time but to our surprise only found the

relative prevalence of DENV2 to have a strong effect. That is,

whereas population susceptibility to either dengue in general or

serotype 2 in particular had no immediate influence on the time

between introduction and wide-spread detection, we found that

the relative prevalence of DENV2 at the time of introduction

positively correlates with extended periods during which the novel

genotype circulates below a detection threshold. Therefore, while

transmission intensities strongly affect the success of an invasion

event, the dominance level of serotype 2 within the population

Figure 5. The effect of the time of introduction on the rate of fixation. (A) The graph shows the increase in the frequency of DENV29, relative
to DENV2, for two different time points of introduction (TPI). Despite a discernible difference in the total time for DENV29 to reach fixation and
competitively exclude the resident type, the actual rate of displacement (highlighted as dashed lines) remains the same. That is, the differences in
fixation times in both cases are solely due to the differences in the initial expansion period of the invading genotype before it reaches wide-spread
detection level (here arbitrarily set at 10% relative prevalence). (B) Whereas the relative fitness advantage of the invading genotype has a significant
effect on the rate of replacement, it remains invariant to the time at which it is introduced into the population. All parameters as in Table 1 and
rb~0:045 for (A).
doi:10.1371/journal.pntd.0000894.g005
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determines both the invasion success rate and, independently, the

period before the invading genotype would reach a sufficient level

of prevalence to be widely detecable. Our results thus confirm that

serotype interactions and the resulting epidemiological landscape

can have a big influence on intra-serotype dynamics and thus viral

evolution, as previously noted by Zhang and colleagues [23].

There is considerable interest in determining the evolutionary

processes that underlie the observed structures and genetic

variation of dengue virus populations (both inter- and intra-

serotypic). Overall, low estimates of selection pressure, in terms of

average dN=dS values, and the fact that dengue has a two-host life-

cycle are commonly used to place purifying selection as the

strongest selective force acting on dengue evolution [23,26,42].

However, it is also clear that dengue viruses exhibit strong spatio-

temporal variations. Various phylogenetic studies have identified

frequent DENV lineage turnover events which have resulted in the

characteristic, ladder-like tree (e.g. [24,42]) and which are

commonly ascribed to positive selection [24,32,43]. In addition,

genetic drift has also been proposed to play a major part in dengue

evolution such that the replacement of viral lineages or clades

could be explained through stochastic processes alone. For

example, repeated bottlenecks due to large seasonal fluctuations

in mosquito densities imply that the emergence of novel and

possibly advantageous genotypes could be a recurrent phenome-

non followed by a strong probability for extinction in the

subsequent circulating seasons which could explain the weak

signature for positive selection in the data (compared to purifying

selection). This in turn would also suggest that the success of a

genotype does not always reflect its viral fitness [7]. In fact, we

have shown that novel genotypes, especially those that arise during

large epidemic outbreaks, can face high risks of extinction despite

possessing a fitness advantage. Furthermore, even successful

genotypes, i.e. those that eventually reach fixation, potentially

undergo prolonged periods of low frequency which can span for

Figure 6. The effect of transmission and serotype competition on invasion success. The success rate of the invading genotype, DENV29,
strongly varies depending on the number of total infected individuals and the relative prevalence of serotype 2 in the population at the time point of
introduction (TPI). (A) The invasion success (orange line) oscillates out of phase with total dengue incidence (grey line) and is minimized when disease
prevalence peaks, demonstrating how the current level of transmission can influence the invasion success of new advantageous genotypes. (B) The
highest rates of successful invasions can be observed during periods of low relative prevalence of serotype 2 (blue line). In contrast, the probability of
an invading advantageous genotype to get established and reach fixation is significantly reduced as serotype 2 gains wide-spread dominant within
the population. Parameters as in Table 1 and rb~0:045.
doi:10.1371/journal.pntd.0000894.g006
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several transmission seasons independently of the epidemics

therein. Therefore, low measures of adaptive selection in this

case would not necessarily imply strong purifying selection

but could equally be explained by other epidemiological factors.

This, however, needs to be confirmed within a more rigorous

framework.

Dengue’s two-host life-cycle implies a significant evolutionary

constraint whereby the majority of newly arising variants are likely

to be deleterious and selectively removed from the population. We

have shown that even novel and advantageous DENV genotypes

can undergo periods of several years prior reaching sufficiently

large population sizes to escape the risk of extinction. Our results

thus indicate that in addition to purifying selection, the

epidemiological landscape and stochastic effects might be equally

important determinants in shaping the viral evolutionary ecology.

Supporting Information

Figure S1 Model behaviour under different levels of
enhancement. Under a wide range of parameter values, the

model reproduces the observed epidemiological pattern of dengue.

In agreement with previous models, the level of ADE, either in

terms of transmission or susceptibility enhancement (Q and c,

respectively), has a significant effect on the qualitative dynamics,

with greater degrees of ADE generally leading to more

pronounced epidemic outbreak and chaotic serotype oscillations.

These simulated time series show the cyclical behaviour in

serotype prevalence (coloured lines) and regular epidemic

outbreaks (grey) for (A) Q= c= 1.0 (B) Q= c= 1.3 (C) Q= 1.9

c= 1.3 (D) Q= 1.3 c= 1.9. Other parameter values as in Table 1

(main text).

Found at: doi:10.1371/journal.pntd.0000894.s001 (1.57 MB TIF)

Figure S2 Model behaviour under different levels of
temporary heterologous immunity. Under various periods

of temporary heterologous immunity (a), the model reproduces the

observed epidemiological pattern of dengue. Increasing the value

of a - (A) 3.5, (B) 4.5, (C) 5.5, (D) 6.5 - leads to higher

interepidemic periods as epidemics caused by one serotype build

temporary immunity and prevent DENV from exploring the

human population until immunity wanes.

Found at: doi:10.1371/journal.pntd.0000894.s002 (1.60 MB

TIF)

Figure S3 The effect of viral fitness assuming changes
in infectious period and secondary infections. The graph

demonstrates the increased rate in competitive exclusion of the

resident genotype DENV2 for increasing levels of viral fitness of

DENV29 expressed as (A) infectious period (rs) and (B) increased

infectivity in secondary infections (rW). (A) Similar fitness

differences are required for displacement to take place in the

same time window as in Figure 4, main text. (B) Higher fitness

differences are required for displacement to take place in the same

time window as in Figure 4, main text. Other parameter values as

in Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s003 (0.45 MB TIF)

Figure S4 The synergistic effect of viral fitness assum-
ing changes in the extrinsic incubation period and
human-to-vector transmission. The graph demonstrates

the increased rate in competitive exclusion of the resident

genotype DENV2 for increasing levels of viral fitness of DENV29

expressed as a shorter extrinsic incubation period (rm) and

increased human-to-vector transmission (rb) (see Methods in main

text). (A,B) Equal fitness differences either expressed as shorter

extrinsic incubation period or increased human-to-vector trans-

mission lead to similar emergence and fixation times. (C) The

effect of rm and rb on the invasion dynamics is additive. Other

parameter values as in Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s004 (1.19 MB TIF)

Figure S5 The effect of viral fitness assuming changes
extrinsic incubation period. The graph demonstrates the

increased rate in competitive exclusion of the resident genotype

DENV2 for increasing levels of viral fitness of DENV29 expressed

as a shorter extrinsic incubation period (rm) (see Methods). (A)

Higher fitness differences lead to shorter waiting and fixation

times. (B) Interestingly, even significant advantages, here rm = 0.2,

i.e. a 20% fitter genotype, does not result in severe disruption of

Figure 7. The effect of serotype competition on the emergence time of successful fixation events. The total time required for a novel
(and eventually successful) genotype DENV29 to reach detection level is highly dependent on the relative prevalence of serotype 2 at the time it
enters the population. The red crosses show how the average emergence times, i.e. the period between introduction and reaching a 10% detection
threshold, of successful invasion events increases with the relative prevalence of DENV2 at the time of introduction (blue line). Standard deviations,
based on 10 simulated successful invasion events, are shown as grey bars. Parameters as in Table 1 and rb~0:045.
doi:10.1371/journal.pntd.0000894.g007
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the incidence patterns of dengue. Other parameter values as in

Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s005 (1.21 MB TIF)

Figure S6 Effects of other population status on total
time of fixation. The graphs show the time taken for a novel

serotype 2 genotype to reach fixation given (A) the number of

susceptible (naı̈ve) individuals, (B) dengue disease prevalence, (C)

number of susceptible individuals to serotype 2 and (D) seasonality,

at the time point of introduction of the invading genotype (black

curves). Points represent an introduction event, given a certain

population status, and are coloured according to the total time for

fixation. A clear increase in total time is observed in all 4 plots

along the chosen time window with no correlation between any of

the variables in A,B,C or D. rb = 0.045 all other parameter values

as in Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s006 (1.16 MB TIF)

Figure S7 Stochastic model behaviour. Initialized with the

population state and parameters of the deterministic model at

t = 1250, the stochastic model exhibits a similar time series as

presented in Figure 2 (main text) with persistence of all serotypes.

This simulated time series show the cyclical behaviour in serotype

prevalence (coloured lines) and regular epidemic outbreaks (grey).

Parameter values as in Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s007 (0.96 MB TIF)

Figure S8 Effect of fitness advantage on invasion
success. Considering a fixed time point for introduction,

increasing values of rb result in higher invasion success rates of

DENV29 and lowers fixation time. Time of introduction 1259.5,

parameter values as in Table 1 (main text).

Found at: doi:10.1371/journal.pntd.0000894.s008 (0.29 MB TIF)

Figure S9 The effect of transmission and serotype
competition on invasion success and emergence time
of successful fixation events, assuming changes in the
EIP. The success rate of the invading genotype, DENV29,

strongly varies depending on the number of total infected

individuals and the relative prevalence of serotype 2 in the

population at the time point of introduction (TPI). The total time

required for a novel (and eventually successful) genotype DENV29

to reach detection level is highly dependent on the relative

prevalence of serotype 2 at the time it enters the population. (A)

The invasion success (orange line) oscillates out of phase with total

dengue incidence (grey line) and is minimized when disease

prevalence peaks, demonstrating how the current level of

transmission can influence the invasion success of new advanta-

geous genotypes. (B) The highest rates of successful invasions can

be observed during periods of low relative prevalence of serotype 2

(blue line). In contrast, the probability of an invading advanta-

geous genotype to get established and reach fixation is significantly

reduced as serotype 2 gains wide-spread dominant within the

population. (C) The red points show how the average emergence

times, i.e. the period between introduction and reaching a 10%

detection threshold, of successful invasion events increases with the

relative prevalence of DENV2 at the time of introduction (blue

line). Standard deviations, based on 10 simulated successful

invasion events, are shown as light-blue bars. Parameters as in

Table 1 and rm = 0.045 for S9.

Found at: doi:10.1371/journal.pntd.0000894.s009 (1.22 MB TIF)

Figure S10 The effect of transmission and serotype
competition on invasion success and emergence time of
successful fixation events, assuming changes in human
infectious period. The success rate of the invading genotype,

DENV29, strongly varies depending on the number of total

infected individuals and the relative prevalence of serotype 2 in the

population at the time point of introduction (TPI). The total time

required for a novel (and eventually successful) genotype DENV29

to reach detection level is highly dependent on the relative

prevalence of serotype 2 at the time it enters the population. (A)

The invasion success (orange line) oscillates out of phase with total

dengue incidence (grey line) and is minimized when disease

prevalence peaks, demonstrating how the current level of

transmission can influence the invasion success of new advanta-

geous genotypes. (B) The highest rates of successful invasions can

be observed during periods of low relative prevalence of serotype 2

(blue line). In contrast, the probability of an invading advanta-

geous genotype to get established and reach fixation is significantly

reduced as serotype 2 gains wide-spread dominant within the

population. (C) The red points show how the average emergence

times, i.e. the period between introduction and reaching a 10%

detection threshold, of successful invasion events increases with the

relative prevalence of DENV2 at the time of introduction (blue

line). Standard deviations, based on 10 simulated successful

invasion events, are shown as light-blue bars. Parameters as in

Table 1 and rs = 0.045.

Found at: doi:10.1371/journal.pntd.0000894.s010 (1.23 MB

TIF)

Figure S11 The effect of transmission and serotype
competition on invasion success and emergence time of
successful fixation events, assuming changes in trans-
missibility of secondary infections. The success rate of the

invading genotype, DENV29, strongly varies depending on the

number of total infected individuals and the relative prevalence of

serotype 2 in the population at the time point of introduction

(TPI). The total time required for a novel (and eventually

successful) genotype DENV29 to reach detection level is highly

dependent on the relative prevalence of serotype 2 at the time it

enters the population. (A) The invasion success (orange line)

oscillates out of phase with total dengue incidence (grey line) and is

minimized when disease prevalence peaks, demonstrating how the

current level of transmission can influence the invasion success of

new advantageous genotypes. (B) The highest rates of successful

invasions can be observed during periods of low relative

prevalence of serotype 2 (blue line). In contrast, the probability

of an invading advantageous genotype to get established and reach

fixation is significantly reduced as serotype 2 gains wide-spread

dominant within the population. (C) The red points show how the

average emergence times, i.e. the period between introduction and

reaching a 10% detection threshold, of successful invasion events

increases with the relative prevalence of DENV2 at the time of

introduction (blue line). Standard deviations, based on 10

simulated successful invasion events, are shown as light-blue bars.

Parameters as in Table 1 and rW = 0.075.

Found at: doi:10.1371/journal.pntd.0000894.s011 (1.20 MB TIF)
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