
Review

Differential Regional Immune Response in Chagas
Disease
Juliana de Meis1*, Alexandre Morrot1,2, Désio Aurélio Farias-de-Oliveira1, Déa Maria Serra Villa-Verde1,
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Abstract: Following infection, lymphocytes expand
exponentially and differentiate into effector cells to
control infection and coordinate the multiple effector
arms of the immune response. Soon after this expansion,
the majority of antigen-specific lymphocytes die, thus
keeping homeostasis, and a small pool of memory cells
develops, providing long-term immunity to subsequent
reinfection. The extent of infection and rate of pathogen
clearance are thought to determine both the magnitude
of cell expansion and the homeostatic contraction to a
stable number of memory cells. This straight correlation
between the kinetics of T cell response and the dynamics
of lymphoid tissue cell numbers is a constant feature in
acute infections yielded by pathogens that are cleared
during the course of response. However, the regional
dynamics of the immune response mounted against
pathogens that are able to establish a persistent infection
remain poorly understood. Herein we discuss the
differential lymphocyte dynamics in distinct central and
peripheral lymphoid organs following acute infection by
Trypanosoma cruzi, the causative agent of Chagas disease.
While the thymus and mesenteric lymph nodes undergo a
severe atrophy with massive lymphocyte depletion, the
spleen and subcutaneous lymph nodes expand due to T
and B cell activation/proliferation. These events are
regulated by cytokines, as well as parasite-derived
moieties. In this regard, identifying the molecular
mechanisms underlying regional lymphocyte dynamics
secondary to T. cruzi infection may hopefully contribute to
the design of novel immune intervention strategies to
control pathology in this infection.

Introduction

Chagas disease is caused by the protozoan Trypanosoma cruzi.

The infection was initially rural in endemic areas in Latin

America, transmitted by contaminated insect vectors of the family

Reduviidae. Insects become vectors after biting T. cruzi-infected

hosts (animals or humans). Parasites may also be transmitted by

blood transfusion, by organ transplantation, orally, and congen-

itally. For this reason, Chagas disease is emerging in non-endemic

countries such as Japan, Canada, Germany, Romania, Spain, and

the United States [1,2]. It is estimated that 14–16 million people in

Latin America and 1 million in the US are infected with T. cruzi

with 670,000 premature disabilities and deaths per year worldwide

[1–3]. The infection is considered a world health problem and a

neglected tropical disease with deficiencies in treatment, absence

of appropriated vaccines, and world spreading [4,5]. The

complexity in treatment is related to the fact that current

chemotherapic drugs Benznidazole and Nifurtimox are able to

heal only a portion of recent infections, have severe side effects,

and are active only in the acute phase and short-term chronic

phase of infection [2].

Considered a ‘‘silent killer,’’ infection with T. cruzi leads to an

acute phase, with symptoms such as fever, muscle pain, swollen

lymph nodes, hepatosplenomegaly, pericardial effusion, and

inflammatory reaction at the vector’s biting site (chagoma) [2,6].

During the acute phase, circulating parasites are numerous and

able to infect several tissues in the host, including skeletal muscle,

lymphoid tissues, nervous tissues, and glands [5,7]. In humans, the

acute phase is short (two months) and may lead to complications

such as myocarditis or meningoencephalitis. Spontaneous recovery

occurs in more than 95% of the patients [8]. Following the acute

phase, the patient enters into a long indeterminate latent phase

with no symptoms and very low parasitism. The latent infection

remains silent for 10 to 30 years. About one third of infected

patients in the latent phase develop clinical symptoms such as

chronic cardiac dysfunction (cardiomyopathy), megacolon, or

megaesophagus. The average life expectancy decreases about nine

years in these clinical forms of chronic chagasic patients [8].

Experimental models of T. cruzi infection have been widely used

to study various aspects of the infection, and the vast majority of

knowledge of the biology of T. cruzi infection was first developed in

the experimental mouse model. Acute infection in mice leads to

strong activation of innate and adaptive immune response.

Splenomegaly and expansion in subcutaneous lymph nodes

(SCLN) were reported, with persistent T and B cell polyclonal

activation (Figure 1) [9–11]. Conversely, atrophy in thymus and

mesenteric lymph nodes (MLN) was also observed in the infection

(Figure 1) [12–14].

Thus, it is conceivable that the immune response to T. cruzi

infection is complex, and differential patterns of responses may

occur in distinct compartments of the immune system, including

cell expansion, cytokine production, and cell death. In this context,

we review herein a number of findings showing that in the course
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of Chagas disease, the dynamics of lymphocyte response is diverse

in distinct lymphoid tissues.

Thymocyte Depletion and Differential Cytokine
Profile in T. cruzi Infection

The thymus is a primary lymphoid organ in which bone marrow-

derived T cell precursors undergo differentiation, leading to

migration of positively selected thymocytes to the T cell-dependent

areas of secondary lymphoid organs [15]. This tissue is a target

organ in T. cruzi infection in mice, where the parasite is able to infect

thymic microenvironmental cells in vivo and in vitro [5,12,14]

(Figure 2). Ultrastructural analysis of infected thymus indicates that

phagocytic and epithelial cells can be infected in vivo [16].

Acute T. cruzi infection leads to thymus atrophy, with loss of

thymus weight, decline in cell number, and depletion of

CD4+CD8+ (DP) thymocytes [5,14,17–19]. Thymocyte depletion

is detectable in early stages of infection and increases along with

time until the peak of parasitemia (Figures 1 and 2). The loss of

thymocytes observed in the acute phase of infection is apparently

due to differences not only in cell death, but also in proliferation

and migration of thymocytes.

Mitogenic responses of thymocytes from acutely infected mice is

reduced due to decrease in interleukin (IL)-2 production, which in

turn is associated with high levels of IL-10 and interferon (IFN)-c
[20]. Additionally, increased production of IL-4, IL-5, and IL-6

was detected in thymocytes from acutely infected mice, being

related to thymocyte cytotoxic activities [20].

Abnormal thymocyte migration is also observed in the thymus

of infected mice. In vitro studies of thymocyte migration in thymic

nurse cells (TNCs, specialized cortical thymic epithelial cells that

harbor and release immature thymocytes as a consequence of cell

migration) following in vivo and in vitro infection demonstrated

that thymocytes from infected TNC complexes are released faster

than the corresponding controls [5,14,21]. These studies suggested

an increase in the migratory capacity of thymocytes from infected

mice. In fact, the increase in DP cell migration from thymus to

peripheral lymphoid organs seen in both acutely and chronically

infected mice corroborates this hypothesis [14,21,22]. Phenotypic

analysis of DP lymphocytes in SCLN from T. cruzi-infected

BALB/c mice demonstrated that part of these cells expresses

‘‘forbidden’’ T cell receptors and high amounts of cell migration-

related membrane receptors, including the integrins VLA-4, VLA-

5 (fibronectin receptors), and VLA-6 (laminin receptors) [5,21,22].

Figure 1. Differential fluctuations in the cellularity of the thymus, spleen, MLN, and SCLN in the course of acute T. cruzi infection.
Note a lymphocyte expansion in the spleen and SCLN, in parallel to a lymphocyte decrease in the thymus and MLN. BALB/c mice were infected
intraperitoneally with 102 blood trypomastigotes of the Tulahuén strain, killed at different days of infection, and cell numbers evaluated by trypan
blue exclusion. Erythrocytes were previously depleted in the spleen cell suspensions by treatment with Tris-buffered ammonium chloride. Values
represent the mean6standard error; n = 3–5 mice/group in each point. Data recorded on thymus, spleen, MLN, and SCLN from T. cruzi-infected mice
(closed squares) were compared to non-infected age-matched controls (open squares) with ANOVA statistical test, using the program SigmaStat
(Statistical Software) for Windows. Data were considered significant if p values were ,0.05. Data represent mean6standard error. All experiments and
animal handling were conducted according to protocols approved by the Oswaldo Cruz Foundation Committee on the Use of Animals.
doi:10.1371/journal.pntd.0000417.g001
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Thymic microenvironmental cells apparently favor the abnor-

mal thymocyte migration seen in infected mice. Several studies

demonstrated that in these animals the thymus exhibits enhanced

deposition of extracellular matrix proteins such as fibronectin,

laminin, and type IV collagen, increased chemokine contents such

as CXCL12, and expression of de-adhesive molecules such as

galectin-3. Ex vivo cell migration experiments revealed that all

these molecules would favor the abnormal release of DP

thymocytes to peripheral lymphoid organs [5,12,21,23,24].

Independent research groups reported molecules involved in

thymocyte death following experimental T. cruzi infection, com-

prising parasite- or host-derived factors. Examples of the participa-

tion of host-derived stimuli in thymocyte apoptosis are galectin-3,

extracellular ATP, and glucocorticoid hormones [23,25–27].

Interestingly, DP thymocyte depletion inside TNCs is dependent

on androgens, and the intracellular thymocyte pathway of cell death

leads to activation of caspase-3 [28]. Conversely, Fas and perforin

are not involved in thymus atrophy in T. cruzi infection [19]. In

relation to T. cruzi-derived molecules, it has been reported that the

virulence factor trans-sialidase, an enzyme that alters cell sialylation,

promotes apoptosis of DP thymocytes [29,30].

Thymus alterations in T. cruzi infection occur concomitantly to

the increasing parasitemia, suggesting that thymus atrophy is

dependent on the parasite load [16,21]. Corroborating this

hypothesis, mice treated with benznidazole in the course of

infection show reduction in blood parasitemia and no thymus

alterations during infection [31]. Another interesting finding is that

chronically infected mice do not exhibit significant reduction of

thymus weight, cell number, and DP thymocytes, as compared with

age-matched normal mice (Figure 2A) [32]. The similarity between

normal and infected thymocyte cell number in the chronic phase

might be related to the fact that in normal mice, thymocyte

depletion is observed along with aging [33] (Figure 2A). The impact

of thymus alterations during acute infection with respect to the

development of effector immune response is still unknown. It is

reasonable to think that a decline in the generation of T cells

together with an abnormal release of non-selected thymocytes

during acute infection would favor the parasite rather than the host.

In fact, T lymphocytes are crucial for mounting an effective anti-T.

cruzi immune response: athymic nude mice infected with T. cruzi

show increased parasitemia and mortality rate and shortened

survival time [16,34]. On the other hand, it was previously

Figure 2. The thymus is a target organ in T. cruzi infection. Panel A shows the number of thymocytes in thymus of T. cruzi-infected mice (C3H/
HeJ) during acute (one month) and chronic phases (after three to five months) of infection. Adapted from [32], *p,0.01. Panel B reveals the presence
of the amastigote forms of the Colombian strain of T. cruzi within cultured thymic epithelial cells, ascertained by DAPI staining. Note that one cell
(arrow) is deeply loaded with trypomastigote forms of the parasite in the cytoplasm. The mouse TEC line (IT-76M1) was cultured with 60 T. cruzi
trypomastigotes/TEC for six hours; washed to remove free parasites, and cultured for a further 48 hours. Panel C shows a progressive thymocyte
depletion in mice acutely infected with T. cruzi. BALB/c mice were infected intraperitoneally with 102 blood-derived trypomastigotes of the Tulahuén
strain, and killed at 14 and 19 days post-infection (d.p.i.). Percentage values of the CD4+CD8+ thymocytes and respective days post-infection are
shown. In normal animals, the percentage of CD4+CD8+ thymocytes remained the same along with the experimental period.
doi:10.1371/journal.pntd.0000417.g002
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suggested that thymus-derived TCRcd T lymphocytes may have

suppressor effects on the host immune response [35].

Taken together, these data support the idea that T. cruzi

infection promotes disturbances of proliferation, migration, and

cell death within the thymus.

T Cell Depletion in Peyer’s Patches and MLN
Following T. cruzi Infection

The mucosal immune system remains less studied than it should

be in T. cruzi infection. Such studies are necessary since: (1) the

prognosis of the chronic phase depends on the evolution of the

acute phase and the parasite is able to infect gut tissues; (2) chronic

patients with Chagas disease may progress with digestive forms of

clinical manifestations, namely megacolon and megaesophagus (in

Brazil, the incidence of megaesophagus in endemic areas is over

8%); and (3) oral transmission of the parasite in humans through

ingestion of fruit juice contaminated with T. cruzi recently

occurred in Brazil, leading to a severe and sometimes lethal acute

disease [36–39].

The Peyer’s patches (PP) are important lymphoid organs

implicated in mucosal immune response. PP are separated from

the intestinal lumen by a layer of epithelial cells known as the

follicle-associated epithelium, in which the so-called M cells are

involved in mucosal immune responses, binding invasive patho-

gens and passing them to professional antigen-presenting cells

inside PP. After encountering the antigen, antigen-presenting cells

(mainly dendritic cells) migrate to T cell areas where they interact

and activate T cells. Lymphocytes and dendritic cells that are

primed in PP migrate to MLN through draining lymphatic vessels.

Considering that PP and MLN drain antigens from the small

intestine and that chronic infection may progress with damage to

the digestive tract, MLN and PP might have some relation to gut

pathologies in infected patients. Very little information is available

regarding the immunological response of chronic chagasic patients

with gastrointestinal forms of the disease, and none of these works

analyze gut-associated lymphoid tissues or MLN. It is known that

patients with digestive forms of the disease present high

parasitemia and decreased T/B lymphocyte numbers in their

blood [40]. Moreover, peripheral blood mononuclear cells

(PBMCs) from esophagopathy patients produce high levels of

inflammatory cytokines such as IFN-c and MIG and low levels of

tumor necrosis factor (TNF)-a, with no significant differences in

IL-4 and IL-5 production [41].

In experimental animal models, T. cruzi infection induces

several forms of damage in gut-associated lymphoid tissues. PP

from infected mice show reduction in size, number, and cellularity,

due to an increase in T and B lymphocyte depletion [42]. MLN

also undergo severe atrophy in acute infection in several models of

T. cruzi infection [13,43] (Figure 1). The diminished number of

MLN lymphocytes in infected mice seems to be associated with

differences in lymphocyte proliferation and death. MLN from T.

cruzi-infected mice show reduced numbers of proliferating

lymphocytes and decreased cytokine production (IL-2, IL-4, and

IL-10) by activated T lymphocytes, as summarized in Table 1

[13,44]. Interestingly, MLN T lymphocytes produce mainly type-1

cytokines (IFN-c) upon infection with T. cruzi [44]. Increased

lymphocyte death is also observed in MLN from T. cruzi-infected

mice [13,44].

T cell apoptosis can be stimulated in secondary lymphoid

organs by activation-induced cell death (AICD) or growth factor

withdrawal [45]. The abundance of antigens and cytokine

production (IL-2 and IL-4) in the lymphoid microenvironment

are essential to trigger the cell death pathway [45]. In the presence

of an antigen, IL-2 prompts T cells to die by AICD, through

activation of death receptor molecules and caspase-8 [46–48]. In

the absence of antigen, deprivation of cytokines initiates the

mitochondrial death pathway, promoting cytochrome c release

into the cytoplasm and activating caspase-9 and downstream

effector caspases [46]. In MLN from mice acutely infected with T.

cruzi, T/B lymphocyte apoptosis occurs in early stages of infection

through AICD and growth factor withdrawal mechanisms [13,44].

Studies performed with the Colombian strain of T. cruzi in FasL

mutant mice (gld) and TNF receptor-1 knockout mice suggested

that these molecules are involved in MLN lymphocyte apoptosis

from infected mice [13]. Moreover, acute infection with the

Dm28c clone of the parasite led to IL-4 deprivation and caspase-9

activation, promoting MLN atrophy with T cell depletion [44].

Depletion of MLN lymphocytes impairs immune response

against the parasite, since MLN excision prior to infection

increases host susceptibility to infection [44]. Interestingly, in vivo

administration of zVAD-fmk (a pan-caspase inhibitor) in the

course of infection prevents MLN atrophy, reduces lymphocyte

apoptosis in secondary lymphoid tissues, and increases host

resistance to infection [44,49]. Moreover, oral vaccination with

Salmonella enterica carrying cruzipain showed protective immune

response against the parasite with reduction of tissue damage of

infected mice [50], thus showing that mucosa-associated lymphoid

cells are important to host immunity in T. cruzi infection, and that

the parasite is able to promote lymphocyte depletion and defective

cytokine response in these tissues.

Acute T. cruzi Infection Induces Expansion of T
Cells in SCLN

SCLN are strategically distributed throughout the body,

receiving antigens captured from the epidermis and several other

epithelia. The most studied SCLN in T. cruzi infection are the

Table 1. Differential cytokine and apoptosis/proliferation profiles in lymphoid organs of mice undergoing T. cruzi infection.

Response to Infection Thymus MLN SCLN Spleen References

Apoptosis qq qq q q [13,23,25,44,49,51,72,73,85]

Proliferation Q QQ qq qq [11,13,56,57,86]

IL-2 Q Q q/ = Q [44,65–67]

INF-c qq Q qq qq [20,44,49,51,65]

IL-4 qq QQ qq q [20,44,51,52,68]

IL-10 qq QQ qq qq [20,44,51,52,68]

Differences between normal versus infected mice are indicated with the arrows.
doi:10.1371/journal.pntd.0000417.t001
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inguinal, axillary, and brachial. Acute and chronic T. cruzi

infections promote a significant increase in SCLN size and cell

numbers in mice and humans. Studies performed in mice

demonstrated that infection leads to increase of cycling cells,

which are able to produce IL-2 and proliferate after in vitro

activation [44]. Several studies reported polyclonal activation of

T/B lymphocytes in SCLN from acutely and chronically infected

mice [9–11].

Effector T lymphocytes from SCLN of infected mice secrete

high levels of IL-4, IL-10, and IFN-c [44]. These data suggest that

T lymphocyte response in SCLN is quite distinct from MLN in

acute infection, with increased production of both type-1 and type-

2 cytokines, as summarized in Table 1 [44].

T and B lymphocyte apoptosis is also observed in SCLN from

infected mice, mainly in the latter stages of infection [13].

Apoptosis in SCLN seems to be induced by AICD, due to control

of an extensive state of cell activation. In agreement with this

notion, it has been shown that in vivo injection of anti-FasL

antibody or zVAD-fmk in acutely infected mice increased the

numbers of T/B lymphocytes in SCLN and improved the host

immune response to infection [49,51]. Trans-sialidase seems also

to be involved in lymphocyte apoptosis in SCLN from infected

mice [30].

Taken together, the data discussed above show that SCLN and

MLN lymphocytes are distinctly affected in T. cruzi acute infection,

with different patterns of T cell activation, proliferation, cytokine

responses, and cell death.

Splenomegaly Is a Constant Feature in T. cruzi
Infection

T. cruzi infection promotes splenomegaly in mice and humans.

In mice, splenomegaly is observed in both acute and chronic

phases of disease. Splenocytes are important cells involved in the

host immune response since splenectomy prior to infection

increases susceptibility to infection, as ascertained by the numbers

of circulating parasites (Figure 3).

Infection promotes spleen T/B lymphocyte activation and

expansion. In this respect, trans-sialidase seems to contribute to

polyclonal lymphocyte activation and cytokine production by

interfering with interaction between dendritic cells and T

lymphocytes [52–54]. Additionally, other parasite-derived mole-

cules such as racemase and DNA (via Toll-like receptor 9) were

proven to induce B cell proliferation [55–57].

Although parasite-driven proteins are able to induce B cell

expansion, the relative contribution of B cells in acquired

resistance upon T. cruzi infection remains open to discussion

[58]. B cell-deficient mice show increased mortality rates at late

stages of infection and a delayed rise in parasitemia, with deficient

ability to remove bloodstream trypomastigotes from the circulation

[59–62]. By contrast, polyclonal B cell activation contributes to the

pathological alterations seen in Chagas disease. Antibodies are

involved in wasting mice, and auto-reactive antibodies against

endocardium and nerves are detected in both mice and humans

[63,64].

Previous data in the literature demonstrated that IL-2 and T

lymphocyte proliferation of concanavalin A-stimulated splenocytes

from acutely infected mice is depressed [65,66]. This IL-2

suppression is usually observed in early stages of infection with

virulent parasite strains (proportional to stages of high parasite

loads) [66,67]. Activated T lymphocytes in the spleen from T.

cruzi-infected mice secrete IFN-c, IL-4, and IL-10, suggesting a

type-1 and type-2 mixed profile of cytokine secretion, similar to

what is found in SCLN [68]. In humans, co-culture of PBMCs

from normal patients with irradiated T. cruzi promotes T/B

lymphocyte proliferation and secretion of cytokines as IL-1b, IL-2,

IL-5, IL-6, IFN-c, and TNF-a [69].

AICD is observed in spleen-derived activated T and B

lymphocytes. It has been shown that Fas selectively kills activated

IgG+ B lymphocytes specific for parasite antigens [70]. Moreover,

CD4+ and CD8+ T lymphocytes are affected by Fas-induced

apoptosis, since activated T lymphocytes increase Fas, FasL

expression, and caspase-8 activation in acute infection [51,68].

Blockade of FasL interaction partially increases CD4+ T

lymphocyte recovery, in vitro and in vivo [51]. Moreover, in vivo

administration of anti-FasL blocked AICD and enhanced T CD8

proliferation in infected mice [71]. Blockade of activated T CD8

death increased IFN-c secretion in initial stages and IL-4/IL-10

secretion in latter stages of infection [71]. Moreover, it has been

shown that IFN-c is able to promote splenocyte apoptosis by

increasing Fas/Fas-L expression, as well as by nitric oxide (NO)-

mediated cell death [72]. In fact, NO synthesis in acute T. cruzi

infection is able to modulate immune response, suppressing T cell

proliferation and inducing lymphocyte apoptosis [72–74]. In

Figure 3. Splenectomy increases host’s susceptibility to T. cruzi
infection. BALB/c mice were submitted to surgery to remove the
spleen (SX). Sham-operated mice were used as controls. Ten days after
surgery, mice were infected intraperitoneally with 26105 metacyclic
trypomastigote forms of Dm28c clone of T. cruzi. Parasitemia was
followed during acute phase. In the splenectomized animals, parasit-
emia was significantly higher, as compared to the sham-operated
infected counterparts. Kinetic points with significant differences
between SX (n = 07, filled line) and sham-operated (n = 05, dashed line)
groups are indicated. Data were compared by Student’s t test for
independent samples using a Sigma Plot for Windows (version 4.01)
package. For parasitemia, data were transformed to parasites/ml for
statistical analysis. Data were considered significant if p values were
,0.05 (*). Data represent mean6standard error. All experiments and
animal handling were conducted according to protocols approved by
the Oswaldo Cruz Foundation Committee on the Use of Animals.
doi:10.1371/journal.pntd.0000417.g003

Box 1. Methods

The papers cited in this manuscript were selected based
on the following criteria:

1. Stringency of the papers in relation to the subjects
discussed

2. High quality of the papers

3. Papers indexed in the PubMed database
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Figure 4. Regional dynamics of immune responses in lymphoid organs following acute experimental T. cruzi infection.
doi:10.1371/journal.pntd.0000417.g004
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chronic chagasic patients, Fas and TNF-a are also involved in

PBMC death and low proliferative capacity of these cells to T. cruzi

antigens [75].

Lymphocyte apoptosis in T. cruzi infection favors the parasite

rather than the host, since phagocytic clearance of apoptotic cells

increases T. cruzi replication inside macrophages [52,76,77].

Several groups analyzed the pattern of immune response in the

spleen of T. cruzi-infected mice. On the other hand, there are few

reports on spleen involvement in patients with Chagas disease. In

humans, analyses of the spleen are based on chronic patient

autopsies. The few data in the literature in humans indicate that

spleens from chronic patients are increased in size and weight,

with increased areas of lymphoid follicles and thromboembolic

phenomena [78,79].

All together, these data indicate that splenocytes are involved in

the control of parasite load in infection. Moreover, processes of

polyclonal activation, AICD, and disturbances in cytokine

production are also observed in the spleen upon T. cruzi infection.

Concluding Remarks and Perspectives

T. cruzi infection represents a well-documented example of a

systemic infectious process. It is usually reported that immune

responses mounted in the spleen or in a particular group of lymph

nodes represent the immune response of the host. In this review,

we unravel the intrinsic importance of specific (and distinct)

microenvironments that exist in each lymphoid tissue and propose

that immune response in this infection is complex and variable.

After conducting a meta-analysis of studies (see Methods in Box 1)

performed in the thymus, MLN, SCLN, and spleen, it seems clear

that each lymphoid organ has local differences in ratios of

lymphocyte expansion that can be related to regional cytokine

production and cell death (see Figure 4). Although the reason(s)

accounting for these local variations remain unknown, microen-

vironmental factors are likely involved, including distinct lympho-

cyte distribution, antigen drainage, or specific types of antigen

presenting cells in each lymphoid organ. This actually represents

an open and interesting field for future studies.

The most affected cytokine in acute T. cruzi infection is IL-2, an

important growth factor for T lymphocytes that is suppressed in

the thymus, MLN, and spleen, but not in SCLN. The mechanism

involved in IL-2 deprivation in T. cruzi infection is still unknown.

One possible mechanism involved in IL-2 suppression is the

differential distribution of regulatory T cells (T reg cells) among

lymphoid organs in infection, since IL-2 could be produced in

normal levels and be sequestered by CD25high CD4 T reg cells. In

a non-infective model, it was shown that T reg cells consume but

do not produce IL-2 [80–83]. In fact, previous studies in T. cruzi

infection demonstrated the presence of suppressive lymphocytes in

secondary lymphoid organs [66], and T reg cells were shown to be

present in the spleen of infected mice [84]. Moreover, it was

recently shown that T regs promote cytokine deprivation-induced

apoptosis in T cells [80]. This mechanism might be associated with

the thymus and MLN atrophies in infected mice.

It seems conceivable that the differences herein summarized in

the regional immune responses to the parasite may play a role in

the pathophysiology of Chagas disease, including in the evolution

of the tissue lesions. Quantitative differences in the expansion

versus apoptosis of regulatory T cells may be relevant candidates

in the differential control of tissue lesions in specific sites of the

organisms. Also, the cytokine microenvironment that dendritic

cells will interact with in a given secondary lymphoid organ will

possibly drive, at least partially, its fate in terms of the antigen

presenting function. These are open fields for further investigation

in both experimental models and in human Chagas disease.

In summary, identifying the factors that drive antigen-specific T

lymphocyte expansion and characterizing the mechanisms that

result in the cessation of expansion will be relevant to better

understanding of the molecular mechanisms underlying regional

lymphocyte dynamics secondary to T. cruzi infection, which will

hopefully contribute to the design of novel immune intervention

strategies to control pathology in this unique infection.
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