
Relationship between Transmission Intensity and
Incidence of Dengue Hemorrhagic Fever in Thailand
Suwich Thammapalo1, Yoshiro Nagao2,3*, Wataru Sakamoto4, Seeviga Saengtharatip1, Masaaki

Tsujitani5, Yasuhide Nakamura6, Paul G. Coleman3, Clive Davies3

1 Bureau of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand, 2 Osaka University Graduate School of Medicine, Suita,

Osaka, Japan, 3 London School of Hygiene and Tropical Medicine, London, United Kingdom, 4 Osaka University Graduate School of Engineering, Toyonaka, Osaka, Japan,

5 Osaka Electro-Communication University, Neyagawa, Osaka, Japan, 6 Osaka University Graduate School of Human Sciences, Suita, Osaka, Japan

Abstract

Background: Dengue is the most prevalent mosquito-borne virus, and potentially fatal dengue hemorrhagic fever (DHF)
occurs mainly in secondary infections. It recently was hypothesized that, due to the presence of cross-immunity, the
relationship between the incidence of DHF and transmission intensity may be negative at areas of intense transmission. We
tested this hypothesis empirically, using vector abundance as a surrogate of transmission intensity.

Methodology/Principal Findings: House Index (HI), which is defined as the percentage of households infested with vector
larvae/pupae, was obtained from surveys conducted on one million houses in Thailand, between 2002 and 2004. First, the
utility of HI as a surrogate of transmission intensity was confirmed because HI was correlated negatively with mean age of
DHF in the population. Next, the relationship between DHF incidence and HI was investigated. DHF incidence increased
only up to an HI of about 30, but declined thereafter. Reduction of HI from the currently maximal level to 30 would increase
the incidence by more than 40%. Simulations, which implemented a recently proposed model for cross-immunity,
generated results that resembled actual epidemiological data. It was predicted that cross-immunity generates a wide
variation in incidence, thereby obscuring the relationship between incidence and transmission intensity. The relationship
would become obvious only if data collected over a long duration (e.g., .10 years) was averaged.

Conclusion: The negative relationship between DHF incidence and dengue transmission intensity implies that in regions of
intense transmission, insufficient reduction of vector abundance may increase long-term DHF incidence. Further studies of a
duration much longer than the present study, are warranted.
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Introduction

Dengue is the most prevalent vector-borne viral disease, the

distribution of which has been expanding continually [1]. Dengue

virus is transmitted by Aedes mosquitoes [2–4], which breed

predominantly in water-holding containers within human habitats.

Infections with dengue virus may manifest as dengue fever (DF), or

the potentially more fatal dengue hemorrhagic fever (DHF). There

are four serotypes of dengue virus, among which transient cross-

protection exists [5]. Dengue virus is unique in that viral

amplification in a primate host is enhanced dramatically in the

presence of pre-existing immunity to a heterogeneous dengue

serotype(s). This phenomenon, called antibody-dependent en-

hancement (ADE), had been reported initially in other arthropod-

borne virus infections [6,7]. In terms of dengue, ADE was

demonstrated both by in vitro [8] and animal experiments [9].

Subsequently, pre-existing hetero-serotypic antibodies were shown

to be associated with elevated risk for development of DHF [10].

Although the periodicity of highly oscillatory DHF outbreaks has

been under intensive study [11,12], determinants of the absolute

magnitude of DHF incidence remain poorly understood. It would

be understandable if the incidence of DF or DHF were affected

positively by transmission intensity (measured either as force of

infection or basic reproductive number). However, this intuitive

thinking may be too naive in terms of dengue illness. As an example,

increases in DF observed in Singapore were thought to be due to

insufficient vector reduction [13,14]. This paradox may be

explained as follows, at least to some extent, by the age-dependent

manifestation of DF [15,16]. Under more intense transmission,

infections occur at earlier ages [17]. Primary infections of younger

children often result in no symptoms or mild illness [16,18]. As a

result, many infections do not manifest as clinical DF under high
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transmission intensity, and consequently, the incidence of DF

decreases. This state of low incidence of clinical illness under intense

transmission is known as ‘‘endemic stability’’ [15].

In contrast to DF, children seemed to be more prone to manifest

DHF than are adults [19–21]. However, these studies, which did

not fully consider the immunological status of the hosts, cannot be

compared easily. This lack of reliable information about age-

dependency in the manifestation of DHF has made it difficult to

predict whether endemic stability occurs for DHF. On the other

hand, a mathematical model recently predicted that, due to the

presence of transient cross-serotype immunity, the incidence of

DHF and transmission intensity will be correlated negatively at

high transmission intensities [22]. This model hypothesized that a

cross-protected individual will be seroconverted to an infecting

viral serotype, while he/she is protected from manifesting severe

illness. Under this assumption, which is consistent with results

from experiments on monkeys [23], the individual would acquire

immunity to nearly all serotypes while being cross-protected from

clinical illness, at very intense transmission. As a result, the

incidence of DHF could be correlated negatively to transmission

intensity at areas of intense transmission, while the correlation is

positive only at low levels of transmission. In the present study,

such a complex correlation structure mixed with positive and

negative correlations will be called ‘‘non-monotonic’’, hereafter.

To the contrary, correlation structure, which is simply either

positive or negative, is referred to as ‘‘monotonic’’.

The present study aims to provide an empirical example of this

non-monotonic relationship between the incidence of DHF and

transmission intensity, with transmission intensity represented by

vector abundance. Vector abundance is one of the major

determinants for transmission intensity of a vector-borne disease

[24]. Accordingly, the WHO recommends that vector abundance

be quantified in regions highly infested with Aedes through

breeding site surveys and/or adult mosquito collections [25]. In

developing countries, breeding site survey is preferred over

mosquito collection, since the former is less labor-intensive. These

surveys measure the number of houses or water containers infested

by Aedes larvae/pupae through standard larval indices, such as

House index (HI) and Breteau index (BI). HI is defined as the

percentage of all surveyed houses in which Aedes larvae or pupae

are present, while BI represents the number of infested containers

in 100 houses. BI was shown to be relatively sensitive in predicting

transmission [26]. Since HI and BI are strongly positively

correlated [26], HI also may reflect transmission intensity to some

extent. Although the absolute number of pupae is thought to

reflect transmission intensity more directly than do larval indices

[27–29], Southeast Asian households often possess many large

water containers [30], that are irregularly shaped and partially

sealed, making it difficult to obtain precise estimates of the

absolute number of pupae. For this reason, absolute pupal counts

have not been used in large-scale surveys in Thailand.

Here, we describe the empirical relationship between DHF

incidence and transmission intensity, as represented by HI. The

age-specific structure of this relationship also was characterized to

support findings obtained for the entire population. The

epidemiological characteristics of DHF were compared with

predictions made by simulation of an individual-based model

based upon the above mentioned mathematical modelling study.

Our findings have major implications for future epidemiological

surveys and dengue control programs.

Methods

Aedes survey
In Thailand, the highest incidence of DHF occurs between June

and August. Hence, entomological surveys mainly are conducted in

the pre-epidemic season (e.g., April), with the assumption that vector

abundance in this season will serve as an indicator of disease

incidence later in the year. Between 2002 and 2004, a large-scale

national Aedes survey was conducted in all 914 districts of Thailand.

The survey was intended partly for community education and was

implemented by investigators dispatched from 302 vector control

units and community volunteers, under the supervision of the five

regional vector-borne disease control offices. The administrative

central village or municipality of each sub-district was surveyed

because of their accessibility. A total of 40 houses were visited in

each village/municipality. Prior appointments with the residents

were not made, so that the residents did not clean their houses in

advance. This design, taken with incomplete house registry in rural

areas, made genuine randomization impossible. Surveys were

conducted in April of each year, with 9,483 villages surveyed in

2002, 9,763 in 2003, and 7,482 in 2004. The HI values were

averaged for each district for comparison with district-level DHF

data. The average population of a district in Thailand is 67,500.

Epidemiological data
The Bureau of Epidemiology, Ministry of Public Health,

provided the annual number of cases of DHF (including Dengue

Shock Syndrome) in nine age categories (0–4, 5–9, 10–14, 15–24,

25–34, 35–44, 45–54, 55–64, $65 years) for each district, for the

years between 1994 and 2004. Age-stratified population data,

based upon five yearly censuses/surveys and yearly projections,

were obtained from the National Statistics Office of Thailand

(http://www.nso.th.go) to calculate DHF incidence. The inci-

dence of DHF in an entire district population was adjusted to the

national age-population structure of 2000 by using the Direct

Method, to eliminate possible interference by the heterogeneity in

demographic structure. The mean age of DHF cases was

calculated as the average of the mid-point of the different age

categories (2.5, 7.5, 12.5, 20, 30, 40, 50, 60, and 75 years)

weighted by the number of cases in each category.

Author Summary

An infection with dengue virus may lead to dengue
hemorrhagic fever (DHF), a dangerous illness. There is no
approved vaccine for this most prevalent mosquito-borne
virus, which infects tens of millions (or more) people
annually. Therefore, health authorities have been putting
an emphasis on reduction of vector mosquitoes, genus
Aedes. However, a new mathematical hypothesis predict-
ed, quite paradoxically, that reducing Aedes mosquitoes in
highly endemic countries may ‘‘increase’’ the incidence of
DHF. To test this hypothesis based upon actual data, we
compared DHF incidence collected from each of 1,000
districts in Thailand to data of Aedes abundance, which
was obtained by surveying one million households. This
analysis showed that reducing Aedes abundance from the
highest level in Thailand to a moderate level would
increase the incidence by more than 40%. In addition, we
developed computer simulation software based upon the
above hypothesis. The simulation predicted that epidemi-
ological studies should be continued for a very long
duration, preferably over a decade, to clearly detect such a
paradoxical relationship between Aedes abundance and
incidence of DHF. Such long-term studies are necessary,
especially because tremendous efforts and resources have
been (and perhaps will be) spent on combating Aedes.

Dengue Hemorrhagic Fever Incidence in Thailand
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Statistical methods
Subsequent statistical analyses were performed using R 2.6.2

and Stata 9.2. We used non-parametric statistical methods,

Spearman’s rank correlation analysis and the generalized additive

model (GAM), so that analyses did not have to assume any fixed

distribution a priori. Akaike’s Information Criteria (AIC) inversely

represented the goodness of fit, or predictability, for a regression

model obtained from GAM [31]. Deviance around the prediction

also was presented, although this measurement is not adjusted for

degree of freedom (df) used in a regression model.

Analysis of relationship between DHF mean age and HI
To ensure that HI could be used as a reliable surrogate of

transmission intensity, we compared the mean age of DHF cases to

HI using rank correlation analysis. A high mean age of DHF cases

was used as an indicator of low transmission intensity, because the

mean age of infected individuals generally is negatively correlated

with the transmission intensity of an acute infectious disease [17].

Since each district was surveyed three times (2002, 2003, and

2004), the possible bias from this repeated measurement was

adjusted by simply aggregating records from three years for each

district. Among the all 914 districts, this analysis incorporated 909

districts that reported at least one case of DHF between 2002 and

2004.

Analysis of the relationship between DHF incidence and
HI

We examined the quantitative relationship between incidence of

DHF and HI using GAM. Logarithm was used as the link

function. First, we tested this relationship by incorporating only HI

as the independent variable (univariate analysis). Then, we

adjusted for possible confounding by socioeconomic and climatic

variables. Socioeconomic factors may affect reported incidence in

diverse fashions. For example, incidence may be biased by (a) the

prevalence of health offices, which are responsible for DHF case

reporting in each district. Abundance of breeding places is affected

by local water storage practices (reviewed by [32]). Our analysis

incorporated the following socioeconomic factors that were

reported to be associated with dengue transmission intensity

[33]: (b) per capita number of public large water wells, (c) that of

public small wells, (d) that of private small wells, (e) annual birth

rate per 1,000 individuals, (f) proportion of households owning

land, and (g) proportion of villages in which high schools are

present. These seven socioeconomic variables (a–f), censused every

other year, were obtained from the Information Processing Centre

of Thammasat University, Bangkok, and were interpolated

linearly to the intervening years. On the other hand, dengue

transmission intensity is influenced by climatic factors as well.

Temperature affects critically the rate of viral amplification in

mosquitoes [34]. In addition, extremely high or low temperatures

are rate-determining factors for the growth and survival of

mosquitoes [35]. Atmospheric vapor pressure is known to affect

dengue transmission [36]. Aridity, which is likely to reflect the

scarcity of underground water, may be associated with increased

use of household water containers. To adjust for these possible

confounders, the following climatic variables were obtained from

the University Cooperation for Atmospheric Research [37]: (a)

temperature averaged between January and February, the coolest

months in Thailand (‘‘winter temperature’’, uC), (b) temperature

averaged between April and May, the hottest months (‘‘summer

temperature’’, uC), (c) average vapor pressure (AVP, hPa), and (d)

average pan evapo-transpiration (APET, mm/day). These climatic

variables were obtained from 89 weather stations in Thailand and

its adjacent countries, averaged for each year, and interpolated to

the geographic centroid of each district by using Inverse Distance

Weighting method. We confirmed that multiple interpolation

methods generated comparative results, perhaps because these

weather stations constituted a sufficiently exhaustive dataset [38].

Collectively, these socioeconomic/climatic variables were aver-

aged for the period for which the dependent variable, incidence,

was averaged. We enrolled districts from which socioeconomic

and climatic variables have been available from 1994 to 2004.

Consequently, 785 districts were enrolled. This dataset (incidence

linked with covariates) is available on request from the

corresponding author. Multivariate analyses were conducted using

the following procedure. First, HI and all socioeconomic/climatic

factors were incorporated as independent variables, with df of each

variable set to 2. Next, independent variables that remained

significant (P,0.05) in a stepwise elimination procedure were

selected, generating the ‘‘smallest regression model for df = 2’’.

Finally, df of each of the remaining six variables was replaced with

df = 3, generating 26 combinations of df. Among these, the

combination that exhibited the smallest AIC was adopted as the

‘‘final regression model’’.

Age-stratified analysis of DHF incidence and HI
The relationship between DHF incidence and HI was examined

within different age classes for which original age categories were

aggregated into the following three age classes: 0–4, 5–24, and

$25 years. GAM was applied similarly to these age-class specific

incidences.

Simulation
We employed computer simulations to see whether (and to what

extent) the observed epidemiological pattern could be explained

based upon a theoretical framework. The assumption of the above

Figure 1. Relationship between mean age of Dengue Hemor-
rhagic Fever (DHF) cases and House Index in Thailand,
averaged between 2002–2004. Each point corresponds to one
district in this and subsequent figures.
doi:10.1371/journal.pntd.0000263.g001

Dengue Hemorrhagic Fever Incidence in Thailand
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mentioned mathematical model was expressed equivalently by an

individual-based model (see Protocol S1, Section I). This model is

summarized as follows. The cross-protective period was assumed

to be of a fixed duration (‘‘C’’ years). Inoculation by a virus, which

occurred during this cross-protective period, does not develop into

DHF, but induces seroconversion. As the cross-protective period

expires, the individual is predisposed to the risk of manifesting

DHF in a subsequent inoculation by a secondary (or later)

serotype. An individual could manifest DHF after secondary,

tertiary or quaternary infections.

In addition, this individual-based model can incorporate the

age-dependency in the probability to manifest DHF (categorical

parameter ‘‘A’’, defined in Figure S1B in Protocol S1).

Transmission intensity is represented by basic reproductive

number (R0) of dengue virus. The present study parameterized

simulations with the following three scenarios. (I) Cross-immunity

scenario: the duration of cross-serotype protection (‘‘C’’) was set to

two years, while the probability to manifest DHF was assumed to

be independent of age (A = 0). We selected this duration of cross-

immunity based upon the results of sensitivity analysis (see

Protocol S1). (II) Age-dependency scenario: the probability to

manifest DHF in secondary or later infections was assumed to

increase in accordance with the age of the individual (A = 2), while

no cross-immunity was assumed (C = 0). (III) Control scenario: no

cross-immunity or age-dependency was assumed (C = 0, A = 0). R0

was selected by extrapolating the mean age of DHF obtained

between 2002 and 2004 from each of the 785 districts, through the

relationship between R0 and mean age of DHF (Figure S6 in

Protocol S1). This set of R0 values was used as the input for all

three scenarios. Each simulation was run for 150 years.

Comparison of predictability between simulations and
actual incidence

At different durations for averaging (W), the goodness of fit was

compared between the statistical models that explained the

incidence in simulations versus those that explained the actual

incidence. Incidences of DHF generated from simulations were

averaged from the last W years [W = 3, 4 … 40] (for example,

148th, 149th and 150th years were averaged for W = 3).

Subsequently, the averaged incidence was regressed against R0

using GAM.

On the other hand, actual incidences were averaged for the

recent W years [W = 3, 4 … 11] (for example, W = 3 corresponds

to 2002–2004; W = 11 corresponds to 1994–2004). Then, the

averaged actual incidence was regressed against HI obtained from

the 2002–2004 survey, and socioeconomic/climatic variables

averaged for the recent W years.

Results

Relationship between mean age of DHF and HI
The national-level mean age of DHF cases was 16 years during

2002 to 2004. The mean HI recorded each April during 2002 to

2004 was 23. As shown in Figure 1, the mean age was negatively

correlated with HI at the district level (Spearman’s R = 20.35,

P,0.0001, N = 909).

Table 1. Contribution of vector abundance and socioeconomic/climatic factors in explaining log incidence of Dengue
Hemorrhagic Fever averaged between 2002 and 2004, revealed by generalized additive model (GAM).

N = 785

1. univariate regression model (df { = 2)

Variable P values

House Index 0.006

Deviance 2,092,809

AIC { 8,428

2. multivariate regression model

full regression model for df = 2 smallest regression model for df = 2 final regression model with mixed df

variables 1 P values

House Index 0.028 0.035 0.031 (df = 2)

APET ,0.001 ,0.001 ,0.001 (df = 2)

winter temperature ,0.001 ,0.001 ,0.001 (df = 2)

summer temperature 0.003 ,0.001 ,0.001 (df = 2)

public large wells 0.004 ,0.001 ,0.001 (df = 3)

birth rate ,0.001 ,0.001 ,0.001 (df = 2)

AVP 0.651

health stations 0.468

high schools 0.301

public small wells 0.846

private small wells 0.401

land ownership 0.714

Deviance 1,558,853 1,572,931 1,566,715

AIC 8,240 8,224 8,223

{ df: degree of freedom; { Akaike’s Information Criterion; 1 AVP: average vapor pressure (hPa); APET: average pan evapo-transpiration (mm/day). Socioeconomic
variables are defined in the text.
doi:10.1371/journal.pntd.0000263.t001
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Relationship between DHF incidence and HI
During 2002 to 2004, the annual DHF incidence was 83 per

100,000 individuals. HI showed a statistically significant contri-

bution to the log incidence of DHF, both in univariate and

multivariate regression models (Table 1). Univariate analysis of

GAM revealed that the correlation between HI and incidence was

positive below about HI = 30, while the correlation was negative

above this HI value (Figure 2B; Figure 3). As HI decreases from 70

to 30, for example, the log incidence would increase by 0.35

(Figure 3), which is equivalent to an increase of 40% in incidence,

since exp (0.35) = 1.4.

In multivariate analysis, the following six variables remained in

the final regression model (Table 1; Figure 4): HI, winter

temperature, summer temperature, APET, public large wells,

and birth rate. The best predictability (or lowest AIC) was

achieved by the final regression model which assigned df = 3 only

to public large wells, and df = 2 to other covariates. Multivariate

analysis estimated that, as HI decreases from 70 to 30, log

incidence would increase by 0.6 (Figure 4A), which corresponds to

an increase of 80%.

Although incorporation of socioeconomic/variables improved

the goodness of fit, this multivariate predictive model still failed to

Figure 2. Relationship between DHF incidence and House Index, observed between 2002 and 2004 in Thailand. The annual incidence
of DHF (per 100,000 individuals) averaged between 2002 and 2004 is plotted against House Index in the entire population (A, B), at 0–4 years (C), 5–
24 years (D), and $25 years (E). Y-axis is original scale (A) or log scale (B–E). The lines correspond to the univariate regression model presented in
Table 1 for the entire population, and in Table 2 for the age-stratified population.
doi:10.1371/journal.pntd.0000263.g002
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reproduce the very wide variation in the observed incidence

(compare Figure 2B vs Figure 5).

Age-specific relationship between DHF incidence and HI
Further analysis of the age-specific associations between

incidence of DHF and HI was conducted, as shown in Table 2.

Univariate analysis revealed that incidence and HI were positively

correlated in the youngest age class (Figure 2C); whereas, DHF

incidence and HI were negatively correlated in the oldest age class

(Figure 2E). A non-monotonic relationship between DHF

incidence and HI was detected within the intermediate age class

(Figure 2D). When the socioeconomic/climatic variables were

incorporated, the statistical significance of positive correlation

among the youngest age class diminished (Table 2).

Simulation
As shown in Figure 6, averaging only the last three years of each

simulation resulted in a negligibly detectable relationship between

DHF incidence and R0, which greatly resembled the empirical

relationship (compare with Figure 2B). As the window for

averaging increased, the relationship generally became more

apparent. The incidences generated by simulations with cross-

immunity were much more dispersed than those generated by

other simulations, at any window lengths.

GAM was applied to examine the relationship between

incidences generated by simulations and R0 (Figure 7). As a

result, GAM detected a non-monotonic relationship in the

simulations with cross-immunity (Figure 7A), a negative relation-

ship in those with age-dependency (Figure 7E), and a slightly

positive relationship in the control simulations (Figure 7I). Age-

stratification of the simulation results generated a similar trend in

the empirical data, regardless of the presence of cross-immunity or

age-dependency (Figure 7B–D, F–H, J–L). That is, a positive

correlation was observed between DHF incidence and transmis-

sion intensity in the younger population, and a negative

correlation was present in the older population.

Comparison of predictability
The goodness of fit in predicting incidence by R0 showed

remarkable differences between simulation with cross-immunity

and those without cross-immunity (Figure 8). The predictability

was much worse in simulation with cross-immunity than in other

simulations. In addition, the response to the window length was

more complex in the presence of cross-immunity than in other

simulations. That is, in simulations without cross-immunity, the

predictabilities improved continuously as W increased. In contrast,

the predictability in the presence of cross-immunity deteriorated as

the window for averaging increased from W = 3 to W = 4, then

improved up to W = 6. With a small setback at W = 7, it improved

again thereafter. Such a complex response of predictability to W

was reproduced at diverse durations of cross-immunity (Figure 9),

which were sufficiently long to generate dominant supra-annual

periodicities (see Section II and Figure S7 in Protocol S1).

The goodness of fit in predicting actual incidence, either by HI

only or by HI and covariates, showed a similarly complex response

to W (Table 3). The predictability attained solely by HI was much

inferior to that attained in any simulations (Figure 8). However,

the predictability using the multivariate regression model was as

good as that in simulations with cross-immunity, up to W = 8.

Discussion

Our analysis demonstrates that HI is a reliable indicator of

transmission intensity, at least at the district level. The usefulness

of HI is evident by its highly significant, inverse relationship to

mean age, otherwise equivalent to a positive correlation between

HI and transmission intensity. Our findings are consistent with

observations from Singapore, where an increase in the mean age

of patients with dengue infection was preceded by a substantial

reduction in HI [13,14].

Analysis of DHF incidence among the entire Thai population

revealed that incidence rose up to HI of about 30 and gradually

declined thereafter. This non-monotonic relationship appears to

be consistent with a state of endemic stability. However, the age-

dependency in the probability to manifest DHF may not simply

satisfy the condition for endemic stability, because DHF occurs

more frequently in children than in adults. On the other hand,

cross-immunity explains not only this non-monotonic relationship

(Figure S2 in Protocol S1), but also the wide variation in incidence

of DHF, as well as its complex response to the duration of window

for averaging (Figure S8 in Protocol S1). Of note, the regression

model comprised of HI and socioeconomic/climatic variables

predicted actual incidence to the same goodness of fit, with which

R0 predicted incidence from simulations with cross-immunity

(Figure 8). This finding may support the validity of the multivariate

regression model, and that of our assumption for cross-immunity,

simultaneously.

Stratification of data according to age revealed a positive

association between DHF incidence and HI among the youngest

population. In contrast, a negative association was observed in the

oldest population. These contrasting correlations may be

explained as follows. Under low transmission intensity, the

majority of individuals in the youngest age class do not possess

Figure 3. Non-linear responses of the log incidence of DHF to
House Index, revealed by univariate analysis of generalized
additive model (GAM). The smoothing function obtained from GAM
analysis, which regressed the log of DHF incidence reported between
2002 and 2004 against House Index, is presented as the solid line.
Dashed line represents the 95% confidence interval, while the spikes on
the horizontal axis represent the frequency of data points (or districts)
in this and the next figure.
doi:10.1371/journal.pntd.0000263.g003

Dengue Hemorrhagic Fever Incidence in Thailand
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antibodies against any serotype and are relatively resistant to

DHF. As the transmission intensity increases, a larger number of

individuals in this age class possess antibodies to only one serotype,

making them predisposed to DHF. Therefore, the correlation

between DHF incidence and transmission intensity becomes

positive in the youngest age class, as observed here. In contrast,

when transmission intensity is low, many in the oldest age class

possess antibodies against only one serotype and are predisposed

to DHF. As transmission intensity increases, more members of this

age class possess antibodies against almost all serotypes, conferring

Figure 4. Non-linear responses of the log incidence of DHF to House Index and socioeconomic/climatic variables revealed by
multivarite analysis of GAM. The final regression model obtained from the multivariate GAM analysis (Table 1) is presented. Log incidence of DHF
reported between 2002 to 2004 was regressed against House Index and socioeconomic/variables. The per capital number of public large wells was
assigned with df = 3, while other covariates were assigned with df = 2.
doi:10.1371/journal.pntd.0000263.g004

Dengue Hemorrhagic Fever Incidence in Thailand
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resistance to DHF. Importantly, these age-stratified relationships

could be reproduced by simulations of any scenarios examined.

Therefore, this analysis did not differentiate whether cross-

immunity or age-dependency determined the epidemiological

characteristics of DHF.

The negative response of incidence to transmission intensity at

areas of intense transmission has important public health

implications, regardless of its underlying mechanism. The

incidence of DHF is affected by the dominant virus serotype,

which shifts from period to period [39,40]. In addition, HI

measured in one country cannot be compared with HI in another

country. Since our analysis was based on a single three-year period

in one country, the stability of our estimated HI value at the

maximum (‘‘turning’’) point should be treated with some caution.

However, with these caveats, our results indicate that insufficient

reduction of vector abundance in highly endemic areas could

result in an increased incidence of DHF. As the HI decreases from

the current highest level in Thailand, the incidence of DHF could

increase by more than 40%. Any medical/public-health interven-

tion that causes a foreseeable increase of illness should be subject

to ethical discussion.

Theoretically, sufficiently radical reduction of vector mosquitoes

can achieve a decrease of the entire incidence of DHF. However, it

is unclear whether such radical vector control is possible at a

nation-wide scale in developing countries. Instead, reduction of the

vector population may become stagnant as the vector abundance

decreases. Furthermore, even substantial vector reduction (for

example, from HI = 60 to10) would not necessarily decrease the

final incidence (extrapolate the HI values to incidence in Figure 3

and Figure 4A), but would result most likely in a greater number of

DHF cases accumulated over the course of time. This calculation

suggests that it is extremely difficult for vector control alone to

achieve the ultimate goal of control program– reduction of

incidence.

Supporting Information

Protocol S1

Found at: doi:10.1371/journal.pntd.0000263.s001 (0.25 MB

DOC)

Table S1 Definition and values of scenario parameters assigned

to each simulation of Dengue Hemorrhagic Fever (DHF)

Found at: doi:10.1371/journal.pntd.0000263.s002 (0.04 MB

DOC)

Figure S1 Individual-Based Model for Dengue Hemorrhagic

Fever (DHF). A. Diagram of the transition between immunological

states caused by infections with wild type virus. The transition

between immunological states was a result of either viral

inoculation (solid arrow) or expiration of time from the most

recent inoculation (broken arrow). The serotype(s) that an

individual has experienced is recorded as the existence of

protective antibodies to this serotype(s). B. Age-dependent

probability for a secondary infection to manifest as DHF in a

DHF-predisposed individual. Four hypothetical possibilities of

age-dependency are defined: no age-dependency (A = 0), higher

probability in younger individuals (A = 1), higher probability in

Figure 5. Prediction of DHF incidence based upon House Index
and socioeconomic/climatic variables. Incidence of DHF was
predicted based upon the final regression model (Table 1) and plotted
against House Index. Y-axis is log scale.
doi:10.1371/journal.pntd.0000263.g005

Table 2. Relationship between vector abundance and
incidence of DHF stratified for age classes, revealed by GAM.

N = 785

Age class 0–4 years 5–24 years $25 years

1. univariate regression model (df { = 2)

variable P values

House Index 0.044 0.001 0.008

Deviance 5,592,654 12,851,371 290,947

AIC { 9,200 9,852 6,879

2. multivariate regression model (final regression model with mixed df)

variables 1 P values

House Index 0.031 (df = 3) 0.002 (df = 2)

APET ,0.001 (df = 3) ,0.001 (df = 2) 0.006 (df = 2)

winter temperature ,0.001 (df = 2) ,0.001 (df = 2) 0.003 (df = 2)

summer temperature ,0.001 (df = 2) ,0.001 (df = 2) 0.005 (df = 2)

public large wells 0.002 (df = 3) ,0.001 (df = 2)

birth rate ,0.001 (df = 2)

AVP ,0.001 (df = 3)

health stations

high schools 0.008 (df = 3)

public small wells

private small wells ,0.001 (df = 2)

land ownership 0.001 (df = 2) ,0.001 (df = 3)

Deviance 4,592,236 10,128,066 165,907

AIC 9,058 9,689 6,476

{ df: degree of freedom; { Akaike’s Information Criterion; 1 AVP: average vapor
pressure (hPa); APET: average pan evapo-transpiration (mm/day).
Socioeconomic variables are defined in the text.
doi:10.1371/journal.pntd.0000263.t002
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older individuals (A = 2), and complex age-dependent DHF

manifestation (A = 3).

Found at: doi:10.1371/journal.pntd.0000263.s003 (0.74 MB TIF)

Figure S2 Relationship between DHF incidence and transmis-

sion intensity (R0) generated by cross-serotype immunity. Results

from simulations, which assumed the cross-protective period (‘‘C’’)

to be (A) 0 year, (B) 1 year, or (C) 2 years, are presented. No age-

dependency was assumed for DHF manifestation (i.e., A = 0).

Infection with four serotypes was required to confer life-long

resistance to DHF (L = 4 serotypes). Transmission enhancement

was not assumed (E = 1). Qualitatively similar results were

obtained with L = 2 or 3 and with E = 2 or 20.

Found at: doi:10.1371/journal.pntd.0000263.s004 (0.21 MB TIF)

Figure S3 Relationship between DHF incidence and transmis-

sion intensity generated by age-dependent manifestation of DHF.

The results of simulation are presented for four age-dependencies

(A) of DHF manifestation. No cross-protection was assumed (i.e.,

C = 0 year). Infection with four serotypes was required to confer

Figure 6. Relationship between DHF incidence and transmission intensity predicted by simulations. Incidence of DHF generated by
simulations are plotted over Basic Reproductive Number (R0). The used scenarios are: two-year cross-immunity (A–D); age-dependency which
assumed a higher probability of manifesting DHF in the older individuals (E–H); and control scenario without cross-immunity or age-dependency (I–
L). Incidences in the last ‘‘W’’ years in each simulation were averaged, where W = 3 years (A, E, I), 10 years (B, F, J), 20 years (C, G, K), or 40 years (D, H, L).
Y-axis is log scale.
doi:10.1371/journal.pntd.0000263.g006
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life-long immunity (L = 4 serotypes). Transmission enhancement

was not assumed (E = 1). Qualitatively similar results were

obtained with L = 2 or 3, and with E = 2 or 20.

Found at: doi:10.1371/journal.pntd.0000263.s005 (0.26 MB TIF)

Figure S4 Relationship between DHF incidence and transmis-

sion intensity generated by transmission enhancement. Transmis-

sion enhancement (E) during manifesting DHF was assumed to be

1 (no enhancement), 2 or 20. No age-dependency or cross-

Figure 7. Age-specific relationship between DHF incidence and transmission intensity predicted by simulations. Age-stratified
incidence of DHF in the last three years from each simulation were averaged. The parameters inputted to simulations were: two-year cross-immunity
(A–D); age-dependency which assumes a higher probability of manifesting DHF in older individuals (E–H); control scenario without cross-immunity or
age-dependency (I–L). DHF incidence presented for the entire population (A, E, I) or stratified into 0–4 years (B, F, J), 5–24 years (C, G, K), and $25
years (D, H, L). Y-axis is log scale.
doi:10.1371/journal.pntd.0000263.g007
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protection was assumed (i.e., A = 0, C = 0 year). Infection with four

serotypes was required to confer life-long immunity (L = 4

serotypes). Qualitatively similar results were obtained with L = 2

or 3.

Found at: doi:10.1371/journal.pntd.0000263.s006 (0.18 MB

DOC)

Figure S5 Temporal pattern of alternating serotypes in the

presence of cross immunity and effects of a sudden drop in

transmission intensity. Examples of serotype-specific incidence of

DHF are presented. The last 40 years are presented.

Found at: doi:10.1371/journal.pntd.0000263.s007 (1.18 MB TIF)

Figure S6 Relationship between mean age of DHF cases and

Dengue transmission intensity (R0) Mean age of DHF cases is

plotted against transmission intensity (R0). The result for a

parameter setting (C = 2 years, L = 4 serotypes, A = no age-

dependency, E = 1) is presented. All other parameter combinations

examined generated similarly negative correlations between mean

age of DHF cases and R0.

Found at: doi:10.1371/journal.pntd.0000263.s008 (0.14 MB TIF)

Figure S7 Periodicity profile (periodogram) for incidence

generated by simulations for Dengue Hemorrhagic Fever (DHF).

Individual-based simulation for DHF (described in the accompa-

nying manuscript) was executed for 150 years, from which

monthly incidence for the last 40 years was analyzed by fast

Fourier transform with Daniell smoothing (provided in R 2.6.2).

Parameters for simulations are as follows: cross-immunity of 0.5

year (A–C), one year (D–F), two years (G–I), three years (J–L), and

four years (M–O); age-dependency, which attributes a higher

probability of manifesting DHF to the older population [defined as

A = 2 in the accompanying manuscript] (P–R); control (i.e., no

cross-immunity, no age-dependency) (S–U). Transmission intensi-

ty inputted to simulations were R0 = 3 (A, D, G, J, M, P, S), R0 = 6

(B, E, H, K, N, Q, T), or R0 = 12 (C, F, I, L, O, R, U). We

executed each parameter setting in duplicate, and confirmed that

the resulting periodograms were very similar. The highest

spectrum intensity was presented as 1, for each parameter setting.

Figure 8. Goodness of fit in predicting the incidence of DHF
obtained either from actual epidemiological data, or from
simulations. The goodness of fit in the regression models for
incidence of DHF is plotted over the window length (‘‘W’’) with which
the incidence was averaged. For actual epidemiological data, the most
recent W years descending from 2004 were averaged. For simulations,
the last W years in each simulation were averaged. Actual incidence was
regressed against HI only (square), or against HI and socioeconomic
variables (circle) (Table 3), while incidence in simulations were regressed
against R0 with df = 2 assigned. The goodness of fit as inversely
measured by Akaike’s Information Criterion (AIC) (A), and the deviance
(B) were obtained from GAM models. The scenario parameters for
simulations were: cross-immunity (X); age-dependency (diamond); or
control scenario without cross-immunity or age-dependency (triangle).
doi:10.1371/journal.pntd.0000263.g008

Figure 9. Responses of predictability of DHF incidence to the
window length for averaging, at diverse durations of cross-
immunity. The predictability of DHF incidence was inversely measured
by deviance and plotted to W (see the legend for Figure 8). Simulations
with diverse durations of cross-immunity examined in the sensitivity
analysis are compared. The results for cross-immunity (C) of 0, 0.5, 2 and
4 years are presented.
doi:10.1371/journal.pntd.0000263.g009
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Found at: doi:10.1371/journal.pntd.0000263.s009 (0.87 MB TIF)

Figure S8 Standard deviation in the asynchronous sinusoidal

incidences. One hundred sinusoidal curves, with asynchronous

phases, were generated, to emulate the incidence of DHF. The

sinusoidal incidence was averaged for diverse window lengths

(‘‘W’’), and standard deviation was measured among these averaged

incidences. A. Each sinusoidal time-series follows cycles of exactly

one year (diamond) or three years (x). B. To add noise to the cycles,

the cycle at each time-series was selected randomly between 0.8 and

1.2 years (diamond), or between 2.6 and 3.4 years (x).

Found at: doi:10.1371/journal.pntd.0000263.s010 (0.47 MB TIF)

Alternative Language Abstract S1 Translation of the Abstract

into Japanese by Yoshiro Nagao

Found at: doi:10.1371/journal.pntd.0000263.s011 (0.09 MB PDF)
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