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Abstract

Background: Schistosoma mansoni exists in a complex environmental milieu that may select for significant evolutionary
changes in this species. In Kenya, the sympatric distribution of S. mansoni with S. rodhaini potentially influences the
epidemiology, ecology, and evolutionary biology of both species, because they infect the same species of snail and
mammalian hosts and are capable of hybridization.

Methodology/Principal Findings: Over a 2-year period, using a molecular epidemiological approach, we examined spatial
and temporal distributions, and the overlap of these schistosomes within snails, in natural settings in Kenya. Both species
had spatially and temporally patchy distributions, although S. mansoni was eight times more common than S. rodhaini. Both
species were overdispersed within snails, and most snails (85.2% for S. mansoni and 91.7% for S. rodhaini) only harbored one
schistosome genotype. Over time, half of snails infected with multiple genotypes showed a replacement pattern in which
an initially dominant genotype was less represented in later replicates. The other half showed a consistent pattern over
time; however, the ratio of each genotype was skewed. Profiles of circadian emergence of cercariae revealed that S. rodhaini
emerges throughout the 24-hour cycle, with peak emergence before sunrise and sometimes immediately after sunset,
which differs from previous reports of a single nocturnal peak immediately after sunset. Peak emergence for S. mansoni
cercariae occurred as light became most intense and overlapped temporally with S. rodhaini. Comparison of schistosome
communities within snails against a null model indicated that the community was structured and that coinfections were
more common than expected by chance. In mixed infections, cercarial emergence over 24 hours remained similar to single
species infections, again with S. rodhaini and S. mansoni cercarial emergence profiles overlapping substantially.

Conclusions/Significance: The data from this study indicate a lack of obvious spatial or temporal isolating mechanisms to
prevent hybridization, raising the intriguing question of how the two species retain their separate identities.
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Introduction

One of the world’s most prevalent neglected diseases is

schistosomiasis, which is caused by flatworms of the genus

Schistosoma. It is estimated that 200 million people world wide

are infected [1]. Schistosomiasis is notable for its chronic nature,

for being difficult to control on a sustained basis, and for the

limited options currently available for control [2]. Schistosoma

mansoni is the most widespread and best known of the human-

infecting schistosomes. It is a genetically diverse parasite with

complex epidemiology, particularly in East Africa, which is also its

hypothesized place of origin [3].

Epidemiological studies of S. mansoni understandably often focus

on human infections [4], but due to the longevity of schistosome

infections in the human host and to the high vagility of humans,

studies of humans alone make it difficult to detect when and where

transmission actually occurs. By examining snails, the obligatory

hosts for the larval stages of schistosomes, we can gain a much

needed perspective, one that allows the determination of where

human-infective cercariae are actually being produced, and thus

identifies likely sites of active transmission. Also, during the

molluscan phase of the schistosome life cycle, schistosome

sporocysts may encounter other individuals of the same or a

related schistosome species, or of unrelated species of digenetic

trematodes (see [5] for an overview of some of the possible

interactions), potentially influencing the dynamics of transmission.

Molecular epidemiological investigations have shown that S.

mansoni infections tend to be overdispersed (aggregated in a small

proportion of host individuals) in their molluscan hosts, with some

snails harboring as many as 9 distinct parasite genotypes [6,7].
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Such patterns could be the result of differing levels of susceptibility,

acquired immunity [7,8], microhabitat variation of snails and

miracidia, and/or competitive interactions within the snail, and as

they may influence transmission of infection to humans, should be

further investigated.

In western Kenya, where our studies were undertaken, S.

mansoni is likely to encounter and interact with its sister species, S.

rodhaini. This species is typically considered a parasite of rodents

although it has been reported from wild felids, canids, and even

humans, although this latter observation has not been confirmed

with molecular techniques [9–14]. Evidence from experimental

infections of baboons suggests S. rodhaini cannot infect these

primates unless they are coinfected with S. mansoni [15]. Although

S. mansoni is primarily a parasite of humans and secondarily other

primates, rodents can serve as reservoir hosts, including in East

Africa [16]. In some locations such as Guadeloupe, rodents are the

exclusive definitive host for S. mansoni [17]. Overlap of both

schistosome species in the same individual rodent host was

reported by Schwetz [18] who found eggs of both species in

rodents the Democratic Republic of the Congo, although he

considered the eggs shaped like those of S. mansoni to be a different

variety of this species. Both schistosome species infect the same

species of Biomphalaria snails and past reports indicate that they can

infect the same individual snail host [19]; therefore they potentially

influence each other in terms of infection patterns, development,

and cercarial release patterns. Also, these two species hybridize

readily in the laboratory [20–22] and a natural hybrid has been

found from a snail in the Lake Victoria region [23].

Hybridization is an important epidemiological concern because

hybrids could directly infect humans or lead to gene introgression

between the species, which both could alter their biology and

capacity to cause pathology. However, in the face of possible

hybridization and definitive and intermediate host overlap, these

two species are apparently able to maintain their identity [23],

which unless contact is very recent, suggests the presence of

isolating mechanisms including ecological, geographical, or

temporal isolation. Théron and Combes [24] hypothesized that

the time of day of cercarial emergence of each species could serve

as an isolating mechanism since at different times of the day,

different host species would be utilizing aquatic habitats. Most

schistosome cercariae emerge from their snail hosts following a

predictable circadian pattern [25–27], one that is genetically

controlled [28]. Schistosoma mansoni cercariae are diurnal and are

typically released during daylight hours, but populations vary

concerning their exact time of emergence ([17] and references

therein). Previous studies have shown that S. rodhaini is nocturnal

and emerges after dark between 18:00–22:00 hours [27,29]. These

emergence times correspond to times when their putative hosts are

present in the water and available for infection, humans during the

day and rodents at night. However, schistosome cercariae remain

active and infective in the water column for up to 9 hours in an

experimental setting [30]. This longevity creates the potential for

overlap in actual transmission times, even if the cercariae emerge

at different times.

Using schistosome specimens derived from field collections of

snails over a two year period in the Lake Victoria region of Kenya,

and applying molecular techniques to these specimens, we

addressed several questions concerning the epidemiology of S.

mansoni and S. rodhaini, and investigated potential ecological,

spatial, and temporal isolating mechanisms: 1. Do S. mansoni and S.

rodhaini co-occur spatially and temporally and how prevalent are

they? 2. Does either species outnumber the other in terms of

number of snails infected and number of cercariae produced per

snail? 3. How common are hybrids in snails? 4. How are both

species distributed within their snail hosts in terms of abundance

(number of genotypes per snail), and how does this correspond to

the number of cercariae produced? 5. Can snails become

coinfected with both species and is there any evidence the two

species co-occur more or less often than expected by chance? 6.

Do these species overlap on a microtemporal scale, or is there

overlap in the circadian pattern of cercarial emergence for each

species? 7. How are these patterns influenced when snails are

coinfected with multiple multilocus genotypes or species?

Methods

Snail Monitoring and Infections of Mice
Snails were collected at various sites in western Kenya in the

Lake Victoria Basin (Table 1). Snails were isolated in individual

wells of tissue culture plates in aged tap water for 24–48 hours and

examined for shedding cercariae. Infected snails were given an

individual identification number and their cercariae were used to

infect mice (Swiss Albino, male and female, 6–7 weeks old), in

most cases two mice per infected snail. Infections were performed

via skin penetration of the abdomen while the mice were

anesthetized with sodium pentobarbital. Infection doses of 10 to

200 cercariae were used depending on the number released by the

snail.

Infected snails were subjected to 24 hour cercarial release

profiles every 4–7 days after collection for as long as they survived.

Profiles were created by counting the number of cercariae released

every hour for 24 hours as the snails were moved hourly between

wells of 24 well tissue culture plates, each well with 1 mL of aged

tap water. Snails were kept under natural lighting (not direct

sunlight) in Kenya in a laboratory with east facing windows.

Additional replicates were performed in a laboratory with west

facing windows and the peak emergence times did not change.

Cercariae were either counted directly using a stereomicroscope if

few were released, or a subsample was counted by mixing the well

with a pipette, removing a subsample of 200 mL, and counting

them on a gridded plate after staining with iodine. The final count

was then multiplied by 5 to estimate the number in 1 mL. To

Author Summary

One of the world’s most prevalent neglected diseases is
schistosomiasis, which infects approximately 200 million
people worldwide. Schistosoma mansoni is transmitted to
humans by skin penetration by free-living larvae that
develop in freshwater snails. The origin of this species is
East Africa, where it coexists with its sister species, S.
rodhaini. Interactions between these species potentially
influence their epidemiology, ecology, and evolutionary
biology, because they infect the same species of hosts and
can hybridize. Over two years, we examined their
distribution in Kenya to determine their degree of overlap
geographically, within snail hosts, and in the water column
as infective stages. Both species were spatially and
temporally patchy, although S. mansoni was eight times
more common than S. rodhaini. Both species overlap in the
time of day they were present in the water column, which
increases the potential for the species to coinfect the same
host and interbreed. Peak infective time for S. mansoni was
midday and dawn and dusk for S. rodhaini. Three snails
were coinfected, which was more common than expected
by chance. These findings indicate a lack of obvious
isolating mechanisms to prevent hybridization, raising the
intriguing question of how the two species retain separate
identities.
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determine if snails were shedding multiple genotypes or multiple

species at different time intervals, cercariae were pooled into 4

time intervals (3:00–9:00, 9:00–15:00, 15:00–21:00, and 21:00–

3:00) and used to infect 1–2 mice per time interval. Recovery of

adult worms from mice 7 weeks post-exposure was accomplished

by perfusion [31]. Gender of the worms was determined by

examining adult morphology and was generally obvious with a few

exceptions of infections with immature worms, which were scored

as unknown. Adult worms were stored in 95% ethanol at 4uC until

further use. The methodology described above has been fully

approved for the use of animals by the University of New Mexico

Institutional Animal Care and Use Committee (Protocol

#07UNM003) and Board of Animal Care and Use of the Kenya

Medical Institute.

Molecular Methods
Adult worms recovered from the mice were subsampled so that

at least 16 individuals from every snail during each time interval

were assayed if available. Snails did not shed during all time

intervals and not all infections yielded at least 16 worms. The

HotSHOT [32] method was used to prepare genomic DNA of the

worms for PCR. To determine the number of genotypes of

cercariae that were released from a snail, 7 previously published

microsatellite loci [33,34] were amplified in 1 multiplexed PCR

reaction, the P17 panel, as described by Steinauer et al [35]. PCR

products were genotyped using an ABI3100 automated sequencer

(Applied Biosystems) and scored with GeneMapperH v. 4.0

(Applied Biosystems) software. All genotype calls were verified

manually. Individuals with the same genotypes at all 7 loci that

emerged from the same snail were considered to be clones

descended from a single miracidium and are referred to as a

multilocus genotype, although the probability that identical

individuals arose from sexual reproduction was also calculated

with GENCLONE 1.1 [36]. Part of the 16S and 12S genes (16S-

12S) of the mitochondrial DNA from each multilocus genotype

was amplified and sequenced using the method of Morgan et al.

[23]. Sequences were submitted to GenBank Data Libraries

(Accession numbers EU513397-EU513598)

Both the 16S-12S data and microsatellite data were used for

species identification. Reference individuals from laboratory

reared specimens and also field collected specimens of S. mansoni

from Kenya, Egypt, and Brazil were used to establish species level

differences with the markers. The 16S-12S data was aligned along

with reference sequences from GenBank (S. mansoni: AY446260

and AY446261 (Madagascar); AY446262 and AY446263 (Kenya);

AY446259 (Ghana), AF531310 (Tanzania); and S. rodhaini:

AF531309, AY446265, and AY446264 (Kenya). The total dataset

included the following number of specimens for each species: S.

mansoni, 190; S. rodhaini, 24; S. haematobium, 1; S. bovis, 2. Sequences

were aligned with ClustalX [37] using a gap opening penalty of 15

and extension penalty of 0.2. Identical sequences were identified

using Sequencher 4.6 (Genecodes) and redundant sequences were

removed from the alignment. Phylogenetic analyses using the

minimum evolution optimality criterion was performed on the

data using the model of evolution selected by the likelihood ratio

test implemented in MODELTEST 3.0 [38]. Tree searches were

done heuristically using PAUP* 4.0b10 [39] with tree bisection

reconnection (TBR) branch swapping on initial trees that were

obtained by random stepwise addition of taxa, replicated 100

times. Node support for the node separating S. mansoni and S.

rodhaini was assessed by bootstrap analysis [40] using the faststep

option with 10,000 pseudoreplicates. Species identification was

based on clustering with reference sequences from GenBank.

Genetic divergence was calculated using MEGA version 2.1 [41].

Within clade divergences and net between clade divergences were

calculated using uncorrected p-distances, which is the proportion

of sites that differ between two taxa. For the microsatellite data, a

population assignment test was performed with GenAlEx [42]

using the ‘‘leave one out method’’ to assess whether the

microsatellite markers agreed with the 16S-12S data and could

differentiate the species using the 7 microsatellite loci. The loci

were also compared by eye to determine which were able to

differentiate the species.

Data Analysis
Prevalence, or percentage of infected snails, of schistosomes and

of each schistosome species was calculated for each collection and

also pooled across collections by site (Table 2). A proportion of

infections (33%) could not be identified to species because the

snails never released enough cercariae to infect mice, the mice did

not become infected by the cercariae, or the mice died before

worms could be recovered. Therefore, estimated prevalence values

were also calculated by apportioning the total prevalence value to

each species based on their proportion in the known specimens at

each site. Both raw prevalence and estimated prevalence values

are given in Table 2. To test if prevalence (raw values) and mean

intensity (number of genotypes per snail) of infection was positively

correlated as noted in previous studies [43], a Pearson’s correlation

was calculated on the log transformed values using the same

software. Also, an analysis of covariance (ANCOVA) that

examined the difference in the total number of cercariae released

between species and its relationship to snail size was performed.

Table 1. Collection sites for snails of the genus Biomphalaria
and their schistosome parasites in Western Kenya.

Site Name Habitat Type South East Infection

Nawa Lake Channel 20.1019444 34.7133333 Present

Asembo Bay Lake Shore 20.1885080 34.3875340 Present

Car Wash Lake Shore 20.0958667 34.7485944 Present

Fisheries Station Lake Shore 20.0892150 34.7393400 Absent

Hippo Point Lake Shore 20.1250020 34.7418030 Absent

Homa Bay Lake Shore 20.5226060 34.4545590 Present

Kagwel Lake Shore 20.1911111 34.5033333 Present

Kaugenge Lake Shore 20.4638889 34.2783333 Absent

Kisuwi Beach Lake Shore 20.4397222 34.2336111 Absent

Lambwe Beach Lake Shore 20.4363100 34.2502420 Absent

Lela Beach Lake Shore 20.5147222 34.4744444 Absent

Mbita Beach Lake Shore 20.4213889 34.2075000 Absent

Powerhouse Lake Shore 20.0922833 34.7525694 Present

Sandharvester Site Lake Shore 20.1013889 34.7147222 Present

Seka Kagwa Lake Shore 20.3555556 34.6827778 Present

Tilapia Beach Lake Shore 20.0933333 34.7608333 Present

Usare Beach Lake Shore 20.1057120 34.6742900 Present

Nyabera Marsh 20.1097139 34.7746111 Present

Asao Stream 20.3325600 34.9991440 Present

Kasabong Stream 20.1519060 34.4455280 Present

Lwanda Stream 20.4769444 34.2888889 Present

Sigalagala Stream 20.1284500 34.7476410 Absent

Global Positioning System coordinates are projected in North American Datum
1983 decimal degrees.
doi:10.1371/journal.pntd.0000222.t001
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Only snails infected with a single genotype and that shed more

than 90 cercariae were used in this analysis. The model included

species as a categorical variable and snail size as a covariable as

well as the interaction between the terms.

To determine if coinfections in snails were random occurrences

or if they were the product of a structured community, the

observed parasite communities were compared to a null models of

communities based on the observed values of the species’

prevalence as described by Lafferty et al. [44]. Expected numbers

of coinfected snails were calculated as the product of the number

of snails collected and the prevalence (as a proportion) of each

parasite species present in the population at the site of interest,

during the time of interest (not pooled spatially or temporally). The

expected number was compared to the observed number using x2

goodness of fit tests.

Two-tailed Fisher’s Exact tests were used to detect if the

proportion of each genotype of cercariae shed from multiply

infected snails varied among replicates over time using VassarStats

(www.faculty.vassar.edu/lowry/VassarStats.html). Only one snail

yielded enough data to examine the three way relationship among

genotype, replicate, and time of day (most snails yielded adults

mostly from a single time period, 9:00–15:00). This snail was

coinfected with both schistosome species, 3 genotypes of S. rodhaini

and 1 genotype of S. mansoni. These data were analyzed with a 3-

way contingency table with a log-linear analysis for goodness of fit

using VassarStats, and the standardized deviates were examined to

determine which categories contributed the most to observed

significant values.

Results

Species Identification
Alignment and removal of redundant sequences yielded 512 bp

for 64 taxa: 61 S. mansoni and one each of S. rodhaini, S. bovis, and S.

haematobium. The evolutionary model selected by the likelihood

ratio test implemented by MODELTEST 3.0 [38] was the

unequal-frequency Kimura 3-parameter model. Phylogenetic

analysis yielded 9 trees that did not differ in their groupings of

specimens between species (Fig. 1). Within S. mansoni 1.5%

sequence divergence was detected; however, no variation was

detected in S. rodhaini (24 specimens) or S. bovis (2 specimens). The

net between groups genetic distance between S. mansoni and S.

rodhaini was 9.3%, which was greater than the distance between S.

haematobium and S. bovis (7.6%). A population assignment test using

the microsatellite markers yielded 100% assignment of the

individuals of S. mansoni and S. rodhaini to their species based on

the 16S-12S data (Fig. 2). Two loci were completely non-

overlapping between S. mansoni and S. rodhaini (SMD28 and

SMD89 from [34]), and one locus (SMD43 from [33]) did not

amplify in S. rodhaini. There was no evidence of hybrids based on

the mtDNA and microsatellite markers which were concordant in

their identification of each individual. Also, no individuals were

found to have microsatellite signatures that were indicative of

hybrids either in the nonoverlapping loci or the other loci as

shown by the population assignment test, which placed the species

in relatively tight groups (Fig. 2).

Snail Collections and Parasite Distribution
A total of 22,641 snails were collected in the Lake Victoria basin

over a 2 year period. Of these snails, 236 (157 B. sudanica and 79 B.

pfeifferi) were infected with schistosomes, a prevalence of 1.04%.

Not all schistosome infections were identified, but of the 167 that

were, 90% were S. mansoni and 8.1% were S. rodhaini, and 1.9%

were mixed species infections. Most infections of S. rodhaini

occurred in B. sudanica and only one individual of B. pfeifferi was

infected with this species, which was a coinfection with S. mansoni.

The sex ratio of adults obtained from mice of S. mansoni was male

biased (2.36), while that of S. rodhaini was more equivalent (1.11).

Table 2. The number of snails infected with Schistosoma mansoni (SM), Schistosoma rodhaini (SR), unidentified mammalian
schistosomes (US), and total schistosomes (TS) at various sites in the Lake Victoria Basin of Kenya.

Site Snails Infected With Total Snails P SM P SM P* SR P SR P*

SM SR US TS

Kagwel 1 0 0 1 934 0.11 0.11 0.11 0 0

Lwanda 1 1 0 2 923 0.22 0.11 0.11 0.11 0.11

Sandharvest 12 0 5 17 2652 0.64 0.45 0.64 0 0

Nyabera 8 3 2 13 2066 0.65 0.39 0.47 0.15 0.18

Seka Kagwa 5 0 1 6 747 0.80 0.67 0.67 0 0

Homa Bay 4 0 9 13 1605 0.81 0.25 0.81 0 0

Powerhouse 3 0 2 5 544 0.92 0.55 0.92 0 0

Nawa 5 5 2 12 1166 1.03 0.43 0.52 0.43 0.52

Asao 44 1 19 63 5997 1.05 0.73 1.03 0.02 0.02

Asembo Bay 21 2 9 31 2723 1.14 0.77 1.04 0.07 0.10

Usare Beach 1 1 6 10 816 1.23 0.12 0.62 0.12 0.62

Tilapia Beach 5 0 11 16 1169 1.37 0.43 1.37 0 0

Kasabong 9 0 7 16 450 3.56 2.00 3.56 0 0

Car Wash 22 4 5 31 849 3.65 2.59 3.09 0.47 0.56

Total 141 17 78 236 22641 1.04 0.62 0.92 0.08 0.11

The total number of snails collected, prevalence of schistosome infection (P), and prevalence of confirmed S. mansoni (SM P) and S. rodhaini (SR P) infections are given
for each site. Prevalence for each species was also adjusted as denoted by an asterisk to accommodate unidentified schistosomes by multiplying the prevalence of
schistosomes by the percentage of identified schistosomes for each species.
doi:10.1371/journal.pntd.0000222.t002
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Prevalence of schistosome infection varied spatially and ranged

from 0.11–3.65% among positive collection sites (Table 2).

Prevalence was the highest for both S. mansoni and S. rodhaini at

the Car Wash site, which is an area along the shore of Lake

Victoria in the city of Kisumu, Kenya, where a population of car

washers earns their living by washing vehicles in the lake and is

known to be infected with schistosomes [45]. Schistosoma mansoni

was more prevalent and widespread than S. rodhaini which was

only present at 7 of the 14 collection sites where S. mansoni

occurred, and there were no sites where only S. rodhaini occurred.

Total prevalence (added over time) of S. rodhaini was not greater

than S. mansoni at any one site, but was more prevalent in 7 of the

169 individual collections at Nawa, Nyabera, Usare Beach, and

Lwanda. Seasonal patterns of prevalence were not evident, but

prevalence for both species was low between November 2004 and

March 2005, and increased between September 2005 and March

2006 (Fig. 3).

Parasite Communities Within Snails
Examination of the number of genotypes per schistosome

species per infected snail included a dataset that consisted only of

snails that yielded 8 or more adult worms for DNA analysis and

totaled 138 snails. The total number of adults genotyped was

4,777, with a mean of 34.1 per snail (2.5 standard error), range of

8–217, and median of 24 adults per snail. Many snails were

sampled over multiple days or shedding intervals that were 4–

7 days apart. Snails were sampled over a mean of 2.3 (0.18

standard error) replicates, and ranged between 1 and 6 replicates.

For S. mansoni, the 7 loci were adequate to determine that identical

individuals were derived from clones and not separate sexual

reproduction events. The Psex values (probability that the same

multilocus genotype was produced from independent sexual

reproduction events) ranged from 1.2610227 to 0.000735 for this

species. For S. rodhaini, individuals were less diverse and Psex values

ranged from 1.261028 to 0.1442; however, this method does not

take into account the probability that two individuals that are

identical due to sexual reproduction infect the same individual

snail host, which is 8.861025 for S. rodhaini. Therefore, it is highly

unlikely that we are missing genotypes of either species due to

identical individuals in the same snail hosts.

Of the snails that yielded at least 8 adults (128 for S. mansoni and

12 for S. rodhaini, with 2 of these snails coinfected with both

species), most harbored only one genotype, but multiple infections

of up to 4 genotypes were found (Table 3). A total of 152

genotypes of S. mansoni were found in 128 infected snails and 14

genotypes of S. rodhaini were found in 12 infected snails. There was

a significant positive correlation between prevalence and mean

intensity (number of genotypes per snail) r2 = 0.264, p,0.05.

Three snails harbored genotypes of both S. rodhaini and S.

mansoni, and were found at different sites during the last week of

October of 2005 or 2006: Asembo Bay, Nyabera, and Asao.

Statistical comparison with null communities indicated that the

schistosome communities were structured and coinfections were

more common than expected by chance at all three collecting sites,

Nyabera (x2 = 49.3, P,,,0.0001), Asao (x2 = 140.1,

P,,,0.0001), and Asembo Bay (x2 = 305.4, P,,,0.0001).

According to the calculated expected values, one would have to

collect 15,692, 40,571, and 94,769 snails at each site, respectively,

to find one coinfected snail.

Cercarial Emergence
Circadian cercarial emergence profiles were generated based on

226 replicates from 100 snails infected with S. mansoni and 27

replicates from 8 snails infected with S. rodhaini (identified based on

mtDNA sequences and microsatellite genotypes). Peak cercarial

emergence of S. mansoni occurs between 8:00–13:00 and

emergence of S. rodhaini was bimodal with a peak occurring

Figure 2. Population assignment graph of S. mansoni and S.
rodhaini based on 7 microsatellite markers. The dot plot indicates
the log-likelihood (absolute value) that each individual belongs to
either species. The lower the log likelihood value, the more likely the
individual belongs to that species.
doi:10.1371/journal.pntd.0000222.g002

Figure 1. Minimum evolution tree of several specimens of
Schistosoma mansoni and S. rodhaini based on 512 bp of
mitochondrial DNA including part of the 16S ribosomal RNA
gene, all of thetRNA-Cys gene, and part of the 12S ribosomal
RNA gene. Uncorrected p-distance is given for scale.
doi:10.1371/journal.pntd.0000222.g001
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Figure 3. Prevalence (percent of snails infected) of S. rodhaini (top) and S. mansoni (bottom) at various sites in the Lake Victoria basin
of Kenya over a 2 year period. Blank spaces indicate that either snails were not present or no collections were made.
doi:10.1371/journal.pntd.0000222.g003

Table 3. Percentage of snails infected with 1–9 genotypes of schistosome parasites from this study and previous studies (n
indicates snail sample size).

Location Prevalence n 1 2 3 4 5 6 7 8 9

Guadeloupe [7] 0.62 43 88.4 9.3 2.3 0 0 0 0 0 0

Brazil [43] 49–70 84 46.3 34.6 13.1 6 0 0 0 0 0

Brazil [6] 26 6 33.3 16.6 16.6 0 0 16.6 16.6 0 0

Brazil [6] 11.4 8 50 12.5 0 0 12.5 12.5 0 0 12.5

Mali [59] 3.3 35 74.2 22.9 2.9 0 0 0 0 0 0

Kenya SM 0.92 128 85.2 11.7 2.3 0.8 0 0 0 0 0

Kenya SR 0.11 12 91.7 0 8.3 0 0 0 0 0 0

Kenya SM refers to S. mansoni and Kenya SR to S. rodhaini from this study.
doi:10.1371/journal.pntd.0000222.t003
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between 5:00 and 8:00 and also 19:00 to 22:00 (Fig. 4). The

ANCOVA revealed a significant interaction between parasite

species and snail size, making the other effects difficult to interpret

because of the uneven slopes (species: F1,127 = 4.702 p = 0.032;

size: F1,127 = 0.401 p = 0.528, interaction: F1,127 = 5.087

p = 0.026). Using separate regressions, S. mansoni cercarial

abundance has a significant positive relationship with snail size

(F1,117 = 9.275 p = 0.003 r2 = 0.073), and S. rodhaini does not

(F1,10 = 2.003 p = 0.187), a result that could be an effect of sample

size since there were far fewer snails infected with S. rodhaini. A T-

test indicated that there was no difference in cercarial production

by species (Tdf = 19 = 1.237, p = 0.231).

Snails that were infected with multiple genotypes differed in the

ratios of each genotype released and the proportions of each

ranged from 50% of each to 95% and 5% of each. A total of 11

snails were examined for independence between the genotypes

released and replicates performed over time (typically a week

apart). Results indicated significant differences or non-indepen-

dence between genotype and replicate for 6 of the snails (Table 4).

The patterns of five of the six indicated a replacement pattern in

which an initially dominant genotype is less represented in later

replicates. The remaining snail showed variable proportions over 3

replicates; however, one genotype was always dominant. The five

snails with nonsignificant values displayed a more constant pattern

of cercarial release in which the proportions of each genotype did

not change over time.

For the mixed species infections, limited data were obtained

from two of the three snails. For the Asao snail, only 7 worms of 2

female genotypes was recovered, 6 of which were S. mansoni and 1

was S. rodhaini. Interestingly, a single species infection of S. rodhaini

was never found at this site. For the Asembo Bay snail, cercariae

were collected twice, 28 days apart. In the first collection, 16

adults were genotyped and all were one female genotype of S.

mansoni. Unfortunately for the second collection, only 3 adults were

recovered: one was a male S. rodhaini and 2 were a male genotype

S. mansoni, but a different genotype than released previously. More

extensive data was obtained from the Nyabera snail, which shed 1

male genotype of S. mansoni and 3 genotypes of S. rodhaini, one male

and two females. Each of 4 replicates of circadian cercarial

emergence showed a peak from 8:00–10:00 hours, which

corresponds to S. mansoni emergence, and also an earlier morning

peak that corresponds to S. rodhaini emergence. Two replicates also

showed nocturnal peaks that also correspond to S. rodhaini (Fig. 5).

The number of adults obtained from infections of mice with

cercariae collected from different time pools of these circadian

profiles indicated that S. rodhaini was more common: 94% were of

this species, and 43% of these were of the male genotype. The

three-way contingency table analysis indicated that all variables,

genotype (G), replicate (R), and time of day (T) and their

interactions, were significant (G by R: G2 = 17.3, p = 0.0002; G by

T G2 = 22.44, p = 0.0002; R by T G2 = 18.84, p,0.0001; G by T

by R: G2 = 55.12, p,0.0001). The three largest standardized

deviates by more than a value of 1 included the comparison of the

S. mansoni genotype between 9:00 and 15:00 hours (3.256), a

female S. rodhaini genotype during 3:00 to 9:00 hours (2.111), and

the S. mansoni genotype between 21:00–3:00 hours (22.036). These

values indicate that the S. mansoni genotype was more common

Figure 4. Circadian emergence of Schistosoma mansoni and
Schistosoma rodhaini cercariae from naturally infected snails
from the Lake Victoria region of Kenya. The mean and standard
error are given based on 226 emergence profiles of S. mansoni and 27
for S. rodhaini. Light intensity is represented by the mean of all trials.
Time units are hourly units beginning with 0:00–1:00 hours.
doi:10.1371/journal.pntd.0000222.g004

Table 4. Results of the Fisher’s Exact tests to determine if the
proportions of genotypes of S. mansoni released from snails
are consistent over timed replicates.

Snail P Mode n R G

Sandharvester 1 0.2076 Constant 26 3 2

Car Wash 1 0.4201 Constant 36 2 2

Asembo Bay 1 0.5120 Constant 41 2 2

Nawa 1 0.5167 Constant 48 4 2

Asao 1 0.9999 Constant 25 2 3

Car Wash 2 0.0001 Replacement 19 2 2

Car Wash 3 0.0002 Replacement 22 3 2

Homa Bay 1 0.0002 Replacement 123 2 3

Asembo Bay 2 0.0074 Replacement 119 4 2

Car Wash 4 0.0492 Replacement 18 2 4

Tilapia Beach 1 0.0001 Variable, one dominant 128 3 2

P indicates the probability of significance, n indicates the number of worms
sampled, R is the number of replicates tested, and G is the number of
genotypes present in a snail. Mode indicates whether the proportions remained
constant over replicates, followed a replacement pattern, or was variable.
doi:10.1371/journal.pntd.0000222.t004

Figure 5. Four replicates of circadian emergence of cercariae
from a snail infected with 3 genotypes of S. rodhaini and 1
genotype of S. mansoni. Time units are hourly units beginning with
0:00–1:00 hours.
doi:10.1371/journal.pntd.0000222.g005
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than expected during 9:00 and 15:00, the peak emergence time for

this species (and the only time period that this species was

collected) and less common than expected during 21:00–3:00, a

time period when this species rarely emerges (Figs. 4–6). Also, one

of the female genotypes of S. rodhaini (R3) was more common than

expected during the 3:00–9:00 time period, one of the peak

emergence times of this species (Fig. 6).

Discussion

Schistosoma mansoni and S. rodhaini both have spatially and

temporally patchy distributions in snails in the Lake Victoria

region of Kenya and active infections (those producing cercariae)

are characterized by low prevalence of about 1% combined.

Although this number may be characterized as low in a relative

sense, given the prodigious number of snails supported by Lake

Victoria and its environs, this level of infection in snails is

responsible for relatively high levels of infection in humans around

the lake that can reach up to 80% in school children [46]. Most of

the snails were infected with S. mansoni, which was about 8 times

more common and more widespread than S. rodhaini. At every site

where S. rodhaini was collected, S. mansoni was also collected, but S.

mansoni was the sole species collected at 7 of the 14 sites. Also, S.

rodhaini was not collected during a large part of the entire sampling

period, while S. mansoni was present at some sites during all

collection periods. The difference in the abundance and

distribution of the species likely is due to differential definitive

host use. Schistosoma mansoni primarily infects humans, which

generally have larger, less subdivided, and more widespread

populations than do rodents, the putative definitive hosts for S.

rodhaini. Also, humans, and therefore their worms, are much longer

lived than rodents and their worms, and serve as a more stable

reservoir that continuously passes eggs and maintains the

population. This difference is also reflected in the patterns of

genetic diversity in that S. rodhaini showed little variation relative to

S. mansoni, even when sample sizes are taken into account,

reflecting a small population size for S. rodhaini that potentially has

been bottlenecked in the past. Although S. mansoni outnumbered S.

rodhaini in terms of numbers of infected snails, there was no

difference in the number of cercariae produced by either species

per infected snail and this number was not influenced by snail size.

Temporal patterns of prevalence were not obvious in the data,

but prevalence varied spatially from 0.11–3.65% at positive sites,

with the highest levels of infection occurring at Car Wash site.

Although snails are in relative low abundance here due to the less

than optimal habitat due to the clearing of vegetation for washing

cars, human activity and fecal material are abundant so that the

snails that are there are likely to be infected, including with

multiple genotypes: 8 of the 21 snails with multiple infections were

collected at this site. We also collected at two additional sites that

were approximately 210 m and 585 m along the shore from the

Car Wash site, Tilapia Beach and Powerhouse. Infection

prevalence declined the further the sites were from the Car Wash

site, even though snails are much more common at these sites.

Both species were overdispersed in their snail hosts, a pattern

that is typical for schistosome populations in snails when

prevalence is low [43]. One of the factors that likely leads to the

observed pattern is the aggregation of miracidia in microhabitats

occupied by particular snails [47] and low probability of contact

between miracidia and snails since infection is relatively rare in this

system. The fact that mean intensity and prevalence are positively

correlated also suggests that probability of encounter plays a large

role in determining parasite distribution, or in other words, some

snails are ‘‘unlucky’’ and happen to be in the microhabitat where

feces are deposited and eggs are hatching. Excess of multiple

infections can also be explained by variability in susceptibility of

infection of individual snails. Some individuals may be more

susceptible or ‘‘worm-prone’’ and are thus likely to acquire

multiple genotypes, while other snails are resistant and acquire

none. Also, acquired susceptibility of snails could also lead to an

excess of multiple infections. In this case, a snail that acquires one

genotype becomes more susceptible to additional infections. On

the other hand, lack of multiple infections can be explained by

probability of encounter, differential compatibility between hosts

and parasites, acquired resistance, and competition [8,48–50].

One potential limitation of the methodology used in this study is

the possibility of underestimating the number of genotypes that

infect a snail. If rare genotypes occur in the sample (in which case

they would be difficult to detect by any method) or if certain

genotypes are rare due to low infectivity to mice, they may not be

detected using our methodology. However, with a minimum

sample of 16 worms, and a mean of 34.1 worms sampled per snail,

this error likely is low.

The schistosome populations are structured in a way that leads

to snail co-species infection more commonly than expected by

random infection. Interestingly, two of these snails were also

infected with multiple genotypes of one of the species so that the

three snails harbored 2, 3, or 4 total genotypes. This result could

be explained by the unlucky snail hypothesis mentioned above

since microhabitats that are hotspots of transmission for one

species could also be a hotspot for the other species. The ‘‘Worm-

Prone’’ and the ‘‘Acquired Susceptibility’’ hypotheses mentioned

above could also explain this pattern, but would require

interspecific facilitation, a phenomenon not unknown in trema-

tode-snail interactions [48]. Experimental infections of snails with

one or both species are underway to distinguish among these

possibilities. It is also possible that coinfections of definitive hosts

play an important role in determining community structure at the

snail level because the progeny of both species would be deposited

together in the same microhabitat. Our preliminary data from

Figure 6. Total adults recovered of 3 genotypes of S. rodhaini
(R1-R3) and 1 genotype of S. mansoni (M1) that emerged from
the same snail during 4 time intervals.
doi:10.1371/journal.pntd.0000222.g006
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worm burdens of rodents in the region have revealed only one

individual that was infected with S. rodhaini, and that individual

also was infected with S. mansoni.

Circadian cercarial release cycles were strongly tied to the light/

dark cycle in that S. mansoni began to emerge as light intensity

increased with the start of the daylight period, and S. rodhaini

emerged immediately before and after the daylight period. Peak

cercarial emergence of S. mansoni occurred earlier in the 24 hour

cycle than most previously studied populations that typically

undergo peak emergence when light intensity is the greatest,

around noon or later, although this characteristic is known to vary

among populations [29,51,52]. The bimodal cercarial release

pattern of S. rodhaini has not been reported previously, and only

twilight emergence was reported from populations from Burundi

and Uganda [27,29]. A possible morning peak of emergence in a

Ugandan isolate of S. rodhaini was reported by Fripp [53]; however,

his results are unclear because the snails were not monitored over

a 24 hour period. In the present study, emergence of S. rodhaini

varied among individuals and among replicates of individuals in

the number of emergence peaks that occurred. In some cases both

peaks occurred, but in others, only one peak occurred.

Intraspecific differences in emergence time may correspond to

differential definitive host use as this characteristic is likely selected

for by the time that definitive hosts are present in the water and

available for transmission [17,54]. Therefore, we suspect that in

Kenya S. rodhaini infects a host or group of hosts that are most

active in the water just after sunset and right before sunrise.

Three snails were coinfected with both S. mansoni and S. rodhaini,

and data from the cercarial emergence profiles of one of these

snails indicate that the presence of each species does not influence

the other’s cercarial release patterns, which is consistent with

results from other studies that have examined snails infected with

both S. haematobium and S. bovis [55] or with different populations

or ‘‘strains’’ of S. mansoni [56]. However, the data from the adults

obtained from infections with mice also suggest that S. mansoni

emergence is not influenced by coinfection, but S. rodhaini

emergence may be because more adults of one genotype of this

species were obtained from mice infected with cercariae that

emerged between 9:00 and 15:00 hours than adults of S. mansoni.

This result is unexpected since this is not the typical emergence

time for S. rodhaini. Also, it is anticipated that mechanisms that

separate the temporal emergence of each species would evolve

particularly if they coinfect the same individual snail host because

cercariae released concurrently are likely to infect the same

definitive host individuals, thus potentially leading to hybridiza-

tion. An alternative explanation to the observed results is that the

actual number of adults of each species may be biased due to

infection success since S. rodhaini may be better adapted to rodents,

which are their presumed principal definitive hosts in nature.

However, even if the proportions are biased, the data still indicate

that the two species are emerging from snails concurrently.

The proportions of genotypes that emerged from snails infected

with multiple genotypes varied among circadian cercarial

emergence replicates (typically 1 week apart) for about half of

the snails examined. Replacement of one predominant genotype

by another was the most common pattern detected. It is

hypothesized that infection of these snails by the different

genotypes occurred sequentially with a large time interval between

infections so that one genotype has developed and produces

cercariae before the other has developed to the same stage.

Possible complete replacement of genotypes was only detected in

two snails, but was confounded by small sample sizes of worms and

not included in the statistical analyses. An alternative explanation

is that since cercarial production occurs in cohorts [57], the

genotypes are producing their cohorts asynchronously leading to a

pattern that appears to be replacement particularly when only 2

replicates of data are collected. However, in all 7 of the snails

where 3 or more replicates were performed, the genotype in

majority did not alternate and instead followed a pattern of

replacement. The alternative to a replacement pattern was a

constant pattern in which the proportions of genotypes did not

differ among replicates. This constant pattern may be indicative of

infections that were acquired simultaneously and are therefore at

the same stage of development within the snail. Interestingly,

within these infections the proportions of genotypes were mostly

skewed, with the most even ratio being 61:38. This skew suggests

that there are other mechanisms besides timing of infection that

affect cercarial output possibly including competition between

genotypes or variation in compatibility of snail and schistosome

genotypes that directly affects cercarial production. These

mechanisms are best addressed experimentally to determine the

roles of infection timing and competition on genotype ‘‘success’’,

and can be performed to remove the effect of infection bias that

may occur when the cercariae are introduced into mice.

Among the factors examined, this study revealed no evidence

for ecologically induced isolating mechanisms that prevent S.

mansoni and S. rodhaini from encountering one another and

hybridizing. These species overlap on a microgeographic scale

(individual sites and individual snails) and also temporally both on

a seasonal scale and a circadian scale. Even though the emergence

peaks of the cercariae do not directly overlap, the cercariae of

these two species certainly overlap to some degree since the

cercariae remain in the water column and infective for up to

9 hours, and therefore it is difficult to imagine how this would

effectively isolate the two species. Also, competition within or

among individual snail hosts does not seem to play a large role

since coinfections were more common than expected by random

infection. If anything, this observation in conjunction with the fact

that S. rodhaini was only found in habitats also occupied by S.

mansoni, suggests a pattern of co-occurrence as opposed to

isolation. The number of cercariae produced per individual snail

did not differ between the species; however, if both species share

the same host pools, and if there are no strong mating barriers, it is

surprising that S. mansoni has not driven S. rodhaini to extinction

through hybridization since snails infected with the former species

are eight times more common. However, it is possible that our

sampling area represents the edge of the range of S. rodhaini and

sampling throughout the Rift Valley may reveal larger, more

stable populations that disperse to less ideal habitats through

movement of snail or mammal hosts. However, the lack of genetic

diversity suggests that migration from larger populations is not

occurring on a regular basis.

It is unknown how long S. mansoni and S. rodhaini have been in

contact in Kenya and if their original divergence was due to

sympatric or allopatric speciation. If the latter has occurred and we

are witnessing relatively recent secondary contact, then this

situation seemingly parallels one occurring in Cameroon in which

S. intercalatum is thought to be endangered due to its interactions

with S. haematobium and S. mansoni [58]. Decline of S. intercalatum has

occurred in recent years (1968-present) and is directly correlated

with the introduction of S. haematobium in the region [58].

However, the molecular data suggest S. mansoni and S. rodhaini

diverged approximately 2.8 million years ago [3], and it seems

likely that they have coexisted in the Lake Victoria basin for a long

time. The most likely isolating mechanism separating the two

species is the difficulty of S. rodhaini in infecting non-human

primates [15] and presumably humans as well, and the

preponderance of S. mansoni infections in humans. We have
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collected both species in the same rodent hosts (unpublished

observations) but the relative frequency with which such

coinfections occur may be insufficient to break down the genetic

differences between the two species, or mate recognition systems

may hinder interspecific reproduction when they do encounter

each other in a host. What is still lacking is a full understanding of

the definitive hosts used by S. rodhaini to propagate itself, whether

these hosts are routinely colonized by S. mansoni, and whether the

species will hybridize if they encounter each other in the same

host. Future monitoring of schistosome populations in Western

Kenya and further studies on introgressive hybridization will give

further insight on the interactions between these species.

Acknowledgments

We thank John Adero, Sara V. Brant, Ben Hanelt, Elizabeth Hatton,

Boniface Mualuko, Ester Mungai, and James Wangunyu for their

assistance in the field and acknowledge technical support from the

University of New Mexico’s Molecular Biology Facility.

Author Contributions

Conceived and designed the experiments: MS GM EL. Performed the

experiments: MS IM GM JK MM EA BM GM EL. Analyzed the data:

MS IM GM JK MM EA BM GM EL. Contributed reagents/materials/

analysis tools: MS GM EL. Wrote the paper: MS EL.

References

1. Chitsulo L, Engels D, Montressor A, Savioli L (2000) The global status of

schistosomiasis and its control. Acta Tropica 77: 41–51.

2. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis.

Lancet 368: 1106–1118.

3. Morgan JAT, Dejong RJ, Adeoye GO, Ansa EDO, Barbosa CS, et al. (2005)

Origin and diversification of the human parasite Schistosoma mansoni. Molecular

Ecology 14: 3889–3902.

4. Magnussen P (2003) Treatment and re-treatment strategies for schistosomiasis

control in different epidemiological settings: a review of 10 years’ experiences.

Acta Tropica 86: 243–254.

5. Lie KJ, Jeong KH, Heyneman D (1983) Acquired resistance in snails: Induction

of resistance to Schistosoma mansoni in Biomphalaria glabrata. International Journal

for Parasitology 13: 301–304.

6. Minchella DJ, Sollenberger KM, de Souza CP (1995) Distribution of

schistosome genetic divesity within molluscan intermediate hosts. Parasitology

111: 217–220.

7. Sire C, Durand P, Pointier JP, Theron A (1999) Genetic diversity and

recruitment pattern of Schistosoma mansoni in a Biomphalaria glabrata snail

population: A field study using random-amplified polymorphic DNA markers.

Journal of Parasitology 85: 436–441.

8. Sire C, Rognon A, Theron A (1998) Failure of Schistosoma mansoni to reinfect

Biomphalaria glabrata snails: acquired humoral resistance or intra-specific larval

antagonism? Parasitology 117: 117–122.

9. Berrie AD, Goodman JD (1962) The occurrence of Schistosoma rodhaini Brumpt in

Uganda. Annals of Tropical Medicine & Parasitology 56: 297–301.

10. D’Haenens G, Santele A (1955) Sur un cas humain de Schistosoma rodhaini trouve

aux environs d’Elisabethville. Ann Scoc belge Med trop 35: 497.

11. Fripp PJ (1967) New foci of Schistosoma rodhaini Brumpt in Uganda. Transactions

of the Royal Society of Tropical Medicine and Hygiene 61: 613–614.

12. Huygelen C (1957) Le traitment d’un cas de bilharziose canine à Schistosoma
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