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Abstract

Background

Rabies is an acute and progressive viral zoonotic disease of the nervous system,
which widely affects domestic animals in Latin America. Vampire bat-borne rabies
virus (RABV) has significant negative impacts on the livestock industry via animal
mortality. Nevertheless, the landscape level factors that facilitate or limit RABV trans-
mission from vampire bats to livestock remain elusive.

Methods

To determine how abiotic and biotic factors modulate RABV spillover from vampire
bats to livestock, we assessed the role of different landscape variables on the occur-
rence of RABV spillover from Desmodus rotundus to livestock in Colombia. Using
ecological niche modeling as the theoretical and analytical framework, we analyzed
ecological and epidemiological RABV data to reconstruct spillover transmission
events.

Results

Anthropogenic variables including livestock and human density were consistently
selected as predictors of RABV spillover from vampire bats to livestock. Cattle
density had the highest average relative contribution to final ecological niche mod-
els (64.7%). We also found improvement of RABV spillover risk estimates when
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sampling bias in the form of cattle density was used in the modeling process. High
risk for RABV spillover (0.75-0.98) was consistently predicted in the Caribbean region
of Colombia. Nevertheless, more widespread moderate RABV spillover risk was pre-
dicted more broadly across the country when sampling bias was accounted for.

Conclusion

Our modelling effort revealed that variable selection and use of bias surface have
tractable impacts on final projections of spillover risk. Our results also indicate that
human activity drives RABV spillover risk to a greater extent than ecological or
climatological factors. Results from this study provide important information about
landscape conditions linked to RABV transmission risk, where livestock vaccination
should be prioritized.

Author summary

The common vampire bat (Desmodus rotundus) regularly transmits rabies virus
(RABV) to livestock in Latin America. Vampire-bat borne RABV causes econom-
ic losses in the livestock industry and is a threat to public health. The factors
contributing to RABV spillover from vampire bats to livestock are still poorly
understood, blocking progress for disease prevention. Identifying the drivers of
RABYV spillover could help inform prevention and control plans. To determine the
factors that modulate RABV spillover, we assessed the role of different predictor
variables on RABYV livestock outbreaks in Colombia. We found that anthropogen-
ic variables explained the distribution of RABV spillover more than environmental
variables. Human activity expressed as habitat destruction may be driving the
distribution of RABV in livestock.

Introduction

Rabies is an acute and progressive disease of the central nervous system caused
by the rabies virus (RABV) (Rhabdoviridae, genus Lyssavirus). Rabies is one of
the oldest recorded infectious diseases to affect humans in history [1]. Despite over
a century of eradication efforts and effective pre- and post-exposure vaccination,
rabies has been classified as a neglected disease in several countries [2—4]. When
untreated, the fatality rate of rabies is almost 100% [1,5]. There are still ~60,000
recorded human deaths due to rabies annually, mainly in Asia and Africa in areas
where vaccination is limited [1,5]. In the Americas, where sanguivorous (i.e., blood
feeding) bats are a key rabies reservoir [1,5,6], rabies has precipitous impacts to

non-human mammals such as livestock [6—8]. In Latin America, the common vampire
bat (Desmodus rotundus) [9] is considered to be the main wildlife species responsible
for transmitting RABV to other species, including domesticated mammals [6,10—12].
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Vampire bat-borne RABV outbreaks in humans and livestock regularly occur in tropical and subtropical regions of
Latin America were D. rotundus and livestock co-occur [13], with clinical cases in humans normally following outbreaks in
livestock [6]. Thousands of cattle are lost to RABV in Latin America annually, with an average of 450 outbreaks per year
across the last 50 years being reported [4,14,15]. The average number of deaths per outbreak is six, but this number has
been shown to vary drastically across different regions [15]. Rabies disease has been reported to cause at least US$8.6
billion in economic losses in impacted areas due to lost income and productivity worldwide [16]. Furthermore, recent years
have even seen an increase in RABV livestock cases in Latin American countries [6,12,15,17], in concurrence with a
range expansion of D. rotundus into novel areas in northern Mexico [18-20]. As such, there is a pressing need to under-
stand factors at the local level that explain RABV spillover from vampire bats to livestock.

It has been hypothesized that abiotic factors, such as temperature, may limit the distribution of D. rotundus, and thus
shape the geographic distribution of associated RABV spillover [21-24]. Alternately, biotic factors such as changes in
vegetation primary productivity or increases in prey density may have increased the incidence of RABV spillover instead
[24—26]. Nevertheless, a combination of both abiotic and biotic factors at the landscape level, such as geomorphology and
landscape type, have also been shown to shape D. rotundus roosting and feeding behavior [27,28]. The fact that many
abiotic and biotic factors have been shown to impact both D. rotundus and RABV spillover is indicative of the intercon-
nected and complex nature of the factors that drive the distribution of this disease system. Due to RABV’s prolific nature,
many previous modeling efforts have been conducted to reconstruct the distribution of both D. rotundus and RABV spill-
over [21-23,29,30]. Nevertheless, many previous studies have been biased toward small study areas [28] or have used
few variables or only abiotic (climate) variables to assess potential distributional drivers [20,22,24]. As such, there is still
a need for a comprehensive, country-level analysis of factors that shape vampire bat-borne RABV spillover to livestock at
the landscape level [31].

To address this need, we conducted an ecological study to reconstruct the distribution of RABV spillover locations in
Colombia using a wide variety of both abiotic and biotic environmental variables. We then assessed the relative impor-
tance of different variable types, as well as the epidemiological implications of the potential drivers as they pertain to
RABY spillover risk distribution in Colombia. We hypothesized that a combination of environmental variables created
using climatological, landscape and anthropological data would best predict RABV spillover risk distribution, owing to the
intersectional nature of both host ecology for D. rotundus and the drivers for the distribution of susceptible livestock in
the region. Colombia is a diverse country located at the apex of South America which houses a wide variety of ecosys-
tems and biodiversity [32]. Colombia is also home to an expansive agricultural industry [33,34]. Recent reports from the
Instituto Colombiano Agropecuario (ICA) have identified 638,941 farms across the country with over 29 million cattle [34].
While rabies pre- and post-exposure vaccination is available for both humans and animals in Colombia, RABV spillover
incidence in livestock still persists, with 25 outbreaks being reported in 2023, mainly in cattle [35-37]. We therefore chose
Colombia as the study area due to its expansive livestock industry and robust surveillance system for RABV in livestock.

Methods

Geographic locations of RABV spillover to livestock data were provided by ICA [34] via the Epidemiological Information
and Surveillance System in Colombia from 2014 to 2019 [37]. This organization performs surveillance for RABV livestock
across Colombia via reports of suspected cases from local-level stakeholders, including farmers, independent organiza-
tions, and veterinary professionals. Suspected cases are submitted to one of the 172 local reporting offices in Colombia
[29,38], and are confirmed via a laboratory direct fluorescent antibody tests [39]. RABV spillover data provided by this sur-
veillance system included locations of farms with confirmed rabies deaths in livestock (e.g., cattle, pigs, goats, or horses),
the year of outbreak, and annual number of outbreaks. For these data, an ‘outbreak’ was defined as a unique location
where at least one livestock individual was confirmed to have died from RABV per year. We used the locations of farms
with confirmed spillover from this dataset (n=896) as occurrence data for our modeling effort. To account for temporal
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differences (i.e., lack of temporal overlap) between the collection of the environmental data and the RABV spillover
locations, these occurrence points were pooled across the entire collection period (2014—2019), prior to geographic and
environmental filtering.

To mitigate potential spatial sampling bias, we resampled the locations of RABV spillover occurrences to one per pixel
of the study extent (11.72° N, 3.80° S, 77.37° W, 67.67° S) [40]. To mitigate overrepresentation of certain environments we
also filtered our occurrence points environmentally (i.e., in environmental space) [41]. This allowed us to identify envi-
ronmental outliers, or occurrence points that occurred in locations that are not usual for this system and could therefor
bias our predictions. For environmental filtering we used data from all uncorrelated predictor variables to build a multidi-
mensional environmental background where models were calibrated and where outliers could be identified [41]. Values
of each predictor variable were first extracted for RABV spillover locations to create a cloud of data points representing
the entire distribution of RABV spillover events in environmental space [41]. We then developed a principal component
analysis (PCA) of the predictor variables to minimize dimensionality of the data, and to conceptualize a three-dimensional
threshold through which outliers could be identified. The PCA allowed us to obtain three principal component axes which
summarized 53.2% of the variance of the data. Within the three-dimensional environmental space created by PCA axes,
we used an ellipsoid calculated using Mahalanobis distance and a precision factor of one to identify environmental outliers
(i.e., those points which fell outside of the ellipsoid) from the cloud of extracted values. These points were removed from
consideration during model calibration. The remaining 541 filtered occurrences were randomly split into 70% training 30%
testing subsets from the thinned dataset for each model calibration and evaluation experiment.

We then compared different predictor variables to identify the combinations which provided the best model perfor-
mance. Predictor variables were both grouped and ungrouped based on their characteristics (i.e., climate, landscape,
or anthropogenic) (Table 1). We selected a wide array of predictor variables important to both reservoir host ecology,
as well as variables suspected to be related to RABV spillover [27,36,42—44]. These included anthropogenic variables
such as human population density, nighttime light, human poverty index data, and agricultural influences in the form of
cattle, chicken, goat, buffalo, horse, duck, and pig density, combined-livestock density, and changes to livestock density
across the last 50 years [45]. We also assessed 19 different climate variables derived from remotely sensed temperature
and precipitation data [46], and an array of landscape factors including reservoir host (i.e., D. rotundus) density, vegeta-
tion phenology (i.e., Enhanced Vegetation Index (EVI)), continuous land cover data (Top of Atmosphere (TOA) spectral
variance MERIS data), and elevation [47,48]. Anthropogenic variables were collected from the NASA Socieconomic Data
and Applications Center (SEDAC) [49,50], and the Gridded Livestock of the World Database [45]. Climatic variables were
collected from the WorldClim bioclimatic database [46]. Landscape variables were collected from the WorldGrids Archived
database [47]. Historic D. rotundus density was calculated using a kernel density analysis of D. rotundus occurrence
records from Colombia in ArcGIS Pro software (Version 2.5) [51]. Historical D. rotundus records data were first collected
from the Desmodus rotundus Occurrence Record Database [52], and then filtered to include only those occurrence points
which fell within continental Colombia based on their associated locational metadata. Points that fell within Colombia were
then used as input points to create a continuous raster of historic D. rotundus distribution via the kernel density geopro-
cessing tool [53], which we then used as a proxy map of historic D. rotundus density.

All predictor variables were collected or resampled to 1 km resolution with the World Geodetic System 1984 (WGS84)
reference system and cropped to a rectangular study area that encompassed continental Colombia (11.72° N, 3.80° S,
77.37°W, 67.67° S) in R (Version 4.1.0). Pixels within the study area that fell within the Pacific Ocean or Caribbean Sea
were classified as “no data”, and therefore were removed from consideration during the model calibration process. Predic-
tor variables from each characteristic group (i.e., climate, landscape, and anthropogenic) were compared using a Pearson
Correlation coefficient analysis to identify variables which were correlated [41,54]. Variables with a correlation coeffi-
cient greater than 0.5 were classified as highly correlated, as the closer the correlation coefficient gets to 1, the greater
the linear relationship between the two variables is [41,54,55]. Inclusion of colinear variables has been shown to hinder
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transferability in MaxEnt models [55], so highly correlated variables were eliminated from predictor variable sets based

on their importance to the vampire bat-livestock RABV system [44—46]. Variable selection was based on the assump-

tion that eliminating correlated predictor variables would reduce overfitting in predictions and mitigate collinearity effects
[56]. Variables that were removed from consideration included nighttime light, goat, buffalo, horse, duck, and pig density,
combined-livestock density, changes to livestock density across the last 50 years, and 15 of the 19 climate variables. We
then compared all remaining predictor variables regardless of characteristic, and removed correlated variables from the
“All Uncorrelated Variables” experimental group (Table 1). We created suites of all possible combinations of each predictor
variable set (Table 1), by removing and replacing each variable (i.e., jackknifing) and then removing redundant combina-
tions. The best combination of variables for each predictor experiment was selected during the calibration and evaluation

process.

Model calibration, evaluation, and projection was done using MaxEnt [57] version 3.4.4 in R statistical software version
4.1.0 using the kuenm package [58]. MaxEnt is a presence-background comparison-based ecological niche modelling
algorithm frequently used in scientific literature [59-61], which does not require true absence locations. MaxEnt has built
in parameterizations (e.g., regularization multiplier and feature classes), which can be altered and evaluated to identify the
best potential combination of these parameters in terms of the resultant model’s predictive capacity [62]. The regulariza-
tion multiplier defines how precisely the output distribution is fitted, penalizing model over-fit and is set to one as a default
within the software [63]. Feature classes within MaxEnt are used as a mathematical transformation of the original pre-
dictor variables, which allows for more complex relationship to be identified [63]. To elucidate the impact of regularization

Table 1. Variable type summary. List and experiment names of each background environmental variable used in each modeling experiment.
Predictor variables were grouped based on their abiotic, biotic, and anthropogenic characteristics. Variables with Pearson Correlation coeffi-
cient greater than 0.5 were not grouped together in their respective experimental subsets, and removed from the “All Uncorrelated Variables”

group.
Predictor Variable Sets Variable Names Units Original Spatial Resolution | Sources
Abiotic Climate Variables Isothermality (Bio3) °C 30 Arc Seconds WorldClim Bioclimatic
Minimum Temperature of the | °C 30 Arc Seconds Variables of the World
Coldest Month (Bio6) mm 30 Arc Seconds Dataset [46]
Annual Precipitation (Bio12) | mm 30 Arc Seconds
Precipitation Seasonality
(Bio15)
Biotic Anthropogenic Cattle Density Individuals per km? 5 Arc Minutes Gridded Livestock of the
Variables Chicken Density Individuals per km? 5 Arc Minutes World database [45]
Human Population Density | Index value (1-100) 1 km? WorldGrids Archived
Poverty Index Database [47]
Gridded Relative
Deprivation Index [50]
Abiotic and Biotic Landscape | Elevation Meters 30 Arc Seconds WorldGrids Archived Data-
Variables Enhanced Vegetation Index | Index value (0—1) 1 km? base [47]
(EVI) Standard Deviation TOA Reflectance 30 Arc Seconds Derived from Desmodus
Continuous Land Cover Individuals per km? 1 km? rotundus Occurrence
Desmodus rotundus density Record Database [52]
All Uncorrelated Variables Minimum Temperature of the | °C 30 Arc Seconds WorldClim Bioclimatic
Coldest Month (Bio6) mm 30 Arc Seconds Variables of the World
Annual Precipitation (Bio12) | Index Value (0-1) 1 km? Dataset [46]
Enhanced Vegetation Index | TOA Reflectance 30 Arc Seconds WorldGrids Archived
(EVI) Standard Deviation Individuals per km? 1 km? Database [47]
Continuous Land Cover Index value (1-100) 1 km? Derived from Desmodus

Desmodus rotundus density
Poverty Index

rotundus Occurrence
Record Database [52]
Gridded Relative
Deprivation Index [50]

https://doi.org/10.1371/journal.pntd.0013508.t001
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multipliers and feature classes within MaxEnt on the outcome of each predictor variable experiment, we tested a suite of
regularization multipliers above and below default (i.e., 0.01, 0.1, 0.5, 1, 2, 5, and 10), and all possible combinations of the
available continuous feature classes (i.e., linear, product, quadratic, threshold, and hinge). The kuenm package allows for
systematic comparison between different predictor variables sets, regularization multipliers, and feature classes, and thus
allows for a systematic and holistic comparison between different iterations of the desired model. Furthermore, MaxEnt
also allows for the incorporation of bias surfaces, which manipulate the background sampling effort within the algorithm
via a density raster which represents relative sampling effort, thus accounting for possible sampling bias [64]. We tested
the use of cattle density [45] and road accessibility [47] surfaces as possible drivers of sampling bias, as we assumed
both of these factors potentially shape the surveillance of RABV spillover in Colombia. Parameters for each experiment
were tested in terms of model fit and prediction as follows (Table 2).

After creating all possible interactions of candidate models for each experiment, we used the function kuenm_ceval,
which evaluates model performance based on statistical significance using partial ROC (pROC), omission rate (E=0.05)
[65], and model complexity Akaike values (AICc) [58]. pPROC and omission rates were calculated based on models cre-
ated with training data only, whereas AICc values are calculated for models created with training and testing data [59].
pROC values were utilized to isolate statistically significant models, which also met the omission rate criteria (E=0.05, 500
iterations, p<0.05) [58]. These models resembling robust predictive performance were used to compare across predictor

Table 2. Final models summary. Summary of significant models (those which fit Omission Rate and AlCc criteria) and final models selected
by MaxEnt. Final models selected by MaxEnt are identified by the algorithm using pROC, omission rate, and AlCc. RM denotes regularization
multipliers of final selected models. FC denotes feature classes of final selected models.

Predictor Significant Can- N Final Models | Final Final Model Predictor Variables | Fractional Fractional Pre-
Variable Set didate Models Selected by Model(s) Predicted Area dicted Area
Experiments (p<0.05, E<0.05) | MaxEnt Parameters (minimum training | (10* percentile
presence) training presence)
All Variables, 3167 1 RM-1 All variables but Poverty Index 0.95 0.35
Ungrouped FC- Igp
Climate Only 680 1 RM-5 Isothermality (Bio3) 0.99 0.66
FC-pth Minimum Temperature of the Cold-

est Month (Bio6)

Annual Precipitation (Bio12)

Precipitation Seasonality (Bio15)
Anthropogenic | 649 2 RM-2 Cattle Density 0.98 0.47
Only FC-It,Iqgt Chicken Density

Human Population Density Poverty

Index
Landscape 632 1 RM-1 Elevation 0.98 0.62
Only FC-Ipt Enhanced Vegetation Index Stan-

dard Deviation

Continuous Land Cover
Grouped 172 2 RM-2 Cattle Density 0.98 0.47
Variables FC-lt,Iqgt Chicken Density

Human Population Density

Poverty Index
Grouped, 284 2 RM-5 Cattle Density 0.94 0.35
Corrected with FC-t,pt Chicken Density
Accessibility Human Population Density

Poverty Index
Grouped, 87 2 RM-5 Chicken Density 0.98 0.59
Corrected with FC-It, Ipt Human Population Density
Cattle Density Poverty Index

https://doi.org/10.137 1/journal.pntd.0013508.t002
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variable combinations with an analysis of variance and post hoc Fisher’s least significance difference (LSD) test. We also
recorded and reported the regularization multiplier and feature classes most frequently present in statically significant
models which met the omission rate criteria. We used kuenm_eval to select best models based on our user-set criteria
with the lowest AlCc, which were then used to project each final model from each experiment to the geographic extent of
our study area. Model parameterizations (i.e., variable combination, regularization multipliers, and features classes) with
more than one best model were averaged using the logistic continuous model outputs from MaxEnt. Logistic continuous
model outputs from MaxEnt were also used to delineate and quantify suitability or similarity of model outputs to areas of
known spillover risk (i.e., locations of known spillover used as occurrence data for model calibration) [62]. The “MaxEnt
suitability index”, which ranges from zero to one, can therefore be interpreted as suitability for RABV spillover risk or envi-
ronmental similarity to areas of known previous RABV spillover outbreaks. In other words, the higher the value of MaxEnt
suitability index, the higher the RABV spillover risk of that given area. High risk was quantified as any value above 0.75,
moderate risk was classified as any value between 0.25 and 0.50, and low risk was classified as any value below 0.25.
These thresholds were based on previous assessments of bovine rabies distribution in Colombia, and based on institu-
tional standards from ICA as they pertain to RABV spillover risk projections [36,38]. We then recorded the total area of the
study extent reported as “suitable” (fractional predicted area) of each best model using two threshold values: (i) minimum
training presences threshold and (ii) a 10" percentile training presence threshold [41] as the absolute lowest value of
suitability for RABV spillover risk.

Results

Each RABV model parameterization generated statistically significant predictions of independent localities with spillover
reports (Table 2). Models calibrated using only climate variables had the lowest errors in terms of omission rates, and
models calibrated using anthropogenic variables only had the lowest complexity in terms of AICc values (Fig 1). Models
calibrated with grouped variables and cattle density as a bias surface had higher stability in the form of the lowest amount
of variance in both omission rates and AlCc (Fig 2). AICc was significantly different in models with cattle density as a bias
surface per a post hoc LSD analysis (std=139.4, df=5664, r=87, p<0.001). Using road accessibility as a bias surface did
not improve model performance (Fig 1).

Anthropogenic variables such as livestock density, human population density, and poverty index provided the best
predictive performance (Table 2). Cattle density had the highest average relative contribution (i.e., percent contribution to
final MaxEnt model) (64.7%) when the variable was not used as bias surface. Of the remaining anthropogenic variables,
chicken density had the highest relative contribution (39.98%) to RABV spillover distribution, followed by human popu-
lation density (10.55%), and poverty index (1.27%). In contrast to poverty index and cattle density, there was a negative
association between chicken density and human population density and the continuous log suitability for RABV suitability
(Fig 3). The bulk of RABV spillover risk occurred when chicken density was less than 5000 animals per km?, and where
poverty index was greater than 70 (Fig 3).

For climate-only models, precipitation seasonality had the highest percent contribution (44.5%) followed by annual
precipitation (39.4%), minimum temperature of the coldest month (8.4%), and isothermality (7.7%). Using only landscape
variables resulted in continuous land cover data having the highest percent contribution (40.5%), followed by Enhanced
Vegetation Index (EVI) standard deviation (34.3%), and elevation (25.2%). The only variable not present in any final model
was historic D. rotundus density. For experiments with predictor variables grouped by their characteristics (i.e., climate,
landscape, or anthropogenic), anthropogenic variables were consistently selected as the best set of predictor variables
with and without sample bias correction. Climate-only models and models using cattle density as a bias surface had the
smallest difference in fractional predicted area (i.e., area predicted to be at risk) between minimum training presence and
10" percentile training presence (Table 2). The lack of change in fractional predicted area indicates that climate models
and models with cattle density bias file correction had the most consistent predictions regardless of the threshold used to
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Fig 1. Model experiment performance. Model performance in terms of omission rate and AlCc for each set of predictor variable experiments. Predictor
variables for each experiment are shown as: all variables (yellow), climate only (green), landscape only (black), anthropogenic only (orange), grouped
variables (purple), and grouped variables with bias surface correction (red and blue). Models calibrated using only climate variables had the overall
lowest omission rates (green). Models calibrated with anthropogenic variables which used cattle density as a bias file; however, had the lowest amount
of variance in both omission rates and AlCc (red). This figure was created in BioRender. Van de Vuurst, P. (2025) https://BioRender.com/0b3muw.

https://doi.org/10.1371/journal.pntd.0013508.9001

convert models from continuous into binary. Anthropogenic variables (i.e., chicken density and human population density)
consistently explained the likelihood of spillover to a greater extent than climate or landscape variables alone.

Spatial clusters of RABV transmission risk were predicted in the northern most portions of Colombia and lowland areas
to the east of the Andes Mountain range (Fig 4). These areas fall within the Caribbean, Andes, and Orinoquia regions of
Colombia, where higher numbers of RABV spillover outbreaks have been reported previously [29,66]. High RABV spill-
over risk (0.75-0.98 MaxEnt suitability index) was consistently predicted in the departments of Cordoba, Sucre, Bolivar,
Magdalena, Cesar, and Arauca (Fig 4). There was low predicted RABV spillover risk (0.25-0 MaxEnt suitability index) in
the Amazon and Pacific regions of Colombia (Fig 4). Though the patterns of projected suitability for RABV spillover were
consistent between models, the magnitude of spillover suitability risk in certain areas differed (Fig 4). The total area pre-
dicted to have moderately or moderately-high suitability (0.5-0.75 MaxEnt suitability index) was larger (30.6% of the total
area) in the model that used cattle density as a bias surface (Fig 4).

Discussion

To identify the intersectional drivers of pathogen spillover from vampire bats to livestock, we compared the role of different
predictor variables in explaining the spatial risk of RABV outbreaks in Colombia. Anthropogenic variables more accurately
explained the geographic distribution of RABV spillover than climatic and landscape variables alone. These results could
indicate that spatial epidemiology models using anthropogenic variables may be useful to refine RABV transmission risk
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Fig 2. Bias file impact on model performance. The overall reduction in model performance uncertainty between models without sampling bias
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modeling. While models without bias correction were more well preforming (i.e., low omission rate and AICc of Purple points), model performance was
more precise when bias was taken into account (red points). Sampling bias was corrected using cattle density data from Gridded Livestock of the World
database [45]. Models which accounted for sampling bias using cattle density (red) had a lower amount of variance in both omission rates (sd=0.006 vs
0.0110) and AICc (sd =139 vs 395), with the differences in AlCc being statistically significant per post hoc LSD analysis (p<0.001).

https://doi.org/10.1371/journal.pntd.0013508.g002

estimates. Climate-only models demonstrated the lowest omission rates of each experiment, suggesting overall predictive
power at the cost of losing spatial detail by predicting large areas of risk. For a zoonotic pathogen of high lethality (100%),
such as RABV, omission rates may be of more priority than commission rates, which can be interpreted as overestimation
of risk instead of underestimation of it. Using climate variables only in ecological niche modeling is a common practice,
though recent literature has highlighted the importance of including biotic variables for more accurate prediction of biodi-
versity distributions [43]. Our results indicate that the use of only abiotic variables, as is common in spatial epidemiology,
may be inaccurate to predict zoonotic spillover risk.

Cattle density was an important variable in predicting areas with RABV spillover, as cattle comprise the majority of
identified RABV cases in livestock in Colombia [34,36]. The importance of this variable echoes previous research in
Colombia, which found that number of cattle correlated with changes in RABV spillover expansion [29]. Chicken density
also proved to be an informative variable, especially when cattle density was used as a bias surface rather than as a
predictor variable. The likelihood of chicken density directly driving RABV spillover risk is however, unlikely due to its lim-
ited relationship to the epidemiology of RABV [67]. In fact, there was a negative association between suitability for RABV
spillover and chicken density (Fig 3). That is, risk of RABV spillover to livestock was greater in areas where chickens were
scarce. Chickens are not considered to be a preferred prey species for D. rotundus and are not susceptible to RABV,
but vampire bats have been known to occasionally feed on chickens [67,68]. In fact, another recent study identified that
D. rotundus blood meals were biased toward chickens when assessed in an urban environment, and bat-human attacks
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Fig 3. Anthropogenic predictor variable relationships to RABV. A) Histogram of chicken density (number of individual chickens per square kilo-
meter) at locations of RABV spillover used as training and testing data. Note the negative relationship between chicken density and RABYV spillover
locations. B) Histogram of poverty index at locations of RABV spillover used as training locations. Note the positive association between poverty index
and RABV spillover locations. C) Histogram of human population density (number of individuals per km?) at locations of RABV spillover used as training
locations. Note the negative association between human population density and RABV locations. These results indicate that RABV spillover risk is
higher when chicken density is low, poverty index is high, and human population density is low. The majority of RABV spillover occurred in locations with
fewer than 5000 chickens per km?, human density was less than 100 per km?, and where poverty index was greater than 70.

https://doi.org/10.1371/journal.pntd.0013508.g003

were aggregated in locations where chicken blood meals were identified from stomach contents [69]. It may be possible
that chickens are acting as an alternative prey source for sanguivorous bats when they are present in high densities, thus
diluting the impact of RABV spillover on cattle nearby.

Alternatively, chicken density could be functioning as a proxy of socioeconomic conditions in rural Colombia in our
results. More specifically, chicken density could fluctuate in association with other factors such landscape perturbation,
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human presence, or subsistence agriculture [44] which could be impacting RABV spillover risk in Colombia. Low chicken
density has been linked to poverty, food insecurity, and income disparity, in contrast with more developed areas with
industrial poultry farming [70,71]. Rural poverty, food insecurity, and income disparity have all previously been linked to
RABYV spillover risk as well [72]. Here, low-density (i.e., scattered chickens) could be a proxy of subsistence farming and,
in turn, poverty, which could explain why high RABV risk was found in areas with low chicken density and high poverty
(Fig 3). The relationship between high RABV spillover risk and the anthropogenic factors identified by this study in Colom-
bia likely reflects the interconnected nature of socioeconomic and environmental factors that are present in small villages,
such as those in rural settlements, more likely to experience D. rotundus depredation. Untangling the specifics within the
anthropogenic factors that may drive RABV spillover distribution such as poverty, livestock practices, and the spatiotem-
poral distribution of these factors would be a beneficial next step for this system.

We also identified differences in the magnitude of RABV spillover risk projection when sampling bias was included
in the models. We assumed that cattle industry was a driver of RABV surveillance in Colombia and thus considered the
density of cattle as a source of bias. Estimates of RABV spillover risk created using cattle density as bias surface iden-
tified larger proportional areas of risk, with lower redundancy with areas of known spillover (Fig 4). Mitigating sampling
bias in this way revealed that areas of Colombia at risk for RABV spillover were more generalized (Fig 4). As such, RABV
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spillover risk may be more widespread than previously identified. For example, lowland areas in central portions of the
country were identified as having equal RABV spillover risk to more northern areas of the country where cattle density is
higher. Another recent paper assessing RABV spillover risk found that there was no relationship between RABV preva-
lence and increased cattle density as was previously hypothesized [73], which supports our findings. Furthermore, pre-
vious research also found a negative association between livestock density and RABV seroprevalence in vampire bats
within the context of landscape change [74]. Increases in deforestation, rather than cattle density, was also identified as
a driving factor in increased bovine RABV outbreaks in Costa Rica [44], and previous RABV epidemics in Trinidad were
associated with land use patterns rather than livestock density [75]. These results, coupled with our assessment, could
indicate that generalized landscape disruption associated with anthropogenic activity is a greater predictor of RABV
spillover risk than ecological factors associated with vampire bats alone. Nevertheless, a shift in the distribution of cattle
density or associated landscape changes could influence a spatial shift in the incidence and distribution of RABV spillover
risk in Colombia, especially if surveillance remains focused on high cattle density areas. Overall, our study demonstrates
that the decision of using a variable as a predictor or as a sampling bias surface has a strong effect on the final risk esti-
mates produced. Modelers should consider the biological meaning of the data when deciding if a variable can be used as
a predictor or as a proxy of bias.

While our assessment highlights specific points that may guide a further elucidation of the intersectional factors that
shape RABV spillover risk distribution, this study did have some notable limitations. The spatial risk of RABV spillover
identified here is temporally static and does not account for bat dispersal potential or waves of disease spread [76]. A
year-to-year assessment of RABV spillover in Colombia and vampire bat behavior, in conjunction with annual level envi-
ronmental variables, may allow for a finer identification of driving factors which this study was not able to do. Furthermore,
it is possible that disparities in data quality or reporting consistency may have impacted the distribution of RABV spillover
data used as occurrence points for this assessment. Nevertheless, the spatial and environmental filtering of the spillover
locations prior to model calibration, as well as the use of multiple bias files likely mitigated this potential impact. Fine-scale
studies of D. rotundus movement are also still needed to better quantify how bat-population connectivity and dispersal
may affect RABV spillover dynamics [77]. It has been hypothesized that colony or roost level factors, such as seasonal
reproduction or dispersal, may influence RABV spillover frequency [18,78-80]. These factors were not accounted for in
this study and should be investigated in Colombia to further our understanding of this disease system. Finally, our assess-
ment relied upon surveillance of rabies-associated livestock deaths, which could have underestimated the frequency of
spillover events in Colombia. Recent research has identified that abortive RABV infectious in D. rotundus may be more
common, leading to an even more complex disease spread system than previously identified [76,81]. An exploration of
RABYV seroprevalence in D. rotundus individuals themselves, in conjuncture with mortality in livestock, may capture a
broader picture of spillover dynamics in this region. Future research should consider investigating seroprevalence of D.
rotundus individuals in Colombia across gradients of livestock density or environmental conditions, which may help refine
the patterns of spillover risk identified in this study.

In Colombia, RABV outbreaks in livestock increased dramatically between 2010 and 2019 [29,36,82,83]. The country
has also seen an increase in RABV incidence outside of previously endemic areas as well in recent years [29,82], indi-
cating that RABV may be changing in association with some of the factors we identified. Extensive vaccination efforts
are needed across endemic and non-endemic regions for effective rabies prevention in Latin America [29]. As such, our
results could guide vaccination efforts toward areas that were consistently identified as having high risk across all mod-
els, such as the Caribbean region. Other regions with more variability between projected RABV spillover risk, such as
the Pacific or Orinoquia regions, may require different management strategies. For example, rather than broad sweeping
vaccination or surveillance across the entire area, more targeted intervention may be used in locations with conditions
consistent with those identified in this study as being susceptible to RABV spillover. These would include smaller farms
with susceptible livestock, higher poverty, and potentially in close association with anthropogenic landscape perturbation.
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Conclusions

Results of this study suggest that anthropogenic factors, like livestock density, are informative to anticipate RABYV spillover risk
over environmental or climatic data. From an analytical perspective, our results highlight the importance of predictor variable
selection (e.g., combination of predictor variables and control of sampling bias) in spillover risk estimations. In a more applied
context, our modeling efforts show that human agricultural practices may ultimately drive RABV spillover risk, rather than envi-
ronmental conditions alone. Future research on RABV spillover should further explore the impacts of anthropogenic factors on
RABV transmission at the local level, such as socioeconomic conditions and human behavior. Ecological niche models created
for this study revealed a wide distribution of RABV spillover risk in Colombia. This study provides important information about
conditions linked to transmission risk and reveals hotspots of RABV risk where livestock vaccination could be prioritized.
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