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Abstractx 

Background

Climate change is anticipated to significantly impact the biogeographic distribution of 

snakes, leading to notable shifts in their habitats toward anthropogenic landscapes. 

This may potentially increase the incidence of Big Four species (Bungarus caeruleus, 

Daboia russelii, Echis carinatus, and Naja naja) envenomation, a notable human-

health risk that has not yet been assessed in India being the most affected country 

in South Asia. Therefore, this study integrates species distributions with socioeco-

nomic and healthcare data to prioritize areas for targeted interventions to mitigate the 

envenomation risks effectively in India.

Methodology/Principal findings

The present study employed ensemble species distribution models (SDMs) to 

analyze the geographical distribution of the Big Four species under current climatic 

conditions and projected these models to estimate potential species distributions up 

to 2080. Furthermore, by incorporating various future climatic scenarios, the study 

assessed the potential loss and gain of suitable habitats along with their overlap with 

cropland and built-up areas. Further, integrating SDMs with socioeconomic scenar-

ios and present health infrastructure, the study developed a risk index to estimate 

the current and upcoming vulnerable districts and states in next five decades. The 
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results indicate significant losses in potentially suitable habitats for the Big Four 

species under future climatic scenarios. However, the risk index identified several 

southern Indian states and districts, such as Karnataka (Chikkaballapura, Haveri, 

and Chitradurga etc.) and Gujarat (Devbhumi Dwarka and Jamnagar etc.), as having 

high vulnerability to snakebite. Additionally, under climate change scenarios, many 

northern and northeastern states and districts, including Assam (Nagaon, Morigaon, 

and Golaghat etc.), Manipur (Tengnoupal), and Rajasthan (Pratapgarh), have experi-

enced an increased risk of snakebite, presenting a significant public health concern in 

these regions.

Conclusion/Significance

The integrated risk index indicates that the southwestern region urgently needs 

priority attention to combat fatalities from envenomation by the Big Four species, 

while also highlighting the future needs of the northern and northeastern region to aid 

public health efforts. To mitigate these impacts, local governments and international 

communities must intensify efforts to counter climate change and protect vulnerable 

regions from Big Four envenomation.

Author summary

Snake envenomation is a critical public health issue in India, disproportionately 
affecting economically deprived populations. India records the highest number of 
snakebite fatalities worldwide, primarily due to the Big Four species. While previ-
ous research has focused on reducing snakebite-related deaths, little has been 
done to integrate species distribution with socioeconomic factors, anthropogenic 
landscape, and healthcare infrastructure to assess district-level risks in India. 
This study is the first to predict the impact of climate change on the distribution of 
the Big Four species while identifying regions most at risk. The research incor-
porates socioeconomic data and healthcare infrastructure to prioritize regions for 
medical intervention now and in the future. Addressing this emerging threat will 
require coordinated efforts from government authorities, regional health organi-
zations, and the international community to effectively manage snake envenom-
ation as a neglected tropical disease (NTD) in India.

Introduction

In recent times, human activities such as habitat destruction have significantly 
increased human-wildlife interactions and raised the risk of fatalities and disease 
transmission through vectors species [1–4]. The Neglected Tropical Diseases 
(NTDs), caused by venomous snakes from the Viperidae and Elapidae fami-
lies poses significant threat to humans and lead to more fatalities than any other 
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vertebrates [3,5]. Despite many significant strategies adopted by local and global authorities, snakebite has still not 
received adequate attention through integrated approaches, thus justifying its classification as a NTD [6]. Snakebite 
envenoming (the injection of venom into the body) is a significant public health challenge due to its high mortality and 
morbidity rates, primarily caused by acute injuries and long-term complications [7–12]. Furthermore, accurate incidence 
data for snakebites, particularly in rural tropical regions where they are most prevalent, are scarce. The reliable data are 
predominantly available from a few developed countries where snakebites are less common. Therefore, the true global 
incidence, impact, and characteristics of snakebite envenoming across different regions remain largely unknown [6]. 
This gap prompted the World Health Organization (WHO) to emphasize the urgent need for stronger and more compre-
hensive evidence on the health and socioeconomic impacts of snakebites in developing and underdeveloped countries 
through its 2021–2030 NTD Roadmap [13,14]. The WHO estimates that annually, between 4.5 and 5.4 million snakebites 
occur worldwide, resulting in 81,000–138,000 fatalities, with approximately three times that number surviving but often 
experiencing amputations and permanent disabilities [15,16]. Furthermore, many deaths and severe outcomes resulting 
from snakebite envenomation are preventable through timely access to safe and effective antivenoms [7,17]. Hence, in 
2017, the WHO included snakebite envenoming in its priority list of NTDs. In 2019, the WHO initiated a comprehensive 
strategy for the prevention and control of snakebites, targeting a 50% reduction in deaths and severe disabilities by 2030 
compared to the 2015 baseline [15]. This strategy emphasizes the establishment of a revolving stockpile of antivenoms 
for rapid deployment to high-risk areas and assisting countries in designing and implementing locally relevant plans that 
align with national health policies [18].

Specifically, snakebite-induced deaths and disabilities is very prevalent in Asia, largely due to limited healthcare 
infrastructure and a lack of effective antivenoms. This region has the highest global incidence, with over 1 million bites 
annually, leading to around 45,000–50,000 deaths and morbidity rates nearly four times higher than mortality [8,15,19]. 
However, discrepancies in epidemiological data on snakebite envenomation and deaths in Southern Asian countries 
arise from a lack of coordinated efforts and systematic analyses to accurately determine the number of snakebites in 
this region [20]. Consequently, India is particularly vulnerable, accounting for approximately half of the global snake-
bite deaths [8,15]. The direct estimation of 46,000 annual snakebite deaths in India in 2005 prompted a revision of the 
WHO’s global estimate, which had previously suggested a similar number for the entire world [21]. The 2005 estimate 
for India was based on an analysis of approximately 123,000 verbal autopsy records from 2001 to 2003, part of the 
Registrar General of India’s Million Death Study (MDS), one of the largest nationally representative mortality surveys. 
Currently, the MDS has reported cause-specific mortality patterns for over 600,000 deaths across India from 2001 to 
2014 [15,22]. Additionally, high snake densities are often found in grain-producing areas, where they are drawn by large 
prey populations of rodents and amphibians. These ecological dynamic increases snakebite incidents in fields, storage 
facilities/nearby buildings [15,23]. These incidents in the Indian scenario are primarily attributed to the Big Four species 
(Indian Common Krait Bungarus caeruleus, Indian Russell’s Viper Daboia russelii, Indian Saw-scaled Viper Echis cari-
natus, and Indian Spectacled Cobra Naja naja), which are responsible for over 90% of all envenomations in the country. 
The vulnerability assessments by previous studies indicate exposure to these snakes, which lack effective antivenom 
treatments [8,24,25]. The Big Four species are thus considered the most medically significant and dangerous snake 
species in the region, believed to cause the vast majority of snakebite fatalities. Moreover, while other venomous species 
are known to cause lethal envenoming, their bites are relatively rare and lead to a much smaller number of deaths each 
year compared to the Big Four species [26,27].

Furthermore, climate change is impacting global biodiversity by altering species geographic ranges, with region- and 
species-specific shifts resulting in expansions, contractions, or shifting ranges [14,28,29]. Such changes may increase 
human-snake interactions across rural and urban areas, presenting new challenges for public health and medical man-
agement [7,13,14,30–33]. Consequentially, to mitigate snakebite risk in affected regions, it is essential to implement strat-
egies that enhance decision-making in healthcare delivery, antivenom research, and production capabilities. Additionally, 
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these strategies should address current and anticipated hotspots of human-snake interactions, considering future 
environmental changes [33]. Therefore, addressing this challenge has seen the effective adoption of species distribution 
modeling (SDM) on a global scale to assess the dynamics of species distributions due to climate change [14,32,34,35]. 
Numerous studies have employed modeling approaches to analyze the geographical ranges of venomous snakes and 
predict how these ranges may shift in response to future climatic and geographical conditions [14,36,37]. Given the 
potential for climate change to affect the distribution of venomous snakes, researchers frequently utilize predictive mod-
eling techniques to anticipate changes in the geographical ranges of species that pose significant public health risks [14]. 
Nevertheless, most of these studies have focused on specific countries in Asia (such as Bangladesh, Nepal, Iran etc.) and 
other continents around the world [14,32,34,35,38,39].

Specifically, India is the most vulnerable country in Asia and responsible for nearly half of the global snakebite 
fatalities, lacks comprehensive research on assessing the geographic shifts of the Big Four species, which raises 
concerns among both rural and urban populations. Therefore, to address this deficiency, the current study employs 
integrated SDM approach with the following objectives: (i) to assess the present distribution of the Big Four species 
and their future dynamics under various climate change scenarios in India; (ii) to evaluate the shifts in agricultural and 
built-up areas that overlap with their suitable habitats in both present and future; and (iii) to develop a risk index for 
each district and state for each of the Big Four species in present and future scenarios. Hence, integrating the distri-
butional shifts of the Big Four species with their overlap in agricultural fields and built-up areas in both rural and urban 
settings, along with developing a risk index that includes socioeconomic factors and health infrastructure, will help 
prioritize specific areas for government snakebite-related policy interventions. This approach will provide a compre-
hensive overview of risk zones for the Big Four species in both current and future environmental conditions. There-
fore, addressing these targeted contexts can effectively reduce the mortality and morbidity associated with snake 
envenomation in India.

Materials and methods

Ethics statement

The present study relied entirely on secondary data sources from the International Union for Conservation of Nature 
(IUCN) Geospatial Conservation Assessment Tool (GeoCAT) website (https://geocat.iucnredlist.org/) and GIS-based 
analyses. No field sampling was conducted, and no animals were captured or handled at any stage of the research. As a 
result, ethical approval from an institutional ethics committee was not required.

Study area and data collection

The Big Four venomous snake species share similar IUCN ranges across the Asian continent, predominantly overlapping 
in South Asian countries such as India, Nepal, Sri Lanka, Bangladesh, and Pakistan [40–43] (S1 Fig). However, E. cari-
natus has a broader distribution extending into the Middle East, including Saudi Arabia, Iran, and Turkmenistan (S1 Fig). 
The majority of the Big Four species distribution range converges in India, making it especially vulnerable and contributes 
significant numbers of snakebite fatalities [8,15,40]. Consequently, India has been selected as the primary focus of this 
study due to the significant overlap of all four species within its mainland borders. Accordingly, occurrence records for the 
Big Four species in the study were compiled using the IUCN Geospatial Conservation Assessment Tool (GeoCAT), which 
aggregates data from two major open-access biodiversity repositories, viz., GBIF and iNaturalist along with human obser-
vations and literature sources [44]. These platforms provide extensive species occurrence data covering a wide range of 
taxa, geographic regions, and temporal scales. Their credibility is reinforced through detailed metadata, expert validation, 
community-based vetting, and alignment with curated datasets. Hence, integrating data from both sources, this approach 
yields a comprehensive and spatially robust dataset, well-suited for species distribution modeling and conservation 

https://geocat.iucnredlist.org/
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planning. The locations gathered from these sources span the temporal range from post-2005 to the present, relying 
solely on direct sightings and evidence while deliberately excluding captive records or museum specimens. The model 
ultimately included 388 location points for B. caeruleus, 592 for D. russelii, 337 for E. carinatus, and 667 points for N. naja, 
respectively (S1 Fig) [45]. Additionally, these location points were spatially rarefied within 1 km2 using the spatial rarefica-
tion function in SDM Toolbox v2.4 which is adequate for performing SDMs [46].

Selection of covariates

A comprehensive set of species-specific covariates, encompassing bioclimatic, topographic, habitat, and anthropogenic 
variables, was selected to analyze their effects on the on the habitat suitability of the big four species in the study area 
(S1 Table). These variables were selected to capture the complex drivers of species distributions, which are shaped by 
climatic conditions, topographic features, habitat characteristics, and human impacts. Thus, incorporating this diverse 
set of predictors improves the ecological realism and predictive performance of distribution models [47]. The bioclimatic 
variables (n = 19) which determines the environmental conditions were sourced from the WorldClim website (https://www.
worldclim.org/) [35]. Meanwhile, the topographic variables (elevation, slope, and aspect) were obtained from the SRTM 
website (http://srtm.csi.cgiar.org/srtmdata/) at a spatial resolution of 90 meters. Furthermore, the habitat variables for the 
Big Four species were chosen based on their habitat type classification as defined by the IUCN Red List assessment 
criteria [40–43]. The ESRI Sentinel-2 10-Metre Land Use/Land Cover (LULC) 2023 raster was downloaded from the ESRI 
Living Atlas website (https://livingatlas.arcgis.com/landcover/). The dataset was available in tiles that was merged to cover 
the mainland India, ensuring comprehensive spatial coverage. The LULC data contained several land cover classes and 
was in categorical format. However, to extract each habitat layer from the original LULC dataset, the relevant habitat 
categories were individually reclassified using the Reclassify tool in ArcGIS v10.6. In this process, only the target habitat 
category was retained, while all other categories were removed by assigning them ‘NoData’. This approach allowed each 
habitat type to be isolated into a distinct layer, ensuring that the targeted habitat was clearly separated for further analysis. 
The resultant habitat layers isolated into individual categories were tree cover (abbreviated as euc_124) and rangeland/
barelands (abbreviated as euc_20) which represent the habitats of the Big Four species as outlined in the recent IUCN 
assessments. Additionally, anthropogenic variables viz. cropland (abbreviated as euc_40) and built-up (abbreviated as 
euc_built) were also extracted from the same ESRI LULC data and reclassified accordingly (S1 Table). Given that these 
variables were initially in categorical form, they were converted into continuous variables through the Euclidean Distance 
function in ArcGIS v10.6. The Euclidean Distance function for a raster calculates the straight-line distance from each cell 
to the nearest feature or specified point, creating a continuous surface that represents spatial proximity. This method 
is used to assess the relative distance of each raster cell to environmental variables or species occurrences, aiding in 
habitat suitability modeling. Subsequently, all variables were resampled to a spatial resolution of 2.5 minutes (~4.5 km²) 
using the Spatial Analyst extension in ArcGIS v10.6 to balance spatial precision with computational feasibility, ensuring 
manageable processing across the extensive study area (S1 Table) [48]. The spatial multicollinearity among the variables 
was rigorously tested using the SAHM (Software for Assisted Habitat Modelling) package integrated within the VisTrails 
software [49]. The variables with a Pearson correlation coefficient (r) exceeding 0.8 were excluded from further analysis 
to minimize redundancy and enhance model reliability. These same variables were also evaluated using Spearman and 
Kendall correlation coefficients to further reduce the likelihood of inter-variable correlation. Consequently, for each highly 
correlated pair within a variable category, one variable was retained based on its ecological relevance, broader temporal 
representation, and high contribution. This systematic approach ensured that only uncorrelated and ecologically mean-
ingful predictors were included in the final modeling process [50] (S2–S5 Figs). Furthermore, a qualitative assessment of 
suitable habitats across various states within the species distribution ranges was meticulously conducted using the zonal 
statistics function in ArcGIS v.10.6 [48,51].

https://www.worldclim.org/
https://www.worldclim.org/
http://srtm.csi.cgiar.org/srtmdata/
https://livingatlas.arcgis.com/landcover/
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Species distribution modelling

The distribution models were meticulously evaluated using an ensemble approach that incorporated multiple modeling 
algorithms to develop the final distribution models for each species. Specifically, five distinct algorithms were employed: 
Maximum Entropy (MaxEnt), Random Forest (RF), Boosted Regression Tree (BRT), Generalized Linear Model (GLM), 
and Multivariate Adaptive Regression Splines (MARS) [47,52,53]. The selection of these models captures various aspects 
of species-environment relationships. Specifically, MaxEnt handles presence-only data, BRT and RF manage non-linear 
interactions with high accuracy, while GLM and MARS offer interpretability and flexibility, creating a comprehensive mod-
eling approach [54]. These algorithms were implemented within the VisTrails software utilizing the SAHM package [49,55]. 
The model evaluation criteria included an Area Under the Curve (AUC) threshold of 0.75 [56–58]. Hence, the software 
generated two output layers, i.e., a probability surface suitability layer ranging from 0 (low) to 1 (high) and an ensemble 
count map ranging from 0 to 5, where each pixel represented number of model agreement on suitability. The Sensitivity = 
Specificity (SES) threshold was applied to convert continuous habitat suitability outputs into categorical presence-absence 
predictions. The category/class “5” represents pixels where all five models were in agreement, thereby indicating suit-
able habitat extent. Hence, to determine the total area in sq. km., the number of pixels classified as “5” was multiplied by 
the raster cell size/spatial resolution. Additionally, various evaluation metrics, such as Area Under the Curve (AUC and 
ΔAUC), True Skill Statistic (TSS), Cohen’s Kappa, Proportion Correctly Classified (PCC), specificity, and sensitivity, were 
calculated to thoroughly assess and compare model performance using both the training data and cross-validation sets 
(n = 10) [59–62]. The future projections were conducted under potential climate change scenarios using two distinct shared 
socio-economic pathways (SSPs): SSP245 and SSP585, covering the periods 2041–2060 and 2061–2080. The SSPs 
are scenarios employed in climate change research to investigate future socioeconomic conditions and their effects on 
greenhouse gas emissions and climate impacts. The SSP245 illustrates a future with moderate mitigation and adaptation 
efforts. In contrast, SSP585 envisions a future characterized by high greenhouse gas emissions and minimal adapta-
tion efforts, assuming rapid population growth, high energy demand, and minimal environmental regulation, resulting in 
persistent emission increases throughout the century. The selection of SSP245 and SSP585 ensures a comprehensive 
assessment by representing both moderate and high-emission trajectories, thereby capturing a wider spectrum of poten-
tial climate outcomes [14]. This approach provides a more robust framework for evaluating future risks compared to 
other scenarios, which may either overly underestimate or overestimate emissions, thus offering a more realistic pro-
jection of potential climate impacts. The Hadley Centre Global Environment Model in Global Coupled Configuration 3.1 
(HadGEM3-GC31 LL) from the sixth Coupled Model Intercomparison Project (CMIP6) was selected for these projections 
due to its acknowledged performance in South and Southeast Asia [51,63–65]. This model is among the high-performing 
CMIP6 simulations for the region, offering improved representation of large-scale climatic patterns [66,67]. Additionally, 
the non-climatic raster data, which include various habitat types and anthropogenic elements (such as tree cover, range-
lands/barelands, cropland, and built-up areas), were kept constant in future projections. This approach was taken because 
accurately projecting their growth is challenging, however it helps to isolate the impact of climate change [48] (Fig 1).

Data preparation for risk index

Since most snakebite incidents in anthropogenic landscapes occur within cropland and built-up areas, the first step 
involved calculating the overlap (in square kilometers) between the suitable areas of the Big Four snake species and 
these land-use types. This was achieved using the Raster Calculator tool in ArcGIS v10.6 [15,23,68]. To account for 
socioeconomic vulnerability, the Global Gridded Relative Deprivation Index (GRDI) v1 (2010–2020) was utilized, that was 
obtained from NASA’s Socioeconomic Data and Applications Center (SEDAC) (S6 Fig) [69]. The GRDI integrates multiple 
indicators, including population density, educational attainment, healthcare access, infrastructure quality (water, sanitation, 
electricity), housing conditions, and digital connectivity, providing a comprehensive measure of deprivation relevant to 
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snakebite risk [70,71]. The healthcare facility data for India were sourced from the United Nations Office for the Coordina-
tion of Humanitarian Affairs (OCHA), which aggregates health infrastructure information from OpenStreetMap (OSM) to 
support humanitarian aid, disaster response, and public health planning [8].

Risk index formulation

The formulation of the Risk Index for Big Four species involves three key components: (i) the overlapping suitable areas 
with cropland and built-up regions, (ii) the number of healthcare facilities, and (iii) the mean GRDI of the region. The Risk 
Index is derived by first summing the overlapping areas of cropland and built-up land, as a greater overlap indicates an 
increased likelihood of high snakebite incidents. Moreover, the socioeconomic vulnerability of a region as reflected by the 
GRDI can further exacerbate the risk, as areas with limited basic facilities may struggle to manage snakebite cases effec-
tively. Therefore, the summed overlap is multiplied by the mean GRDI to account for these socioeconomic factors. Finally, 
the availability of healthcare facilities plays a crucial role in mitigating the consequences of snakebites. The regions with 
a higher number of healthcare facilities are better equipped to manage snakebite-related emergencies, thereby reducing 
associated mortality and morbidity. As a result, the combined risk is normalized by dividing by the number of healthcare 
facilities.

The final formula is:

Risk Index =
(Ai+Aj)

Number of Hospitals ×Mean of GRDI

where Ai is the overlapping area of cropland (in sq. km.) and Aj is the overlapping area of built-up (in sq. km.).

Fig 1.  This figure provides a comprehensive flow diagram outlining the methodology of the study, including each major step and process 
leading to the derivation of the risk index. BRT: boosted regression tree; GLM: generalized linear model; MARS: multivariate adaptive regression 
spines; MaxEnt: Maximum entropy; RF: Random Forest; GRDI: Global Gridded Relative Deprivation Index; A

i
: overlapping area of cropland (in sq. km.); 

A
j
: overlapping area of built-up (in sq. km.). The administrative layer of the map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). 

The base layer of the maps is an elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS 
software. The species photographs were provided by Anirban Chaudhuri and Raju Vyas through personal communication and were used with their prior 
permission.

https://doi.org/10.1371/journal.pntd.0013464.g001
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Moreover, this Risk Index was calculated for each district and state across mainland India under both present and 
future projected climate scenarios. An equal-weighted model was adopted to construct the Risk Index for snakebite risk 
across four targeted species. The equal-weighting approaches are commonly recommended in environmental risk assess-
ment and composite index development, particularly when empirical evidence does not support differential weighting 
among components [72,73]. In this study, cropland and built-up area overlaps were treated as equally significant drivers 
of human-snake interactions, given that both land-use types can facilitate snakebite risk. Thus, assigning equal weights to 
these factors avoids arbitrary bias and ensures that each type of exposure is considered with equal importance, thereby 
enhancing the comparability and reproducibility of the model across geographic and ecological contexts [74]. Likewise, 
GRDI (a composite index for socioeconomic vulnerability) and healthcare infrastructure (measured as the number of hos-
pitals) were incorporated without additional weighting, in recognition of their complementary roles in shaping risk. Hence, 
the risk index was developed using an equal-weighting approach by integrating the overlapping areas of cropland, built-up 
regions, socioeconomic conditions, and the number of healthcare facilities. This choice was made to maintain method-
ological transparency and consistency across all components, especially in the absence of robust empirical justification 
for assigning differential weights to these diverse factors contributing to snakebite risk. The equal-weighted models are 
further favored in multidimensional assessments for their transparency, interpretability, and methodological simplicity 
[75]. Additionally, this approach provides a flexible foundation that can be refined in future iterations as more localized or 
species-specific data become available. Furthermore, a sensitivity analysis was also performed for the Risk Index of each 
of the Big Four snake species in district and state level to assess their vulnerability to changing climatic conditions.

Results

Ensemble model performance

The resulting model performance demonstrated excellence across all participating models, showing strong performance 
on both training and cross-validation datasets (Tables 1, S2 Figs 2–5, S7–S14). The models exhibited AUC values ranging 
from 0.866 to 0.962 during training and between 0.834 and 0.895 at cross-validation across the four species. Specifically, 
the lowest ΔAUC value was observed in the RF model for E. carinatus, while the highest ΔAUC value was seen in the 
BRT model for N. naja, with a value of 0.77. In all species runs, the RF model demonstrated the lowest ΔAUC value for 
each species. However, MaxEnt showed the highest ΔAUC value for three species, except for E. carinatus, where GLM 
demonstrated the highest value (Figs 2–5). Among the five selected models, MaxEnt utilized all variables provided in 
each replicate run, while BRT employed the fewest variables for the four species. Specifically, within the BRT models, the 
highest number of variables used was six out of 11 for E. carinatus, whereas the lowest number of variables selected was 
three out of 11 for D. russelii (Tables 1, S2 Figs 2–5).

The ensemble model for the Big Four species indicated that, on average across the five models, the bioclimatic vari-
able isothermality (BIO2/BIO7) (×100) (bio_3) was the highest contributor for all four species, accounting for more than 
30% of the covariate contribution for each species (Tables 2, S3, S15–S18 Figs). Specifically, for B. caeruleus, the lowest 

Table 1.  The ensembled model fit metrics for the five participating modelling methods and for the final ensemble model for estimation of 
habitat suitability of the Big Four species. A total of five model algorithms were used with the threshold of < 0.75 AUC score. AUC: Area under 
Curve, ΔAUC: Change in Area under curve (Training – Cross Validation), PCC: Proportion Correctly Classified, TSS: True Skill Statistic.

Species Ensemble AUC Ensemble PCC Ensemble TSS Ensemble Kappa Ensemble Specificity Ensemble Sensitivity

B. caeruleus 0.8516 78.80 0.5506 0.5250 0.7414 0.8094

D. russelii 0.8696 79.42 0.5856 0.5834 0.8078 0.7781

E. carinatus 0.8822 82.82 0.6522 0.6520 0.8132 0.8390

N. naja 0.8458 79.64 0.5634 0.5352 0.7470 0.8166

https://doi.org/10.1371/journal.pntd.0013464.t001

https://doi.org/10.1371/journal.pntd.0013464.t001
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Fig 2.  Model evaluation plot, showing the average training ROC of both training and cross-validation (CV) and variables selected by the mod-
els for the replicate runs under five models of B. caeruleus. (A) showing ROC plot of boosted regression tree (BRT), (B) generalized linear model 
(GLM), (C) multivariate adaptive regression spines (MARS), (D) Maximum entropy (MaxEnt), (E) Random Forest (RF), (F) The suitable habitat extent 
in the present scenario where the ‘class 5’ determines the extremely suitable habitat extent, and (G) The overlapping cropland and built-up/urban areas 
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contributing variable was slope, contributing only 0.29%. The habitat variable Euclidean Distance to Tree Cover (euc_124) 
contributed 9.2%, while Euclidean Distance to Built-up Areas was the primary anthropogenic contributor, accounting for 
21.92%. For D. russelii, the least contributing variable was the topographic variable aspect, contributing 0.36%. The habitat 
variable Euclidean Distance to Tree Cover (euc_124) contributed 7.63%, and Euclidean Distance to Built-up Areas was 
once again the primary anthropogenic contributor, accounting for 20.57%. Similarly, in the case of E. carinatus, the least 
contributing variable was the bioclimatic variable Mean diurnal range (bio_2), accounting for 0.35%. Specifically, for N. naja, 
the least contributing variable was the topographic variable aspect, contributing 0.33%. Notably, the habitat variable Euclid-
ean Distance to Tree Cover (euc_124) had relatively low contributions for both species, with 0.98% for E. carinatus and 
3.44% for N. naja. Among anthropogenic variables, Euclidean distance to built-up areas was again the primary contributor, 
accounting for 9.15% for E. carinatus and 17.95% for N. naja. Additionally, for E. carinatus, the habitat variable Euclidean 
Distance to Rangeland/Bareland was a significant contributor, accounting for 6.5% overall (Tables 2, S3, S15–S18 Figs).

Identification of Habitat Extent of Big Four Species

The ensemble model revealed the extremely suitable habitat (class 5) extents in India for four species in the present sce-
nario: B. caeruleus (124,497 sq. km.), D. russelii (88,740 sq. km.), E. carinatus (81,590 sq. km.), and N. naja (88,853 sq. 
km.) (Figs 2-5F, S4–S7 Tables). However, considering future climate change scenarios, the results indicate a significant 
shift in geographic range, with suitable habitats shrinking due to climatic changes. This shift raises concerns as many new 
states might experience increased snakebite cases in areas previously unaffected by this health issue (S19–S22 Figs, 
S4–S7 Tables). Specifically, B. caeruleus is expected to experience a decline of over 50% in a suitable extent, whereas 
D. russelii is projected to decline by approximately 70% to 80%, E. carinatus by 43% to 73%, and N. naja by 50% to 71%. 
The Indian state of Karnataka emerged as a hotspot for extremely suitable habitats for the Big Four in the present sce-
nario, harboring the highest suitable habitat extent for each species. Conversely, some mainland states and Union Territo-
ries, such as Sikkim and Ladakh, were found to be unsuitable for the Big Four species.

In future climatic scenarios, the Big Four snake species are projected to experience a decline and shift in their geographic 
ranges, primarily towards Northern and Northeastern India (S19–S22 Figs, S4–S7 Tables). Notably, certain states currently 
identified as key hotspots such as Karnataka and Tamil Nadu, which presently exhibit the highest levels of habitat suitability 
are expected to experience a pronounced reduction in regions classified as highly suitable for these species. Interestingly in 
the case of E. carinatus, Karnataka presently boasts the most extensive coverage of class 5 habitats (indicating maximum 
suitability) is projected to experience the least severe reductions especially in the western region, with anticipated declines 
ranging between 12% and 44%. Contrastingly, specific regions including Haryana, Rajasthan, Assam etc. are projected to wit-
ness an expansion in suitable habitat extent in response to shifting climate conditions. Furthermore, states such as Manipur, 
Meghalaya, Nagaland, and Arunachal Pradesh, which currently lack any suitable habitat, are predicted to experience notable 
increases in habitat suitability for the Big Four in future climate scenarios. These Northeastern states are projected to experi-
ence a significant increase (>100%) in habitat suitability for the Big Four due to the anticipated changes in climatic conditions.

Snakebite Prone Areas in Croplands and Built-up

In the current scenario, an analysis of the overlapping areas of cropland and built-up regions with habitats suitable for the 
Big Four species reveals a number of significant risk zones or hotspots across various states in India (Figs 2–5, S8–S15 

with the suitable extent (Class 4 and Class 5) in the present scenario. The administrative layer of the map was obtained from the DIVA-GIS website 
(https://diva-gis.org/data.html). The base layer of the maps is an elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and 
was created using ArcGIS software. The species photograph was provided by Anirban Chaudhuri through personal communication and were used with 
their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g002
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0013464  September 2, 2025 11 / 33

Fig 3.  Model evaluation plot, showing the average training ROC of both training and cross-validation (CV) and variables selected by the 
models for the replicate runs under five models of D. russelii. (A) showing ROC plot of boosted regression tree (BRT), (B) generalized linear model 
(GLM), (C) multivariate adaptive regression spines (MARS), (D) Maximum entropy (MaxEnt), (E) Random Forest (RF), (F) The suitable habitat extent 
in the present scenario where the ‘class 5’ determines the extremely suitable habitat extent, and (G) The overlapping cropland and built-up/urban areas 



PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0013464  September 2, 2025 12 / 33

Tables). Notably, the central region of Karnataka, Tamil Nadu, and Kerala in Southern India show the highest levels of 
overlap with cropland areas, highlighting these regions as critical areas of concern for public health safety. Additionally, 
certain areas in the western parts of Gujarat and Maharashtra also exhibit significant overlap with cropland. Moreover, 
these states also exhibit considerable overlap with human settlements, further amplifying the risk for envenomation. This 
pattern of overlap with anthropogenic landscapes is consistent across all four species in the present climate scenario.

However, as the geographic range of suitable habitats for the Big Four species shifts due to projected climate change, 
there is also a corresponding shift in the areas where these habitats overlap with cropland and built-up regions (S23-S26 
Figs). In particular, southern and western states are expected to see a decline in the extent of overlap with human-modified 
landscapes as suitable habitats move northward and northeastward. This shift is a direct result of changing climate pat-
terns, which are driving the species toward new regions. At the same time, northern and northeastern states are expected 
to witness a marked increase in the overlap of suitable habitats with built-up areas. This is particularly evident in regions 
such as Punjab, Uttar Pradesh, and West Bengal and is projected to become significant (Figs 2–5, S8–S15 Tables). These 
states, which have relatively low levels of overlap in the current scenario, will face growing challenges as urban and agri-
cultural expansion coincides with an increase in suitable habitats for the Big Four species. Furthermore, other Northeastern 
states such as Assam, Meghalaya, and Nagaland are anticipated to experience a notable rise in the overlap of the Big 
Four species habitats with anthropogenic landscapes. This is a concerning trend, as it suggests that previously unaffected 
regions may soon become hotspots for human-snake interactions, posing challenges for public safety.

Prioritization of big four bite prone regions in India

In the case of B. caeruleus, the comprehensive risk assessment in the present scenario highlights that Karnataka holds 
the highest risk index score of 171.85 (Figs 6, 7, S16 Table). This score positions Karnataka as the most critical state 
followed by Gujarat (96.70) and Tamil Nadu (94.58), requiring immediate attention for snakebite mortality incidents caused 
by B. caeruleus (Figs 6,7). Furthermore, at the district level, the highest priority districts in the current scenario are Chikka-
ballapura (719.73), Haveri (693.56), and Chitradurga (674.78), all located in the state of Karnataka. In contrast, districts in 
the northern states such as Jammu & Kashmir and Ladakh, as well as those in the Northeastern region, currently exhibit 
comparatively lower risk index scores. The future climate change projections suggest a substantial geographic shift in 
the habitat suitability for B. caeruleus, which in turn affects the risk index scores across various states (Figs 6,7). Nota-
bly, states such as Gujarat (with up to a 73.61% increase), Madhya Pradesh (ranging between 224.18% and 308.25%), 
and Assam (reaching as high as 783.24%) are projected to witness a sharp rise in risk scores, particularly under extreme 
climatic conditions during the 2061–2080 period. At the district level, areas such as Datia (Madhya Pradesh), Mahoba 
in Uttar Pradesh, and Karbi Anglong West, Golaghat, and Nagaon (Assam) are expected to experience the most signif-
icant increases in risk index scores under future climate scenarios (Figs 6,8, S16 Table). A similar trend is evident for D. 
russelii, with Karnataka once again emerging as the highest priority state, exhibiting a risk index of 150.38 in the current 
scenario (Fig 8, S17 Table). It is followed by Tamil Nadu and West Bengal, with risk index values of 66.13 and 63.43, 
respectively. Notably, East Kameng district in Arunachal Pradesh stands out as a major outlier, exhibiting the highest 
district-level risk index of 729.99, likely attributable to significant socio-economic deprivation, i.e., GRDI of the region. 
Following East Kameng, the high-priority districts include Chikkaballapura, Haveri, and Chitradurga in Karnataka, along 
with Yanam in Andhra Pradesh (Fig 8). In future climatic scenarios, Karnataka consistently remains a top-priority state 

with the suitable extent (Class 4 and Class 5) in the present scenario. The administrative layer of the map was obtained from the DIVA-GIS website 
(https://diva-gis.org/data.html). The base layer of the maps is an elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and 
was created using ArcGIS software. The species photograph was provided by Anirban Chaudhuri through personal communication and were used with 
their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g003
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Fig 4.  Model evaluation plot, showing the average training ROC of both training and cross-validation (CV) and variables selected by the mod-
els for the replicate runs under five models of E. carinatus. (A) showing ROC plot of boosted regression tree (BRT), (B) generalized linear model 
(GLM), (C) multivariate adaptive regression spines (MARS), (D) Maximum entropy (MaxEnt), (E) Random Forest (RF), (F) The suitable habitat extent 
in the present scenario where the ‘class 5’ determines the extremely suitable habitat extent, and (G) The overlapping cropland and built-up/urban areas 
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across all climate projections and time periods. Notably, Assam emerges as the second-highest priority state, followed by 
Manipur, with both states experiencing a risk index increase of over 6%. At the district level, Haveri, Ramanagara, and 
Chamarajanagar, located in Karnataka, are projected to be among the highest priority areas. Additionally, districts such as 
Morigaon, Nagaon, and Lakhimpur in Assam, Pratapgarh in Rajasthan, and Supaul in Bihar are expected to witness more 
than a two-fold increase in risk index scores under future climatic conditions, although they still rank below the highest-risk 
districts. In contrast, the East Kameng district in Arunachal Pradesh is projected to experience a significant decline of over 
50% in its risk index in future scenarios (Fig 8, S17 Table).

The state of Karnataka, with a risk index of 135.02, remains the highest priority state for E. carinatus also, followed 
by Gujarat (99.47) and Tamil Nadu (63.27) under current climatic conditions (Figs 6, 9, S18 Table). While within the 
state at the district level, Jhabua (Madhya Pradesh), Koppal, and Chikkaballapura in Karnataka are identified as the 
most vulnerable districts in the present scenario. The projections under future climatic conditions indicate a decline in 
risk index scores for these currently high-priority states, as Karnataka is expected to experience a reduction of over 
18%, Gujarat (ranging between 6.07% and 21.88%), and Tamil Nadu (up to 37.06%). Conversely, Rajasthan and 
Madhya Pradesh are projected to exhibit substantial increases in risk index values, rising by as much as 227.84% and 
61.11%, respectively. While Jhabua, Koppal, and Chikkaballapura are projected to see a decline exceeding 15.61%, 
they are anticipated to remain among the highest priority districts relative to others. Notably, districts such as Ashok-
nagar (Madhya Pradesh) and Pratapgarh (Rajasthan) are projected to exhibit significant increases in their risk index 
values, approximately doubling relative to current levels under future climatic scenarios (Fig 9, S18 Table). However, 
despite this sharp rise, they are expected to remain below the highest-risk districts in terms of the risk index. Meanwhile 
For N. naja, Karnataka and Gujarat once again emerge as top-priority states in the current scenario, with risk index 
values of 135.67 and 100.41, respectively (Figs 6,10, S19 Table). This pattern is reflected at the district level as well, 
with Chikkaballapura, Chitradurga, and Haveri, all located within the state of Karnataka, having been identified as the 
highest-risk districts under present conditions. However, under future climatic scenarios, these high-priority states show 
a marked decline in risk index values. Specifically, Karnataka, Maharasthra, Gujarat, and Tamil Nadu are projected 
to experience reductions exceeding 16%, with Gujarat showing the most pronounced decline of over 42.40%, likely 
driven by climatic changes. Conversely, states such as Assam, Rajasthan, and Manipur are expected to see substan-
tial increases in future risk, with some projections indicating more than a doubling of their current risk index values. At 
the district level, the trends are more dynamic as for instance, Chikkaballapura and Haveri are projected to experience 
an increase in risk index during the 2041–2060 period under both SSP scenarios, followed by a sharp decline during 
the 2061–2080 period across both emission pathways. Meanwhile, districts such as Tengnoupal (Manipur), Sirsa, 
and Mewat in Haryana are projected to exhibit significant increases in vulnerability, with substantial rises in risk index 
scores under future climate projections (Fig 10, S19 Table). These findings highlight the urgent need for targeted inter-
vention and strategic planning in these states and districts to address snakebite-related mortality and morbidity in the 
face of evolving climate risks. The sensitivity analysis of the Risk Index at both district and state levels revealed that B. 
caeruleus exhibited the highest sensitivity among the Big Four species, consistently showing the highest Area Under 
the Curve (AUC) values across all future climate projections (S27-S30 Figs). In contrast, D. russelii was identified as 
the least sensitive species at both district and state levels, as it consistently displayed the lowest AUC values across all 
climate scenarios.

with the suitable extent (Class 4 and Class 5) in the present scenario. The administrative layer of the map was obtained from the DIVA-GIS website 
(https://diva-gis.org/data.html). The base layer of the maps is an elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and 
was created using ArcGIS software. The species photograph was provided by Raju Vyas through personal communication and were used with their prior 
permission.
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Fig 5.  Model evaluation plot, showing the average training ROC of both training and cross-validation (CV) and variables selected by the mod-
els for the replicate runs under five models of N. naja. (A) showing ROC plot of boosted regression tree (BRT), (B) generalized linear model (GLM), 
(C) multivariate adaptive regression spines (MARS), (D) Maximum entropy (MaxEnt), (E) Random Forest (RF), (F) The suitable habitat extent in the 
present scenario where the ‘class 5’ determines the extremely suitable habitat extent, and (G) The overlapping cropland and built-up/urban areas with 
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Discussion

Snakebite, a neglected tropical disease (NTD), continues to affect large numbers of people, disproportionately impacting 
vulnerable populations and regions throughout the globe [76]. Specifically, several South Asian countries are projected to 
become more climatically suitable for venomous snakes by 2070, potentially altering the distribution of venomous species 
as they migrate to new locations as evidenced hence increasing conflict with human [14,77–79]. Consequently, the previ-
ous studies have emphasized the need for enhanced surveillance and monitoring to identify prone areas of NTD incursion 
and emergence, ensuring their inclusion in future public health strategies [76]. Furthermore, snake envenomation in India 
poses a significant challenge for antivenom manufacturers due to the necessity for highly region-specific production and 
subsequent treatments [8,15,78]. The venom composition within a single species may vary significantly due to several 
factors such as age, gender, prey availability, diet, and geographic location [80–82]. Hence, identifying suitable habitats 
and delineating high-risk areas for snakebites under current and future climatic conditions might be effective for snake-
bite management and the targeted allocation of region-specific antivenoms, thereby aiding public health [35,83,84]. This 
forward-looking approach that incorporates future climate scenarios is essential for mitigating potential risks and enhanc-
ing snakebite management strategies to address forthcoming NTD challenges.

The future climatic projections of the present study indicate a geographical shift of the Big Four species towards 
the Northern and Northeastern states of India aligning with previous zoo-geographic studies [14]. Furthermore, North-
east India and Southeast Asia have historically supported high snake diversity due to their position within transitional 

the suitable extent (Class 4 and Class 5) in the present scenario. The administrative layer of the map was obtained from the DIVA-GIS website (https://
diva-gis.org/data.html). The base layer of the maps is an elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was 
created using ArcGIS software. The species photograph was provided by Anirban Chaudhuri through personal communication and were used with their 
prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g005

Table 2.  Summary of the highest contributing variable from each category for each snake species, along with its mean (μ) percentage contri-
bution to the model. This table highlights the most influential predictors across categories, while the full list of all final covariates and their 
contributions for the Big Four species is provided in S3 Table.

Species Covariate 
Set

Variable μ(Mean) %

B. caeruleus Bioclimatic Isothermality 42.59

Habitat Euclidean distance to Tree Cover 9.20

Anthropogenic Euclidean distance to Built-up/Urban 21.92

Topographic Elevation 0.67

D. russelii Bioclimatic Isothermality 32.32

Habitat Euclidean distance to Tree Cover 7.63

Anthropogenic Euclidean distance to Built-up/Urban 20.57

Topographic Elevation 3.21

E. carinatus Bioclimatic Isothermality 50.69

Habitat Euclidean distance to Barelands/Rangelands 6.50

Anthropogenic Euclidean distance to Built-up/Urban 9.15

Topographic Slope 8.60

N. naja Bioclimatic Isothermality 39.97

Habitat Euclidean distance to Tree Cover 3.44

Anthropogenic Euclidean distance to Built-up/Urban 17.95

Topographic Slope 2.67

https://doi.org/10.1371/journal.pntd.0013464.t002
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zones between major eco-regions, functioning as climatic refugia [85]. As global temperatures continue to rise, the 
shifts in species ranges including both contractions and expansions, are increasingly expected to occur in regions with 
long-established biodiversity and complex, heterogeneous landscapes [85]. In light of this, the ensemble model identi-
fied Isothermality (bio_3) as the most significant bioclimatic factor contributing to the habitat suitability for the Big Four 
species. This variable quantifies the extent to which day-to-night temperature oscillations compare to the larger annual 
summer-to-winter temperature fluctuations. These climatic variables were also found to align with previous studies on 

Fig 6.  This figure illustrates the variation in risk indices of Big Four species across different Indian states, with color coding to distinguish 
risk levels in present and future climatic scenarios.

https://doi.org/10.1371/journal.pntd.0013464.g006
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congeners of the Big Four snake species [39]. The substantial influence of temperature fluctuations on the distribution of 
cold-blooded species has likewise been corroborated by earlier research [14,77]. The climatic parameters are often the 
most influential predictors of snake distributions due to their significant effects on the thermal biology, activity patterns, and 
reproductive success of ectothermic organisms [86–88]. These broad-scale environmental filters shape ecological niches 
more profoundly than land use variables, particularly for thermally sensitive taxa like snakes [89]. Nevertheless, integrat-
ing both climatic and land use variables is recommended for more reliable and holistic predictions of habitat suitability 
[70]. Furthermore, the ecological model revealed that the South Indian states, including Karnataka, Kerala, and Tamil 
Nadu, particularly the Western Ghats region, are hotspots for the Big Four species in the present scenario, thus aligning 
with previous studies conducted in the region [90,91]. Moreover, considering that the majority of snakebites attributed 
to the Big Four species occur in agricultural or settlement areas, it becomes imperative to identify regions of overlap-
ping cropland and built-up areas with suitable habitats for these species within the Indian states [92,93] The thorough 
understanding of these overlap zones is essential for effective health management, which enables the implementation of 
preventive measures and improvement of treatment responses, as emphasized by previous research [14]. The current 
study identifies the susceptibility of South Indian states under present conditions and projects an increase in vulnerabil-
ity driven by anticipated climate change within the Northern and Northeastern states in the future. However, the state of 
Assam, in particular, stands out due to a consistent rise in snakebite related mortality and morbidity, also evidenced by 
recent sightings and increased reporting of species like D. russelii and N. naja, disseminated widely through social and 
news media channels. This may be attributed to the fact that many tropical snake species have an affinity for tropical, for-
ested lowlands with a tropical climate and abundant water bodies, a characteristic that is particularly prominent in Assam, 

Fig 7.  The maps indicate the risk index scores for prioritization of each district in the (A) present, (B) SSP245 (2041-2060), (C)SSP245 (2061-
2080), (D) SSP585 (2041-2060), and (E) SSP585 (2061-2080) future scenarios for B. caeruleus. The administrative layer of the map was obtained 
from the DIVA-GIS website (https://diva-gis.org/data.html). The species photograph was provided by Anirban Chaudhuri through personal communica-
tion and were used with their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g007
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given its lowland geography compared to other Northeast Indian states [94–97]. These findings align closely with the 
study’s projections of escalating suitability and habitat overlap in future climatic conditions of Assam. However, states such 
as Meghalaya, Manipur, and Nagaland also exhibit increased overlap potential for the Big Four species, as these states are 
known to be providing suitable habitats for other congeners. Additionally, this observed pattern may be indicative of an altitu-
dinal shift in the distribution of snake species, likely driven by climate-induced changes in temperature and habitat conditions. 
Such vertical range shifts have been widely documented among ectothermic taxa, including reptiles, as they track suitable 
thermal environments to higher elevations in response to warming climate [98,99]. While this suggests a potential ecological 
response to climate stressors, it is important to note that the overall habitat suitability in mountainous regions remain rela-
tively lower compared to the lowland plains. This discrepancy may be attributed to factors such as limited thermal buffering 
capacity at higher altitudes, reduced availability of optimal prey and shelter, etc. Furthermore, this aspect also raises con-
cerns about the inadvertent introduction of Big Four species through activities like timber transportation, smuggling, and acci-
dental or deliberate releases, particularly in the northeastern states, which are key corridors for illegal wildlife trafficking [100]. 
The anticipated suitability of these regions under future climatic conditions may exacerbate the risk of population surges 
among these species, especially when both sexes have been exposed through human mediated migration.

Moreover, the risk index identified priority states such as Karnataka, Andhra Pradesh, Gujarat, etc. that require the 
utmost attention to reduce mortality from bites by the Big Four species. These states are high-risk areas due to their 
significant overlap extent along with socioeconomic deprivation and the available government infrastructure. This finding 
aligns with previous studies that reported the highest number of deaths from Big Four species bites in the past decade 
from these states [15]. Interestingly, Tamil Nadu ranks relatively low on the risk index despite being a hotspot for the Big 

Fig 8.  The maps indicate the risk index scores for prioritization of each district in the (A) present, (B) SSP245 (2041-2060), (C)SSP245 (2061-
2080), (D) SSP585 (2041-2060), and (E) SSP585 (2061-2080) future scenarios for D. russelii. The administrative layer of the map was obtained from 
the DIVA-GIS website (https://diva-gis.org/data.html). The species photograph was provided by Anirban Chaudhuri through personal communication and 
were used with their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g008
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Four species and having a similar extent of overlap with cropland and built-up areas as Karnataka [101]. Although Tamil 
Nadu experiences a significantly higher number of snakebite incidents, the discrepancy in the risk index can be attributed 
to its low GRDI and relatively higher number of healthcare facilities compared to Karnataka [101]. These factors help 
reduce the likelihood of fatalities from snakebite envenomation, leading to a lower overall risk index than that of Karna-
taka. Similarly, Sikkim presents an interesting case, as it is classified as a state with no risk from the Big Four snake 
species. While some congeners of these species, such as B. niger, N. kaouthia, etc., are documented in the southern 
districts of Sikkim, the Big Four have not yet been officially reported in the state [102]. An SDM study also identified 
suitable habitats for these congeners in the same regions [102]. Consequently, the vulnerability in Sikkim was considered 
low, as the present study focused specifically on the Big Four species, which remain unreported in the state. Nonetheless, 
there may still be potential risk from their congeners, which needs to be studied further. Moreover, the high GRDI and low 
healthcare infrastructure in East Kameng District of Arunachal Pradesh likely explain why it stands as an outlier for D. 
russelii. Despite this district having a much lower overlap with cropland and built-up areas, East Kameng recorded the 
highest risk index for D. russelii in present scenario, highlighting the significant impact of healthcare access and disease 
management in determining risk levels. This observed association between higher GRDI and increased snakebite risk can 
be attributed to overlapping vulnerabilities such as poor healthcare access, low socioeconomic conditions, and greater 
exposure to high-risk environments. The empirical studies have shown that snakebite morbidity and mortality are dispro-
portionately higher in impoverished, rural areas where timely medical intervention is often lacking and human-wildlife 
interactions are more frequent [101,103]. These findings support the role of GRDI as a proxy indicator for identifying 
populations that may face elevated snakebite risk due to structural and environmental disadvantages. Additionally, the 

Fig 9.  The maps indicate the risk index scores for prioritization of each district in the (A) present, (B) SSP245 (2041-2060), (C)SSP245 (2061-
2080), (D) SSP585 (2041-2060), and (E) SSP585 (2061-2080) future scenarios for E. carinatus. The administrative layer of the map was obtained 
from the DIVA-GIS website (https://diva-gis.org/data.html). The species photograph was provided by Raju Vyas through personal communication and 
were used with their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g009

https://diva-gis.org/data.html
https://doi.org/10.1371/journal.pntd.0013464.g009
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sensitivity analysis corroborates that B. caeruleus exhibits the highest sensitivity to climate change among the four 
species, both at the district and state levels. This species shows notable proliferation under various future climate scenar-
ios compared to the present. In contrast, D. russelii appears to be the least sensitive, as it shows an overall decline in 
range across all future climate scenarios. However, it exhibits a spatial shift, becoming concentrated in biodiversity 
hotspots such as the Western Ghats and Northeast India. A similar pattern is observed in N. naja, which also shows future 
range contractions with concentration in the Western Ghats and the Himalayan region. Meanwhile, E. carinatus remains 
predominantly distributed in the western parts of India, likely due to its preference for arid and semi-arid conditions. These 
projections suggest that, in addition to climatic factors, environmental parameters significantly influence the distribution 
patterns of the Big Four snake species [40–43]. Consequently, states in southern India (e.g., Karnataka, Gujarat, Andhra 
Pradesh) and in northern and northeastern regions (e.g., Rajasthan, Haryana, Assam, Manipur) must adopt proactive 
conservation and mitigation strategies. Moreover, many of the Indian states are experiencing significant habitat destruc-
tion of Big Four species, which may result in increased human-snake conflicts as they tend to move for prey near human 
settlements [14,104]. Therefore, addressing the issue of envenomation requires a multifaceted and coordinated approach 
involving various stakeholders, including international agencies, government bodies, non-governmental organizations, and 
local communities. Several critical steps must be taken to mitigate envenomation incidents, or at least manage them 
effectively when they occur. First and foremost, continuous education on snake identification, envenomation, and the 
application of preventive first aid at both rural and urban areas are crucial in the detected high priority districts such as 
Chikkaballapura, Haveri, and Chitradurga etc. in Karnataka; Devbhumi Dwarka and Jamnagar etc. in Gujarat; Pratapgarh 
in Rajasthan; Nagaon, Morigaon, and Golaghat etc. in Assam; East Kameng in Arunachal Pradesh, and Tengnoupal in 

Fig 10.  The maps indicate the risk index scores for prioritization of each district in the (A) present, (B) SSP245 (2041-2060), (C)SSP245 (2061-
2080), (D) SSP585 (2041-2060), and (E) SSP585 (2061-2080) future scenarios for N. naja. The administrative layer of the map was obtained from 
the DIVA-GIS website (https://diva-gis.org/data.html). The species photograph was provided by Anirban Chaudhuri through personal communication and 
were used with their prior permission.

https://doi.org/10.1371/journal.pntd.0013464.g010

https://diva-gis.org/data.html
https://doi.org/10.1371/journal.pntd.0013464.g010
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Manipur etc. [8,15]. Such education should not be a one-time effort but a continuous process to ensure that all age groups 
are equally aware of the risks and appropriate responses to snakebites. Furthermore, raising awareness among local 
peoples about the importance of seeking medical treatment from hospitals rather than turning to exorcists or faith healers 
is also essential. This type of awareness education is especially crucial in the tribal dominated regions of Southern India, 
Central India, and the Northeastern states, where faith healers hold significant influence within tribal communities. More-
over, rural hospitals and primary healthcare facilities within these priority regions need to be strengthened by increasing 
their capacity and ensuring they are staffed with trained personnel capable of effectively managing snakebite cases. 
Furthermore, ensuring the consistent availability of sufficient quantities of antivenom in these areas is critical to reducing 
snakebite-related mortality. This will enable to prevent deaths during the time taken to travel to sophisticated government 
health facilities in urban areas. As it is evident that, the effectiveness of antivenoms in reducing mortality by over 90% 
when administered promptly [8,15,35,84,105–109]. This targeted attention is particularly important for the hilly terrains of 
the Northeastern region, especially in remote areas such as East Kameng in Arunachal Pradesh, Karbi Anglong in Assam, 
and Tengnoupal in Manipur, where connectivity to remote villages is often limited. Additionally, the production of 
region-specific monovalent antivenoms is necessary to ensure the highest efficacy against locally prevalent population of 
Big Four species. Along with the production of antivenoms, it is also essential to maintain a robust supply chain and 
ensure that antivenoms are distributed to all remote regions, especially to the identified high priority states and districts in 
India. Additionally, based on current biogeographic and risk indexing, the establishment of rapid response units in both 
urban and rural areas of snakebite-prone districts are recommended. These units would coordinate with the kin of the 
victim to provide first aid and ensure quick access to the nearest medical facility for timely treatment. Furthermore, imple-
menting an online reporting system to monitor antivenom distribution and track snakebite cases would be a valuable tool, 
enabling real-time data collection to inform and strengthen targeted response efforts. Moreover, the response unit could 
also be tasked with rescuing snakes from high-priority areas, thereby reducing the risk of snake envenomation incidents 
and minimizing retaliatory killings of these reptiles. In addition to these interventions, it is necessary to conduct ecological 
studies and regular monitoring of the Big Four species in districts or states where the Risk Index is projected to decline, to 
better understand potential ecological adaptations or the persistence of micro-habitats supporting these populations. 
Notably, studies of this nature should be periodically replicated to incorporate updated environmental and socioeconomic 
variables reflective of the prevailing conditions. Such replication ensures that risk assessments remain relevant and 
effective at the time of implementation by accounting for dynamic changes like land cover alterations, thereby enabling 
more precise and timely interventions to combat this NTD.

This study stands as the first comprehensive ecological analysis targeting snakebite hotspots in India, specifically 
focusing on the ecological dynamics of the Big Four species under both current and future climatic scenarios. The holistic 
methodology of a detailed risk index that identifies states and districts in urgent need of intervention from policymakers 
and health planners, highlighting high-risk areas and guiding resource allocation to effectively mitigate snakebite risks 
presently and in the future. Therefore, by identifying regions in need of immediate attention, the study helps prioritize 
states and districts for improving healthcare infrastructure and ensuring adequate antivenom supply, crucial for address-
ing current snakebite challenges and preparing for future risks amplified by climate change. Furthermore, this study will 
support the WHO and its partners in implementing the 2019 Snakebite Envenoming Strategy for prevention and control 
in snakebite-prone countries for planning and policy integration. However, the results and interpretations require ground 
validation by expert personnel to ensure effective application in the field. Additionally, rapid anthropogenic expansion and 
potential natural calamities impacting the micro-habitats of the Big Four snake species must be taken into account along-
side the inferences from this study. Such considerations are crucial for future policy-making, as this research provides a 
preliminary indication of possible trends and challenges that may affect these species habitats over time. Moreover, future 
research could incorporate dynamic socio-economic modeling to capture potential shifts in land use patterns and devel-
opmental initiatives for the Big Four and other reptilian fauna. Nevertheless, beyond the health implications, this study 
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highlights areas needing focused efforts to reduce human-snake conflicts and to conserve these ecologically significant 
species.

Limitations

There are several important limitations associated with this study, primarily related to the use of SDMs. These models 
generate probabilistic outputs that are highly dependent on the quality, completeness, and accuracy of input data. As 
such, minor changes in the input parameters may lead to slight variations in the results; however, the overall patterns 
and trends generally remain consistent. It is also important to note that SDMs identify areas with suitable environmental 
conditions based on the ecological envelope of the species, rather than confirming actual presence. Although the Big Four 
snake species have broad geographic ranges across India, verified occurrence records are heavily concentrated in the 
southern and western regions due to frequent sightings. In contrast, certain areas in the northern and northeastern states 
show limited or no documented sightings, likely due to under reporting or the rarity of encounters. This discrepancy high-
lights a fundamental limitation of SDMs, which rely exclusively on presence-only data. As a result, regions lacking con-
firmed occurrence records must be excluded from the modeling process, as this can introduce spatial biases. The present 
study utilized current habitat layers for projecting future climatic suitability due to the unpredictability of future land cover 
changes. Moreover, the projections do not account for potential shifts in land use changes that may occur over time. The 
observed distributional changes in the species are therefore attributed solely to climatic variables. While this approach 
provides valuable insights into climate-driven range shifts, it may underestimate or overlook the compounded effects of 
land use change, urbanization, and habitat degradation. Therefore, future research should aim to incorporate land cover 
data that corresponds to the projected time periods alongside climatic variables. The use of the GRDI provided a con-
sistent and nationally comparable measure of socioeconomic vulnerability, though future studies could enhance this with 
higher-resolution, region-specific data and associated uncertainty assessments. Despite these limitations, the approach 
presented here offers a novel framework that can be further refined and integrated into future research in a specific region 
by incorporating more comprehensive field surveys and citizen science data. Future studies should focus on expanding 
occurrence datasets and validating predictions through ground-truthing and ecological monitoring to enhance the reliability 
of SDMs in guiding conservation and public health interventions.

Conclusion

Snake envenomation is a significant medical emergence in India, disproportionately affecting the economically deprived. 
Numerous studies have identified India as the most severely impacted country globally, with the highest number of 
snakebite fatalities, primarily attributed to the Big Four species. Furthermore, previous research has predominantly aimed 
at reducing fatalities or envenomations within the country. Species distribution models have been valuable in studying 
venomous snake distributions and assessing the impact of climate change on their range patterns. Notably, no prior 
research has integrated overlapping cropland and built-up areas with socioeconomic scenarios and healthcare infra-
structure to prioritize Indian states and districts in present and future contexts, thereby understanding and quantifying 
their vulnerability to mortality by the Big Four species. This state and district-wise risk assessment is, to the knowledge of 
the authors, the first to predict the impact of climate change on the distribution of the Big Four species while highlighting 
regions at high risk from snakebite related mortality and morbidity. Furthermore, this study incorporates socioeconomic 
factors and healthcare infrastructure to prioritize Indian states and districts for urgent medical intervention by authorities 
based on both present and future projections. The findings will significantly assist the government, international agencies, 
and non-governmental organizations in prioritizing regions for targeted intervention for mitigating Big Four envenomation 
related mortality. The projected shift in the distribution range of the Big Four snake species in India is expected to be more 
pronounced towards the northern and northeastern states. This shift significantly overlaps with agricultural and urban 
areas, increasing the risk of snakebites in these regions in the near future. Addressing the challenges posed by these 
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species as a result of climate change will require coordinated interventions from government authorities, regional and 
states and districts-level health organizations, and the international community to manage this NTD effectively in India.

Supporting information

S1 Fig.  The maps represent the study area (India) and the IUCN distribution extent of Big Four species along with 
their occurrence points retrieved from the secondary sources: (A) B. caeruleus, (B) D. russelii, (C) E. carinatus, 
(D) N. naja. The administrative layer of the map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html) 
and was created using ArcGIS software. The species photographs were provided by Anirban Chaudhuri and Raju Vyas 
through personal communication and were used with their prior permission.
(TIF)

S2 Fig.  Final set of variables retained for analysis after excluding highly correlated covariates. The figure illus-
trates the pairwise correlations (|r| < 0.8) among variables selected for B. caeruleus. The Pearson’s correlation coefficient 
is used as the primary measure. If either the Spearman or Kendall coefficient exceeds the Pearson value for a given pair, 
it is indicated with an “s” (Spearman) or “k” (Kendall) in the bottom-right corner of the corresponding cell.
(TIF)

S3 Fig.  Final set of variables retained for analysis after excluding highly correlated covariates. The figure illus-
trates the pairwise correlations (|r| < 0.8) among variables selected for D. russelii. The Pearson’s correlation coefficient is 
used as the primary measure. If either the Spearman or Kendall coefficient exceeds the Pearson value for a given pair, it 
is indicated with an “s” (Spearman) or “k” (Kendall) in the bottom-right corner of the corresponding cell.
(TIF)

S4 Fig.  Final set of variables retained for analysis after excluding highly correlated covariates. The figure illus-
trates the pairwise correlations (|r| < 0.8) among variables selected for E. carinatus. The Pearson’s correlation coefficient is 
used as the primary measure. If either the Spearman or Kendall coefficient exceeds the Pearson value for a given pair, it 
is indicated with an “s” (Spearman) or “k” (Kendall) in the bottom-right corner of the corresponding cell.
(TIF)

S5 Fig.  Final set of variables retained for analysis after excluding highly correlated covariates. The figure illus-
trates the pairwise correlations (|r| < 0.8) among variables selected for N. naja. The Pearson’s correlation coefficient is 
used as the primary measure. If either the Spearman or Kendall coefficient exceeds the Pearson value for a given pair, it 
is indicated with an “s” (Spearman) or “k” (Kendall) in the bottom-right corner of the corresponding cell.
(TIF)

S6 Fig.   The figure determines the Global Gridded Relative Deprivation Index (GRDI) v1 (2010–2020) obtained from NASA’s 
Socioeconomic Data and Applications Center (SEDAC) (https://cmr.earthdata.nasa.gov/). The administrative layer of the 
map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html) and was created using ArcGIS software.
(TIF)

S7 Fig.  Confusion matrixes, Model Calibration plots and Residual plots for B. caeruleus. Row 1 represents spa-
tial pattern of residuals where colour ramp indicates the magnitude of deviance and size represents the quantity. Row 2 
represents model calibration plot across all 5 different model for cross-validation split. Row 3 represents confusion matrix 
for all 5 models, plotted by observed vs. predicted where colour ramp from lowest value 0% (white) to 100% (red) indi-
cates the quantification of particular pair types. Column a. represents plots for BRT, Column b. represents plots for GLM, 
Column c. represents plots for MARS, Column d. represents plots for MaxEnt and Column e. represents plots for RF.
(TIF)

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s001
https://diva-gis.org/data.html
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s006
https://cmr.earthdata.nasa.gov/
https://diva-gis.org/data.html
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s007
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S8 Fig.  Confusion matrixes, Model Calibration plots and Residual plots for D. russelii. Row 1 represents spatial 
pattern of residuals where colour ramp indicates the magnitude of deviance and size represents the quantity. Row 2 rep-
resents model calibration plot across all 5 different model for cross-validation split. Row 3 represents confusion matrix for 
all 5 models, plotted by observed vs. predicted where colour ramp from lowest value 0% (white) to 100% (red) indicates 
the quantification of particular pair types. Column a. represents plots for BRT, Column b. represents plots for GLM, Col-
umn c. represents plots for MARS, Column d. represents plots for MaxEnt and Column e. represents plots for RF.
(TIF)

S9 Fig.  Confusion matrixes, Model Calibration plots and Residual plots for E. carinatus. Row 1 represents spa-
tial pattern of residuals where colour ramp indicates the magnitude of deviance and size represents the quantity. Row 2 
represents model calibration plot across all 5 different model for cross-validation split. Row 3 represents confusion matrix 
for all 5 models, plotted by observed vs. predicted where colour ramp from lowest value 0% (white) to 100% (red) indi-
cates the quantification of particular pair types. Column a. represents plots for BRT, Column b. represents plots for GLM, 
Column c. represents plots for MARS, Column d. represents plots for MaxEnt and Column e. represents plots for RF.
(TIF)

S10 Fig.  Confusion matrixes, Model Calibration plots and Residual plots for N. naja. Row 1 represents spatial 
pattern of residuals where colour ramp indicates the magnitude of deviance and size represents the quantity. Row 2 
represents model calibration plot across all 5 different model for cross-validation split. Row 3 represents confusion 
matrix for all 5 models, plotted by observed vs. predicted where colour ramp from lowest value 0% (white) to 100% 
(red) indicates the quantification of particular pair types. Column a. represents plots for BRT, Column b. represents 
plots for GLM, Column c. represents plots for MARS, Column d. represents plots for MaxEnt and Column e. represents 
plots for RF.
(TIF)

S11 Fig.  Evaluation Matrix performance across model runs for B. caeruleus. Brown - represents the correlation 
coefficient among the 5 different models. Yellow - represents the proportion of deviance explained; Green - represents the 
Proportion of correctly classified; Blue - represents Area under curve (AUC) and Pink - represents true skill statistics.
(TIF)

S12 Fig.  Evaluation Matrix performance across model runs for D. russelii. Brown - represents the correlation coef-
ficient among the 5 different models. Yellow - represents the proportion of deviance explained; Green - represents the Pro-
portion of correctly classified; Blue - represents Area under curve (AUC) and Pink - represents true skill statistics.
(TIF)

S13 Fig.  Evaluation Matrix performance across model runs for E. carinatus. Brown - represents the correlation 
coefficient among the 5 different models. Yellow - represents the proportion of deviance explained; Green - represents the 
Proportion of correctly classified; Blue - represents Area under curve (AUC) and Pink - represents true skill statistics.
(TIF)

S14 Fig.  Evaluation Matrix performance across model runs for N. naja. Brown - represents the correlation coefficient 
among the 5 different models. Yellow - represents the proportion of deviance explained; Green - represents the Proportion 
of correctly classified; Blue - represents Area under curve (AUC) and Pink - represents true skill statistics.
(TIF)

S15 Fig.  The response curves of the covariates selected by each of the participating ensemble model for B. 
caeruleus. (A) BRT, (B) GLM, (C) MARS, (D) MAXENT, and (E) RF.
(TIF)

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s009
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s010
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s011
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s012
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s013
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s014
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s015
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S16 Fig.  The response curves of the covariates selected by each of the participating ensemble model for D. rus-
selii. (A) BRT, (B) GLM, (C) MARS, (D) MAXENT, and (E) RF.
(TIF)

S17 Fig.  The response curves of the covariates selected by each of the participating ensemble model for E. cari-
natus. (A) BRT, (B) GLM, (C) MARS, (D) MAXENT, and (E) RF.
(TIF)

S18 Fig.  The response curves of the covariates selected by each of the participating ensemble model for N. naja. 
(A) BRT, (B) GLM, (C) MARS, (D) MAXENT, and (E) RF.
(TIF)

S19 Fig.  The maps represent the suitable habitat extent for B. caeruleus in the future SSP scenarios from the 
present scenario. Here the ‘class 5’ determines the extremely suitable habitat extent. The administrative layer of the map 
was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an elevation raster 
sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS software.
(TIF)

S20 Fig.  The maps represent the suitable habitat extent for D. russelii in the future SSP scenarios from the 
present scenario. Here the ‘class 5’ determines the extremely suitable habitat extent. The administrative layer of the map 
was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an elevation raster 
sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS software.
(TIF)

S21 Fig.  The maps represent the suitable habitat extent for E. carinatus in the future SSP scenarios from the 
present scenario. Here the ‘class 5’ determines the extremely suitable habitat extent. The administrative layer of the map 
was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an elevation raster 
sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS software.
(TIF)

S22 Fig.  The maps represent the suitable habitat extent for N. naja in the future SSP scenarios from the present 
scenario. Here the ‘class 5’ determines the extremely suitable habitat extent. The administrative layer of the map was 
obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an elevation raster 
sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS software.
(TIF)

S23 Fig.  The maps represent the overlapping cropland and built-up/urban areas with the suitable extent (Class 
4 and Class 5) for B. caeruleus in the future SSP scenarios from the present scenario. The administrative layer 
of the map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an 
elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS 
software.
(TIF)

S24 Fig.  The maps represent the overlapping cropland and built-up/urban areas with the suitable extent (Class 
4 and Class 5) for D. russelii in the future SSP scenarios from the present scenario. The administrative layer of the 
map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an elevation 
raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS software.
(TIF)

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s016
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s017
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s018
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s019
https://diva-gis.org/data.html
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http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s020
https://diva-gis.org/data.html
http://srtm.csi.cgiar.org/srtmdata/
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https://diva-gis.org/data.html
http://srtm.csi.cgiar.org/srtmdata/
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http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013464.s023
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S25 Fig.  The maps represent the overlapping cropland and built-up/urban areas with the suitable extent (Class 
4 and Class 5) for E. carinatus in the future SSP scenarios from the present scenario. The administrative layer 
of the map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an 
elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS 
software.
(TIF)

S26 Fig.  The maps represent the overlapping cropland and built-up/urban areas with the suitable extent 
(Class 4 and Class 5) for N. naja in the future SSP scenarios from the present scenario. The administrative layer 
of the map was obtained from the DIVA-GIS website (https://diva-gis.org/data.html). The base layer of the maps is an 
elevation raster sourced from the SRTM website (http://srtm.csi.cgiar.org/srtmdata/) and was created using ArcGIS 
software.
(TIF)

S27 Fig.  Receiver Operating Characteristic (ROC) curve illustrating the sensitivity analysis of the risk index of 
each Big Four snake species at the state level from present to different future climate scenarios. 
(TIF)

S28 Fig.  Area Under the Curve (AUC) values from the sensitivity analysis of the risk index for each of the Big 
Four snake species at the state level from present to projected future climate scenarios. 
(TIF)

S29 Fig.  Receiver Operating Characteristic (ROC) curve illustrating the sensitivity analysis of the risk index of 
each Big Four snake species at the district level from present to different future climate scenarios. 
(TIF)

S30 Fig.  Area Under the Curve (AUC) values from the sensitivity analysis of the risk index for each of the Big 
Four snake species at the district level from present to projected future climate scenarios. 
(TIF)

S1 Table.  This table lists all the initial variables considered in the study, along with their categories and data 
sources, prior to performing correlation analysis for variable selection. 
(XLSX)

S2 Table.  Model fit metrics for each of the participating modeling methods and for the final ensemble model for 
estimation of habitat suitability of the Big Four species. A total of five model algorithms were used with the thresh-
old of < 0.75 AUC score. The models were Maximum Entropy (MaxEnt), Random Forest (RF), Boosted Regression 
Tree (BRT), Generalized Linear Model (GLM), and Multivariate Adaptive Regression Splines (MARS). AUC: Area under 
Curve, ΔAUC: Change in Area under curve (Training – Cross Validation), PCC: Proportion Correctly Classified, TSS: 
True Skill Statistic.
(XLSX)

S3 Table.  The mean percentage contribution of each covariate generated from the final ensemble model for the 
Big Four species. 
(XLSX)

S4 Table.  Habitat suitable extent (Class 5) of B. caeruleus in Indian states in Present and Future Climatic Scenar-
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