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Abstract

Background

There are several known pathogens and families identified as high risk for pandemic
potential. It is essential to study these pathogens and develop medical countermea-
sures to mitigate disease prior to potential pandemics. Controlled human infection
models (CHIMs) using attenuated viral strains may offer an efficient and safe way to
do this.

Objective

Our aim was to systematically examine the literature for attenuated, but replica-
tion competent, strains of Coalition for Epidemic Preparedness Innovations (CEPI)
identified priority pathogens (Ebola, Lassa virus, Nipah virus, Rift Valley fever virus,
chikungunya virus and Middle East respiratory syndrome-related coronavirus) that
have been administered to humans.

Design

A comprehensive literature search of multiple databases was performed by an infor-
mation specialist. All search results were screened by two authors against inclusion/
exclusion criteria from a pre-specified protocol. The primary outcome was confirma-
tion that the administered viral strain could subsequently be recovered from partici-
pants. The secondary outcome was attenuated virus safety.

Results

Our searches yielded 13078 results and 5998 articles remained for screening after
removing duplicates and animal studies. Subsequently, 351 articles were selected for
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full text review and nine were included for data extraction. Four distinct attenuated
strains were identified across two priority pathogens — TSI-GSD-218 and VLA1553
for chikungunya virus and MP-12 and hRVFV-4s for Rift Valley Fever virus. Atten-

uated virus was recovered for each strain except hRVFV-4s. There were no major
safety concerns for these identified strains in Phase 1-3 studies.

Conclusions

We have identified three attenuated viral strains that may be amenable to develop-
ment into novel CHIMs for two priority pathogens. Of these, VLA1553 for chikun-
gunya is a licenced and commercially available vaccine product suitable for use in
CHIM. There is a research gap for the creation of new attenuated mutants that could
be utilised in CHIM for other priority pathogens.

Author summary

There are several families of viruses that scientists predict are most likely to
cause a future pandemic, such as coronaviruses or Ebola. Studying these
viruses ahead of time might mean we have vaccines or drugs already available
before an outbreak occurs.

Human challenge studies involve exposing healthy volunteers to germs that
might make them sick and can be an efficient way of testing vaccines or treat-
ments. It wouldn’t be safe to do that for many ilinesses that could cause a pan-
demic. However, it may be possible to use weakened versions of these viruses
instead. We have performed a thorough search of scientific papers to look for
candidates of weakened viruses to see if we could use them like this. The most
promising is a version of the chikungunya virus that is currently used as a vac-
cine.

1. Introduction

Viruses with epidemic and pandemic potential risk destabilising international econ-
omies and social order; and could cause mass illness and deaths [1]. This threat is
increased by anthropogenic climate change; land-use ecosystem changes, increased
human and livestock populations; and potentially due to bioterrorism [2]. The Coali-
tion for Epidemic Preparedness Innovations (CEPI) have targeted the manufacture
of safe vaccines, therapeutics, and diagnostics within 100 days of identification of an
emerging pandemic [3]. Modelling data suggests that over 8 million deaths and $14
trillion could have been saved if this 100-day target had been met during the COVID-
19 pandemic [4].

Whilst the causative organism of the next viral pandemic may be entirely novel (so
called “Disease X” [2]), there are several known pathogens or families identified as
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high risk for pandemic potential, particularly coronaviridae, orthomyxoviridae and filoviridae [1,5-7]. CEPI have defined
nine diseases prioritised for development of medical countermeasures (MCMs) prior to a potential pandemic: Ebola virus
disease (EVD); Lassa; mpox; Nipah; Rift Valley fever (RVF); chikungunya (CHIK); COVID-19; Middle East respiratory
syndrome (MERS); and “Disease X’ [5,8]. Development of MCMs against these viruses is essential to improve pandemic
preparedness [1,5]. As occurred in the COVID-19 pandemic, knowledge gained from studying one of these viruses may
also expedite MCM development if a novel pandemic virus were to emerge from a related family or genus [9,10].

Standard Phase 1-3 efficacy studies to develop experimental MCMs may be impossible due to limited or absent par-
ticipants to enrol into trials prior to disease outbreaks. Controlled human infection models (CHIMs) may offer an efficient
solution to this critical dilemma [11]. Traditionally, CHIMs involve deliberate exposure of an infectious dose of a pathogen
to carefully selected volunteers [12]. CHIMs may significantly accelerate the development of MCMs in a safe, efficient and
cost-effective way [13—15], for example by up- or down-selecting potential agents to ensure that only the most promis-
ing candidates are progressed to pivotal efficacy trials [14,16]. CHIM derived data has recently been used for regulatory
approvals for VaxChora for travellers [17] and the World Health Organization (WHO) pre-qualification of the use of a
typhoid conjugate vaccine (TypbarTCV) in endemic regions [18,19]. It is recognised that CHIMs may support the emer-
gency use of an investigational vaccine in a pandemic scenario [20] and therefore could be a crucial tool in pandemic
preparedness [4,16].

Given the inherent risks from some of these priority pathogens, CHIMs that incorporate wild type viral infection would
be unethical [21-23] and therefore novel approaches to study design are required. Previous studies have used attenu-
ated versions of a disease-causing pathogen to mitigate these risks [14,21,24], usually repurposing an attenuated strain
designed as a live-attenuated vaccine. This is sometimes termed ‘pseudochallenge’ [14]. The approach has been suc-
cessful in CHIM with several other diseases, most notably dengue virus [25,26], as well as tuberculosis [27], influenza
[28], rotavirus, and poliovirus [14]. Given the lack of precedent with CHIMs in these diseases and the presumed hetero-
geneity of studies, we have conducted a scoping review to systematically examine the literature for attenuated strains of
CEPI priority pathogens that have already been administered to humans. This will identify candidates that may be devel-
oped into novel CHIMs to facilitate trials for MCMs.

2. Methods

The objectives, eligibility criteria and methods for this scoping review were specified in advance and published in a pro-
spectively registered protocol on the Open Science Framework (https://osf.io/nu3bf/). The scoping review was conducted
according to methodology from the JBI Manual for Evidence Synthesis [29] and incorporates the PRISMA Extension for
Scoping Reviews (PRISMA-ScR) checklist [30] (see S1 File).

2.1. Search strategy and eligibility criteria

A comprehensive literature search was last performed on 24" February 2025 in the Cochrane Central Register of Con-
trolled Trials (CENTRAL, published in the Cochrane Library), MEDLINE (via OVID), Embase (via OVID), Science Cita-
tion Index (Web of Science), CAB Abstracts & Global Health (Web of Science) databases. We also searched the WHO
International Clinical Trials Registry Platform (ICTRP; apps.who.int/trialsearch/) and ClinicalTrials.gov (https:// clinicaltrials.
gov/ct2/home) for trials in progress. The full search terms used are included in the S2 File. There were no restrictions on
language, region, date, participant demographics, or publication status. Additionally, references of all identified reviews
were also hand-searched to identify potential additional eligible studies.

2.2. Study selection

Inclusion criteria were determined a priori: adult humans (= 18 years old); deliberately exposed to a near-whole-genome,
attenuated version of any of the following priority viruses: Ebolavirus; Lassa mammarenavirus; Nipah virus (NiV);
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Rift Valley fever phlebovirus; chikungunya virus (CHIKV); or Middle East respiratory syndrome—related coronavirus
(MERS-CoV).

For a successful CHIM, it is essential to confirm infection and clearance with microbiological or virological techniques
[27,31]. Therefore, we excluded studies of mutations that preclude representative viral replication: chemical inactivation;
irradiation; sub-unit vaccines; virus-like particles; recombinant viruses with genetic material from another virus such as
vesicular stomatitis virus or chimpanzee adenovirus; and mRNA or DNA vaccines. Studies without primary data, such as
editorials or systematic reviews were also excluded. COVID-19 has already been developed into a well-established CHIM
[32,33] and was therefore not included in this scoping review. CEPI lists a hypothetical, unknown “Disease X” as a priority
pathogen for vaccine development. An unknown disease is not amenable to human challenge so this priority pathogen
group was excluded. Some strategies for the rapid development of a CHIM for a new pathogen in a pandemic scenario
are discussed elsewhere and are outside the scope of this review [16,34—36]. Mpox was designated a CEPI Priority
Pathogen online after completion of the scoping review protocol and was not included [8].

Two investigators (DOH and VS) independently screened titles and abstracts using Rayyan (https://www.rayyan.ai/)
[37]. The first 25 title and abstracts were screened together as a pilot to ensure consistency. No automated tools were
used. All abstracts deemed potentially eligible by either author proceeded for full text review by both authors, recorded
using Microsoft Excel (Microsoft, WA, US). Discrepancies of full text studies were resolved by discussion or by a third
investigator (BM).

2.3. Data extraction

The primary outcome was confirmation the administered viral strain could subsequently be recovered from participants.
The secondary outcome was safety of the mutant viruses. Other outcomes were narratively summarised where reported,
namely: author; year; institution; mutation from wild-type; study phase; dosage; sample size; comparator; adverse events
(AE)/serious adverse events (SAE); follow-up length; and availability and regulatory requirements.

The full framework for data extraction is presented in S3 File. This was developed iteratively with input from authors
expert in CHIM development as the search developed. Data was extracted by a single-author (DOH), recorded using Mic-
rosoft Excel, and checked by a second (VS). A risk of bias assessment was conducted by a single author (DOH). We used
the original Cochrane Collaboration Tool [38] for randomised studies. This tool was the most appropriate because the
outcome of interest in our review (viraemia) was not the primary outcome of the studies evaluated and this tool provides a
general risk of bias assessment rather than against a particular outcome. Non-randomised studies were assessed using
the ROBINS-E tool [39].

2.4, Data synthesis

Some attenuated strains were investigated in more than one study. In those cases, the methodology and results of those
studies are presented together (Table 1 and S3 File). We have provided a descriptive and quantitative (where appropriate)
summary for each identified attenuated strain. A background for each pathogen is also presented prior to the description
of any identified attenuated strains.

3. Results

The literature search resulted in 13,078 studies (n=6242 for EVD, n=2517 for MERS-CoV, n=1591 for CHIKV, n=1197
for Rift Valley fever virus (RVFV), n=911 for Lassa virus (LV) and n=620 for NiV). We first removed 3653 duplicates and
then, as per our protocol, removed 3427 articles found via search-terms that referenced non-human primates, with the
option they could be included later if very limited human data was found (this step was not subsequently required). Thus,
5998 studies remained for title and abstract screening. Of these, 351 manuscripts were selected for full text review and
nine were included for data extraction (see Fig 1). Table 1 describes the characteristics of included studies and each
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Table 1. Results and characteristics of studies included after full-text review, with further detail in S3 File.

Author & Candidate name | Study |Number | Rate of recov- | Method for detection of A Adverse event | Serious Suitable for

Year & Phase | exposed | ery of attenu- attenuated virus incidence adverse CHIM
Pathogen ated virus events

McClain TSI-GSD-218 Phase 1 | 55 36.8%* Amplification in cell Overall AE rate Nil Yes

1998 CHIKV culture not reported

[40]

Edelman TSI-GSD-218 Phase 2 | 59 Not reported N/A Overall AE rates | Nil Yes

2000 CHIKV not reported

[41]

Hoke TSI-GSD-218 Phase 1 | 51 Not reported N/A Overall AE rates | Nil Yes

2012 CHIKV not reported

[48]

Wressnigg | VLA1553 Phase 1 | 120 Not reported** RT-gPCR 73% 0.8% Yes

2020 CHIKV (1/120)

[46]

Schneider | VLA1553 Phase 3 | 3082 Not reported N/A 62.5% 1.5% Yes

2023 CHIKV (46/3082)

[42]

McMahon | VLA1553 Phase 3 | 408 Not reported N/A 72.5% 1.2% Yes

2024 CHIKV (5/408)

[43]

Pittman MP-12 Phase 1 | 69 16.3% Direct plaque assay and | Overall AE rates | Nil Yes

2016a RVFV (7/143) nucleic acid amplification | not reported reported

[45]

Pittman MP-12 Phase 2 | 19 26.3% Blind passage of plasma | 89.5% Nil Yes

2016b RVFV (5/19) on Vero cells

[47]

Leroux- hRVFV-4s Phase 1 | 60 0% RT-gPCR Overall AE rate Nil No- given no

Roels RVFV (0/60) not reported recoverable

2024 virus

[44]

AE =adverse event, CHIKV =chikungunya virus, CHIM = controlled human infection model, N/A=not applicable, RT-gPCR = quantitative reverse transcrip-
tion polymerase chain reaction, RVFV =Rift Valley fever virus. *- numerator/denominator not presented (presumed 7/19) ** - Wressnigg 2020 presents
mean cohort genome copy equivalents only.

https://doi.org/10.1371/journal.pntd.0013243.t001

pathogen is described separately, with further detail in S3 File. Table 2 presents the pipeline of attenuated viruses across
the pathogens. All attenuated viruses identified in this scoping review had been developed as part of a search for an effec-
tive live-attenuated vaccine.

Of the nine included studies, five were randomised controlled trials [40—44], two were randomised controlled Phase 1
trials with a non-randomised safety or confirmatory cohort [45,46] and two were non-randomised interventional studies
[47,48]. Five of the nine studies investigated for recovery of attenuated virus [40,44—47]. S4 File presents risk of bias
assessments for the included studies. Only one study was found to be at high risk of bias [45].

3.1. CHIKV

This alphavirus is transmitted by Aedes mosquitoes and can cause explosive epidemics, particularly in urban areas
[23,60,61]. At the time of writing, there is an active epidemic in La Réunion with >47,000 cases reported since August
2024 [62]. CHIKV is endemic to several continents including Africa, Asia, the Americas and, more recently, southern
Europe [63,64]. There is international concern that climate change will increase the spread of CHIKV by expanding the
habitat for its vector into previously infection-naive populations [63,64]. Chikungunya disease is characterised by fever,

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0013243 January 2, 2026 5/18



https://doi.org/10.1371/journal.pntd.0013243.t001

PLO§- Neglected Tropical

.~ Diseases

)
Records identified from search
(n =13078): .
5 EVD (n = 6242) (I?‘ui)lg::é:es)records removed
§ MERS-CoV (n =2517) Animal studies removed (n =
= CHIKV (n = 1591) <l 3427)
€ RVFV (n =1197) il
35 LV (n=911)
NiV (n = 620)
N—
) i
Records screened ) Records excluded
(Title & Abstract) (n = 5998) (n =5647)
Reports sought for retrieval _| Reports not retrieved
2 (n=351) "l (n=4)
=
o
; }
o
(7]
Full-text reports assessed for Reports excluded:
eligibility - » Review article (n = 201)
(n =347) Editorial, trial registration or
abstract (n = 50)
Excluded method for
attenuation (n = 38)
Pre-clinical / animal (n = 29)
) No attenuated virus (n = 13)
Different disease (n = 5)
Duplicate (n = 2)

Studies included in review
(n=9)

Included

Fig 1. PRISMA Flow Diagram for the Scoping Review process. CHIKV =chikungunya virus, EVD =Ebola virus disease, LV =Lassa virus, MERS-
CoV=Middle East respiratory syndrome-related coronavirus, NiV =Nipah virus, RVFV =Rift Valley fever virus.

https://doi.org/10.1371/journal.pntd.0013243.9001

malaise and arthralgia with a case-fatality rate around 0.1%, although this can be higher in older or co-morbid adults [23].
The disease is associated with a high level of long-term morbidity as it can lead to a chronic, debilitating arthritis, which
accounts for a substantial global socioeconomic burden [65]. There are no licenced antiviral treatments against this infec-
tion [66]. There are two recently licensed vaccines against CHIKV: Ixchiq, a live-attenuated vaccine using strain VLA1553
that is discussed in detail below [67]; and Vimkunya, a virus-like particle (VLP) vaccine [68,69]. There are multiple atten-
uated CHIKYV strains that have been used in pre-clinical or animal models [70-79], although only two have proceeded to
use in humans, VLA1553 and TSI-GSD-218.

3.1.1. VLA1553. VLA1553 (initially termed A5nsP3), was developed as a single-shot live-attenuated vaccine. First
described by Hallengard et al [80], attenuation was achieved by deleting a large part of the gene nsP3 encoding the
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Table 2. Pipeline of attenuated virus controlled human infection model candidates for Coalition
for Epidemic Preparedness Innovations (CEPI) identified priority pathogens (excluding COVID-
19, mpox and “disease X”) across the translational development pipeline, organised by strains
in most advanced stage of study.

Pre-clinical Phase 1 Phase 2 Phase 3/ Post-marketing
LV [49,50] EVD [51] RVFV [47] CHIKV [42,43]
MERS-CoV [52-57]

NiV [58,59]

CHIKV =chikungunya virus, EVD =Ebola virus disease, LV =Lassa virus, MERS-CoV =Middle East
respiratory syndrome-related coronavirus, NiV =Nipah virus, RVFV =Rift Valley fever virus.

https://doi.org/10.1371/journal.pntd.0013243.t002

non-structural replicase complex protein nsP to minimise the risk of reversion. The candidate is based on the 2004—2005
epidemic La Réunion strain, produced in Vero cells and purified by centrifugation, ultrafiltration, batch-chromatography,
and sucrose gradient centrifugation. The mutated virus was shown to be genetically stable, safe and protective in a mouse
model [80], and later in a non-human primate model [81].

Wressnigg et al. conducted a Phase 1 study in 120 healthy adults using a single-shot of three escalating doses of
VLA1553 [46] (S3 File). Systemic solicited AEs were experienced by 52.5% (63/120) of participants and 10.8% (13/120)
of participants experienced severe related adverse events. There were no adverse events of special interests (AESIs)
and there was one unrelated SAE (S3 File). Following the first dose, a transient increase in viral RNA was detected in all
cohorts by quantitative reverse transcription polymerase chain reaction (RT-gPCR) using a hydrolysis probe and primers
specific to the CHIKV gene nsP1, which peaked at Day 3 and resolved by Day 14. Urinary shedding of attenuated virus
was only detected at one time point in one participant. Of note, in 94 participants administered repeat immunisation 6—12
months later, attenuated virus was not detectable by RT-qPCR and only 3.2% (3/94) of participants experienced targeted
systemic symptoms solicited by investigators.

The safety of the candidate was demonstrated in a large double-blind, multicentre, placebo-controlled, ran-
domised Phase 3 trial when given to 3082 participants (of 3093 randomised) [42]. AEs were experienced by
62.5% (1926/3082) of participants who received VLA1553, with the majority headache, fatigue and myalgia,
although 18.0% (554/3082) experienced arthralgia. SAEs were reported in 1.5% (46/3082) of participants exposed
to VLA1553 compared to 0-8% (8/1033) of participants in the placebo arm, although only two of the SAEs were
deemed related to the vaccine (one mild myalgia in a 58-year-old patient with known fibromyalgia leading to a
five-day hospitalisation for investigation and one admission for presumed syndrome of inappropriate antidiuretic
hormone secretion and atrial fibrillation in a 66-year-old patient following a fever on day 11). Recovery of attenuated
virus from the blood of participants was not attempted in this study. A second Phase 3 study of 408 participants
examining three lots of VLA1553 further confirmed the safety of this attenuated virus, although this study did also
not attempt to recover attenuated virus [43]. The use of VLA1553 as a live-attenuated vaccine (licenced as Ixchiq)
has been approved in Canada, the European Union and the UK and tens of thousands of doses have been admin-
istered globally [67,82—84]. However, use has recently been paused in adults aged over 65 in Canada and the UK
due to concern regarding post-marketing safety reports, including three deaths, in this subpopulation [84—-86]. Hav-
ing initially licenced Ixchiq for use in the USA, the Food and Drug Administration has since suspended this licence
for all adults due to these safety concerns [84].

3.1.2. TSI-GSD-218. An attenuated version of CHIKYV, later termed TSI-GSD-218 and also known as CHIK 181/clone
25, was created by Levitt et al. in 1985 from a Thai strain serially passaged in primary green monkey kidney cells and later
in Medical Research Council (MRC)-5 cells in an attempt to develop a live-attenuated vaccine [87]. The attenuation is only
mediated by two point mutations in the E2 glycoprotein [88].
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Phase 1 studies were conducted by the US Military but have been only partially published [40,48]. In the cohort of
alphavirus-naive participants a Phase 1 study [40], 36.8% (presumed 7/19) had detectable viraemia upon amplification in
cell culture for 1-2 days from Day 4-8, although none could be directly plaqued from serum. The overall number of AEs
is not reported although there was a low number of typical solicited AEs and the authors state that these were not signifi-
cantly different from the placebo cohort. Summary data from previously unpublished Phase 1 studies are presented by
Hoke et al. with no significant safety concerns reported [48].

In a Phase 2 study, 73 healthy volunteers were recruited to a randomised, placebo-controlled trial of vaccination with
TSI-GSD-218 (4:1 vaccine to placebo) [41]. Related AEs were similar across both cohorts (32% [19/59] vs 29% [4/14])
with two severe related AEs and 8% (5/59) experiencing temporary arthralgia compared to 0% in the placebo arm. The
levels of viraemia are not reported in this study. Our search did not identify any studies involving TSI-GSD-218 that were
actively recruiting since the year 2000, reportedly due to “changes in assessment of threats to military operations” along-
side “anticipated difficulties” in demonstrating efficacy [48].

3.2. RVFV

This bunyavirus is transmitted by multiple mosquito species between humans and ruminants [89]. The resultant RVF
disease is a major One Health and economic threat as it can cause epidemics of fatal disease in both humans and live-
stock [90]. RVFV is endemic to sub-Saharan Africa and the Arabian Peninsula. There is concern it could spread further
due to spill-over events from imported infected herds or via the increasing global reach of its vectors [91]. RVFV causes
a wide-spectrum of human disease including encephalitis, hepatitis, retinitis and viral haemorrhagic fever, fatal in around
20% of hospitalised patients [90,92,93]. There are currently no licenced vaccines or antivirals against RVFV for use in
humans. There are multiple attenuated versions of RVFV in the scientific literature, often developed as a live-
attenuated vaccine for animals [94—106], and based on our search, we identified two that have progressed to use in
humans [44,45,47], strains MP-12 and hRVFV-4s.

3.2.1. MP-12. First developed in the 1980s by the US military, MP-12 is an attenuated strain of RVFV created for both
human and veterinary use by performing 12 serial plaque passages of the Egyptian strain ZH548 through MRC-5 cells
in the presence of 5-fluorouracil [107]. The attenuation is based on mutations in all of the S-, M- and L-segments of the
virus [89], providing some protection against reversion to wild-type [102]. MP-12 has been shown to be generally safe and
immunogenic in ruminants [108—111] and non-human primates [112,113], whilst also causing a low level viraemia. However,
it was shown to be potentially teratogenic in early pregnancy and may cause a hepatitis in young animals [92,101].

Two Phase 1 studies of MP-12 were previously unpublished but later summarised by Pittman et al. in their Phase 1
dose escalation and route comparison study as part of the assessment of MP-12 as a live-attenuated vaccine [45]. Firstly,
four participants received undiluted MP-12 (10*# plaque forming units [PFU]) as a subcutaneous (SC) injection. All four
participants developed a mild-moderate transaminitis which resolved without sequelae. Attenuated virus was recovered
from one participant using nucleic acid amplification. A further 22 participants were randomised to placebo or four different
dilutions of MP-12 SC (S3 File). Transaminitis, raised lactate dehydrogenase and creatinine kinase (CK) are reported but
the authors summarise the vaccine as “remarkably safe” [45]. In the published data of the Phase 1 study, performed in
1996 and published in 2016, 56 healthy volunteers were randomised to various doses of MP-12 either SC or intramuscu-
lar (IM) (S3 File) [45]. No SAEs and no significant solicited symptoms are reported, however there was one self-resolving
Grade 4 transaminitis. Three Grade 4 rises in CK are also reported, although the authors comment that these were likely
related to military exercises performed by participants. Virus could be recovered by direct plating of serum in one partic-
ipant and in a further six by tissue culture amplification and in situ detection via Enzyme-Linked Immunosorbent Assay
(ELISA) (7/43 [16.3%] exposed participants).

A Phase 2 study by the same group administered 10° PFU IM to 19 healthy volunteers [47]. Solicited AEs, including
headache, fever and injection site pain, were frequent but well tolerated (S3 File). No significant related biochemical
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abnormalities and no SAEs are reported. Assessment of viraemia was performed on plasma and buffy coat specimens
collected daily for 14 days post exposure using both plaque assay and blind, double passage on Vero cells. No viraemia
was detected by direct plaque assay in any participant. Viraemia detection using blind, double passage on Vero cells was
detectable in 5/19 (26.3%) of participants (1-4 isolates per subject, between Day 4 and Day 9). There was no reversion to
wild-type in recovered virus between participants. We identified no studies that administered MP-12 to humans after 2008.
There are reports that MP-12 vaccine candidate was paused due to cold-chain and BioSafety Level-3 requirements; and
liver toxicity concerns [114].

3.2.2. hRVFV-4s. hRVFV-4s is a mutant RVF virus created by splitting the glycoprotein precursor gene to produce a
four-segment virus [115]. It has been demonstrated to be safe in mice [115], ruminants [116] and non-human primates [117],
whilst causing no detectable viraemia. A Phase 1 study of 75 participants in a placebo-controlled (3:1), dose-escalation
study of hRVFV-4s demonstrated that the attenuated virus was well tolerated with only mild-moderate solicited symptoms
and no related Grade 3—4 symptoms or SAEs [44]. Importantly, no vaccine viral RNA was detected via RT-gPCR in any
blood, urine, saliva or semen samples from participants at numerous timepoints (days 0, 1, 3, 7, 14, 28, and 180).

3.3. Ebolavirus species

Viruses within the Filoviridae are RNA viruses which cause viral haemorrhagic fever (VHF) with high morbidity and mor-
tality and is transmitted person-to-person via direct contact with infected bodily fluids [118]. It has caused devastating
epidemics across West and Central Africa, most notably the 2013-2016 West African epidemic which caused 11,325
deaths [119]. There are four species of the genus Ebolavirus that cause disease in humans: Sudan ebolavirus (SUDV),
Bundibugyo ebolavirus, Tai Forest ebolavirus (TAFV), and Zaire ebolavirus (EBOV) [120]. The SUDV and EBQV species
have historically caused most epidemics [119].

Two vaccines have been licenced in the USA or Europe: rVSVAG-ZEBOV-GP (Ervebo) [121] and Ad26.ZEBOV + het-
erologous MVA-BN-Filo boost (Zabdeno/Mvabea) [120]. Only Mvabea may provide coverage against non-EBQOV spe-
cies as it expresses EBOV, SUDV & Marburg virus glycoproteins plus TAFV nucleoprotein [122]. There are two antiviral
treatments licenced for EBOV: atoltivimab-maftivimab-odesivimab (Inmazeb) and ansuvimab (Ebanga) [123]. Attenuated
whole-genome Ebola is uncommon in the pre-clinical literature [118,124—128], although one, EBOVAVP30, has pro-
gressed to both non-human primate [129] and Phase 1 human study [51].

3.3.1. EBOVAVP30. Halfmann et al. developed a mutant that lacks the viral protein (VP) 30 gene, known as
EBOVAVP30 [118]. VP30 is an essential transcription factor for EBOV and hence this virus is replication-deficient outside
of Vero cells expressing VP30 in trans. It has been shown to be genetically stable, morphologically indistinct from wild-
type and safe in a mouse model [126]. The mutant was further inactivated with hydrogen peroxide when transferred
to a non-human primate model [129]. According to the trial registry, in 2019, a Japanese group enrolled 15-30 healthy
human volunteers to a Phase 1 study using EBOVAVP30 (named ‘iEvac-Z’) [51]. This study has not yet been published,
although a conference abstract describes “a strong safety profile in humans” [130]. As there are no further published data
to assess, the study did not meet our pre-specified inclusion criteria for this scoping review. There are press reports that
state a second study was due to open in Sierra Leone in 2024 [131].

34. LV

LV is an arenavirus endemic to West Africa [132]. It causes Lassa fever, a VHF responsible for around 5000 deaths per
year [133], for which there are no licenced vaccines or therapeutics. LV may be transmitted by rodents or person-
to-person via infected bodily fluids [49]. We identified no example of whole-genome attenuated LV that has been admin-
istered to non-human primates or humans. There are however recent examples of live attenuated viruses created by
reverse genetics and administered to guinea pigs in an attempt to create a novel live-attenuated vaccine [49,50]. The fact
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that Argentine haemorrhagic fever virus, another arenavirus causing VHF, has a licenced live-attenuated vaccine in cur-
rent use [134] gives further credence to the idea that a safe attenuated LV mutant may be feasible.

There is an example of an attenuated virus, ML29, rationally created by reassortment of LV and Mopeia virus (MOPV),
an attenuated relative of LV, that has been administered to non-human primates [135,136]. This carries the replication
machinery of MOPV and expresses major antigens of LV, however as this is genetically distinct from LV itself and only
results in a low, transient viraemia, it did not meet pre-specified criteria for inclusion in our scoping review [136].

3.5. NiV

NiV is a henipavirus that has caused sporadic outbreaks throughout Asia. It is spread by bats, livestock or human-to-
human transmission and therefore of high pandemic potential [137,138]. It can cause a lethal encephalitis with a high
case-fatality rate and has no licenced therapy or vaccination [138,139]. Whilst there are attenuated whole-genome ver-
sions of NiV in a pre-clinical setting [58,59], we identified no studies that have progressed to human use.

3.6. MERS-CoV

MERS-CoV is a coronavirus similar to severe acute respiratory syndrome coronavirus (SARS-CoV) and COVID-19, which
can cause a fatal pneumonia with a high case-fatality rate [140]. It is spread by dromedary camels or by person-to-person
contact [141]. MERS-CoV is largely contained within in the Arabian Peninsula, although it has caused a large outbreak

in South Korea when imported by a returning traveller [142]. There are no current licenced vaccines or antivirals against
MERS-CoV [143]. Whilst there are multiple attenuated whole-genome versions of MERS-CoV in pre-clinical use [52-57],
we identified no studies that have progressed to human use.

4. Discussion

We have conducted a rigorous scoping review to identify existing attenuated strains of six CEPI priority pathogens that
have been used in humans that could potentially be progressed into novel human challenge models. We have identi-

fied four such strains across two priority pathogens, although only three strains (TSI-GSD-218 [40,41,48] and VLA1553
[42,43,46] of CHIKV and MP-12 [45,47] of RVFV that produce the required virological response necessary for a CHIM
[27]. The final identified strain, hRVFV-4s of RVFV, does not cause viraemia in pre-clinical settings [117] nor was virus
detected in humans despite robust RT-qPCR testing [44]. There was insufficient published data to assess the attenuated
EBOV strain EBOVAVP30, although based on the pre-clinical data [129], it is unlikely that it would cause detectable virae-
mia for use as a primary endpoint within a CHIM. Three of the CEPI priority pathogens, NiV, MERS-CoV and LV, have no
existing attenuated strains administered to humans.

Of the three identified strains where attenuated virus may be recovered from the host, only VLA1553 has progressed to
Phase 3 testing and licensure in the form of the live-attenuated vaccine Ixchiq [42,43,67,83]. VLA1553 has been demon-
strated to be tolerable and safe and appears to produce consistent detectable viral RNA with an immunological response
similar to natural infection [46,83,144—146]. The use of attenuated virus raises concerns about reversion to wild-type,
however to date there has been no reports of this for VLA1553 and the deletion of a large part of the gene nsP3 renders
this unlikely [80]. The lack of detectable virus and markedly reduced solicited adverse events seen following re-exposure
6—12 months later can be interpreted as a proof-of-concept that VLA1553 could be useful as a challenge agent investi-
gating other MCMs against CHIKYV, with effects on attenuated viral RNA and symptoms as outcome measures. However,
the safety concerns with VLA1553 that have been identified post-licensure in older or co-morbid patients demonstrate the
importance of careful participant selection in a future hypothetical CHIM [84,85]. It is also unknown if VLA1553 would be
detectable if administered SC or intra-dermally, which would imitate a mosquito bite more closely. Nevertheless, VLA1553
remains a more promising candidate for development into a CHIM for CHIKV than TSI-GSD-218 given the greater clinical
experience and more stable mutation (S3 File).
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Typically, live-attenuated viruses are developed as early vaccine candidates and have a long history of safe use, for
example, in yellow fever, smallpox and polio [147]. However, such candidates may be discontinued as potential vaccines if
they are unacceptably reactogenic, even if they are safe and immunogenic. Reactogenicity is of lower concern in a human
challenge agent if meticulous informed consent is obtained; symptoms are mild/moderate and participants are closely
monitored. There is precedent with dengue for progressing an abandoned live-attenuated vaccine candidate (rDEN2A30)
into a successful attenuated CHIM [25,148]. The efficacy of the TV003 vaccine that was demonstrated in the CHIM by
Kirkpatrick et al. [25] was later replicated in Phase 3 field trials [149]. We postulate that this model could be imitated with
VLA1553 in CHIKV to test novel therapeutics or additional vaccine candidates that may be more suitable for pregnant,
older or immunocompromised patients than VLA1553. A safe CHIM for CHIKV would be an important advance due to: the
limitations of animal models [150]; the lack of a universally-accepted correlate of protection [23,151]; the difficulties in con-
ducting field tests due to unpredictable and often short-lived outbreaks [23,66]; and the lack of licenced antiviral [23,66].

Similarly, it may be possible to develop MP-12 into a CHIM for RVFV. It has been shown to be well tolerated and safe
in Phase 1 and 2 studies when administered both SC and IM to around 100 healthy volunteers [45,47] and is conditionally
licenced in animals [114]. However, the recovery rate of MP-12 in participants is low at 16.3-26.3%, which would neces-
sitate a large sample size in a hypothetical CHIM [45,47], although these rates are based on techniques of direct plaque
assay, nucleic acid amplification or blind passage through Vero cells. More work would be required to determine the attack
rate using contemporary diagnostic assay techniques. In order to progress MP-12 into a CHIM, a method of recovering
the strain by RT-gPCR would need to be developed. Whilst we identified no human studies that were actively recruiting
since 2008, there is suggestion in the literature that this was still being developed as a live-attenuated vaccine in 2020 by
the Sabin Vaccine Institute [102].

There are a number of other attenuated RVFV strains used in veterinary practice but none appear suitable for devel-
opment into CHIM, either due to safety concerns in the case of the Smithburn strain [89] or the lack of viraemia in the
Clone-13 strain [102]. There are also several so-called “next-generation” MP-12 strains in pre-clinical development, such
as r2segMP12, DDVax and RVax-1 [89,101]. These are strains that have been attenuated through reverse genetics of
the NSs protein, a major virulence factor, however their safety in humans or their ability to cause a viraemia is currently
unknown [89] and further study would be required before incorporation into a CHIM.

During the COVID-19 pandemic, SARS-CoV-2 CHIM studies were performed [32,33] after development of a robust
ethical framework [16,152]. These studies represent the first time a CHIM had been used in an active pandemic [32].
COVID CHIM studies provided unique data on the underlying pathophysiology [33], transmission of the disease and the
accuracy of lateral-flow testing [32]. However, recruitment to these studies still took over a year from the initial onset of the
pandemic [31], by which time vaccines had been developed and licensed using traditional (accelerated) routes. It is rec-
ognised that creating an attenuated virus may take at least a year of study during a pandemic [36], and therefore we have
searched for strains that could be used in advance of an epidemic or pandemic to model the efficacy of candidate MCMs
in the pipeline [153].

Our scoping review has several strengths. To our knowledge, it is the first review to systematically investigate existing
attenuated viral strains of priority pathogens that could be re-purposed into a CHIM. We involved an information specialist
to develop our search strategy and adhered closely to both our pre-specified protocol and recognised methodology for a
scoping review [29]. In common with all scoping reviews, our findings are dependent on the quality of the included studies
leading to some limitations. Whilst all individual candidate strains had at least one study reporting detectable attenuated
virus in blood, only four of the nine included studies reported these rates precisely [40,44,45,47]. There was also incom-

thermore, there were notable incomplete or delayed publications on early phase work with strains TSI-GSD-218 (CHIKV)
and MP-12 (RVFV) by the US military, which undermines confidence in the safety of progressing those strains into CHIM
[40,45,48]. We made a pragmatic decision to focus the scoping review on six viruses on the CEPI priority pathogen list [5],
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rather than the 23 viruses on the WHO “list of emerging pathogens for a potential future pandemic” [1], due to logistical
capacity. However, the same methodology and data collection framework could be applied to other viruses with pandemic
potential in future work.

In conclusion, there are three attenuated viral strains of two CEPI priority pathogens, CHIKV and RVFV, that have been
administered to humans that cause detectable attenuated viral RNA in blood and may therefore be amenable to devel-
opment into a novel CHIM. Of these, VLA1553 for CHIKV is a licenced and commercially available vaccine product and
therefore suitable for immediate use in CHIM. There is a research gap for the creation of new attenuated mutants that
could be utilised in CHIM for other priority pathogens, but the availability of reverse genetics systems and sound knowl-
edge of proteins such interferon antagonists, or codon deoptimization strategies could allow the future development of
such attenuated viruses.
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