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Abstract

Background

Ivermectin (IVM) is widely used in mass drug administration (MDA) programs for the
control of neglected tropical diseases (NTDs). Current regimens rely on weight- or
height-based dosing, which lead to operative challenges. This study evaluates an
age-based fixed-dose regimen for VM.

Methodology

This is an individual participant data (IPD) meta-analysis including anthropometric
data from over 700,000 individuals, across 53 NTD-endemic countries. Fixed-dose
regimens were developed based on weight distribution by age. The proportion of
individuals achieving the target range dose (200—400 pg/kg) was assessed and com-
pared to traditional dosing regimens.

Principal Findings

Fixed-doses of 3mg for pre-school children (PSAC), 9mg for school-aged children
(SAC), and 18 mg for women of reproductive age (WRA) resulted in a higher propor-
tion of participants receiving the target dose compared to weight- and height-based
regimens (79.9% vs. 32.7% and 37.3%, respectively, p<0.001). Underdosed indi-
viduals were fewer with fixed-dose (8.7%) compared to weight-based (32.6%) and
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height-based (46.3%) regimens. Although doses above the target range increased
slightly, most remained within 600 pg/kg.

Conclusions

An age-based fixed-dose regimen for IVM could improve treatment coverage and
simplify MDA activities. Simplified logistics could lead to cost savings in drug distri-
bution and administration, improving the overall efficiency of MDA programs. These
findings support the inclusion of currently excluded PSAC in IVM-based MDA inter-
ventions. More broadly, this paper provides evidence for considering the potential
policy and programmatic implications of fixed-dose IVM. This Individual Participant
Data Meta-analysis (IPD-MA) is registered in PROSPERO (CRD42024521610).

Author summary

Ivermectin is an essential drug with proven safety and effectiveness against sev-
eral parasitic infections. It plays a key role in Mass Drug Administration (MDA)
programs targeting prevalent Neglected Tropical Diseases. Currently, ivermectin
dosing is based on weight or height, which can be difficult to measure in the field
during MDA campaigns and adds complexity and workload for health workers.
These methods also carry a risk of underdosing.

In this study, we analyzed data from more than 700,000 participants across 53
countries to explore whether a fixed-dose approach could simplify MDA imple-
mentation while maintaining doses within the therapeutic range. We found that
fixed-dose regimens provide more accurate treatment for a larger proportion of
individuals, reduce the likelihood of underdosing, and only occasionally result in
doses above the recommended levels, typically by small margins and in a limited
proportion of participants. This simplified approach could ease treatment delivery
in community settings and improve coverage and operational efficiency. Our find-
ings provide practical evidence to inform policy discussions on how to streamline
and strengthen ivermectin-based MDA programs.

Introduction

The control of several neglected tropical diseases (NTD) is based on the provision of
single-dose anthelmintic drugs through mass drug administration (MDA) campaigns
[1,2]. Ivermectin (IVM) is an essential medicine widely used in MDA activities [3]. It is
the drug of choice against onchocerciasis, scabies and strongyloidiasis, and in com-
bination with other anthelmintics, against lymphatic filariasis and trichuriasis [4—7].
IVM is typically administered using a weight-based dosing regimen, with the cur-
rently recommended dose being 200 ugr/kg of body weight. In MDA programs, the
World Health Organization (WHO) recommends using height as a proxy for weight,
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implemented through a dose pole to facilitate large-scale delivery [1,8]. Under this approach, children shorter than 90cm
or weighing less than 15kg are excluded from treatment. Early clinical trials evaluating the safety and efficacy of ivermec-
tin for onchocerciasis demonstrated that single doses as high as 800 ug/kg were as safe as lower doses although some
adverse events like edematous swelling and subjective ocular troubles were more frequent at doses of 800 pg/kg in sub-
jects with onchocerciasis [9,10]. Notably, while these studies support the safety of higher doses, a clear upper safety limit
for ivermectin in humans has not yet been formally established; therefore doses nearing 800 ug/kg should be approached
with caution, especially when used for onchocerciasis.

Current IVM dosing strategies pose operational challenges in large-scale MDA programs. Several studies have shown
that height or weight-based dosing often leads to sub-therapeutic treatment in certain populations [11,12]. Additionally,
children appear to have an accelerated clearance of IVM, potentially requiring higher doses [13]. Despite its favourable
safety profile, data on IVM use in children under 5 years of age remain limited. Nevertheless, a systematic review includ-
ing 1088 children under 15kg of body-weight that received IVM for a variety of indications suggests a safety profile com-
parable to that observed in older children [14]. This evidence coupled with accumulating information on the safety of IVM
at doses several times higher than currently recommended, supports the exploration of alternative fixed-dose regimens
[15—17]. The European Medicines Agency’s Positive Opinion supporting age-based fixed-dosing of 9 and 18 mg of IVM in
combination with albendazole aligns with this broader safety margin for IVM [18].

With over 500 million people receiving IVM annually through MDAs alone, the potential public health benefits of a
fixed-dose approach are substantial [19,20]. This analysis aims to identify an alternative age-based dosing regimen
using anthropometric data to evaluate fixed-dose regimens and compare drug exposure across current and exploratory
strategies.

Methods
Ethics Statement

This retrospective observational study did not require ethical approval, as it involved the analysis of de-identified data
from previously conducted studies. All data were fully anonymized, ensuring that individual participants could not be
identified and that confidentiality was maintained. The study relied on simulated ivermectin doses applied to hypotheti-
cal scenarios; no actual medication was administered, eliminating risks to any participants. Additionally, the study was
conducted in accordance with established ethical standards, including the guidelines of the Council for International
Organizations of Medical Sciences (CIOMS) in collaboration with the WHO, and the principles outlined in the Declara-
tion of Helsinki [21].

Study design and registration

This is an Individual Participant Data Meta-analysis (IPD MA). The protocol has been registered at the International pro-
spective register of systematic reviews PROPSERO: (PROSPERO 2024 CRD42024521610): https://www.crd.york.ac.uk/
prospero/display_record.php?ID=CRD42024521610.

Eligibility criteria
Studies were eligible if they provided individual-level data on participants’ anthropometric measurements and geographic

location, regardless of the original study objectives or reported outcomes.
Study-Level Inclusion Criteria:

1. Study design: Observational studies, public health surveys, and clinical trials.

2. Geographic scope: Countries or sub-national districts where preventive chemotherapy for STH is recommended
according to WHO guidelines [1,22].
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3. Time frame: Studies conducted between January 1, 2010, and December 31, 2024.

4. Data availability: Studies including anthropometric data. Participants with missing or incomplete IPD for any mandatory
variable (country, age, sex, and weight) were excluded. Individuals with missing height data were retained, as height
was considered non-essential.

5. Timing of data collection: Only baseline data was included.
Study-Level Exclusion Criteria:

1. Studies providing only aggregated data.

2. Studies enrolling severely ill subjects, such as those focused on tuberculosis or severe malaria.
Individual-Level Inclusion Criteria:

1. Age Groups: pre-school age children (PSAC): 2—4 years (24—59 months); school age children (SAC): 5-15 years;
woman of reproductive age (WRA): 15-49 years.

2. Sex: Male and female (PSAC and SAC); only female adults (WRA). Data for adult males were unavailable [1].

IPD collection process and data integrity

IPD were obtained from two main sources: (1) studies on STH interventions conducted in endemic regions and (2) data-
sets from data repositories, accessed in compliance with their specific protocols.

The datasets underwent a five-step process: selection, standardization, compilation, cleaning, and consistency assess-
ment. First, only variables of interest were retained, excluding others from the original studies. Next, standardization
ensured consistency across datasets: age was recorded in months (children) or years (adults), weight in kilograms (one
decimal), and height in centimeters (one decimal). Each site was coded by country.

This study assumed population homogeneity, justifying a one-stage meta-analysis, and during the compilation step,
IPD from different studies were merged into three datasets: PSAC, SAC, and WRA. Cleaning followed, removing subjects
with missing data. Finally, a consistency assessment was conducted using WHO Anthro (version 3.2.2) and WHO Anthro
Plus (version 1.0.4) to detect potential measurement errors. Data were flagged as inconsistent if z-scores exceeded pre-
defined thresholds:

« PSAC: WHZ<-5or > 5; WAZ<-6 or > 5; HAZ<-6 or > 6; BAZ<-50or > 5.
« SAC & WRA: WAZ<-6 or > 5; HAZ<-6 or > 6; BAZ<-5 or > 5.

These cut-offs, set by the software, were applied to identify extreme values likely resulting from measurement errors
while accounting for diverse nutritional scenarios [23].

Risk of bias assessment

The IPD compiled for this study were collected regardless of the design or outcomes of the original studies. Only base-
line raw anthropometric IPD were included, rendering risks of bias related to outcome reporting or randomization pro-
cesses irrelevant. Data completeness and consistency across studies were assessed, and participants with missing or
inconsistent IPD were excluded according to pre-defined criteria applied systematically across all datasets. Since weight
and height measurements were not conducted by our team, potential measurement errors, inaccuracies, or data entry
mistakes could not be prevented. To minimize measurement bias, data flagged as inconsistent by the software were
excluded. However, this approach may introduce selection bias if exclusions were not proportionally distributed across
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sites or other characteristics. The potential impact of these exclusions on the representativeness of the sample was con-
sidered in the analysis.

Statistical analysis

The IPD were compiled into a database using Microsoft Excel (Microsoft, Redmond, WA). Data analysis was conducted
with R version 3.1.1 (The R Foundation for Statistical Computing, GNU General Public License). Heterogeneity analysis
was performed with the ‘metafor’ package [24]. Graphics were generated using the ‘ggprism’ extension of the ‘ggplot2’
package [25]. Map was created using QGIS version 3.43.10 (QGIS Development Team, released under the GNU General
Public License, Version 2).

We applied a random effects model to address potential residual heterogeneity across the datasets included in the
analysis and to examine the variation in effects across different subgroups. We assessed statistical heterogeneity using
the 12 statistic and 12, which allowed us to quantify the degree of variability.

Nutritional status of children was assessed using stunting proportions with 95% confidence intervals (Cl) by coun-
try. Stunting was defined as a Height-for-Age Z-score (HAZ) below -2 SD from the international reference median. HAZ
was selected as it applies to children from birth to 19 years. HAZ is also the best indicator of chronic malnutrition, often
linked to STH infections. Malnutrition severity was classified by stunting prevalence using WHO thresholds: <20% (mild),
20-29% (moderate), 30—-39% (high), and >40% (very high) [26].

The IPD were analyzed through a sequential process for the exploration of IVM dosing regimens as follows:

1) Selection of age-based fixed-dose

The distribution of weight was analyzed to assess its dispersion. Each participant’s weight was multiplied by 200 to
determine the exact IVM dose required to achieve the recommended 200 ug/kg. The median IVM dose was calculated for
each year of age. Based on this median, the fixed-dose for each target group was determined by selecting the number of
standard 3mg tablets closest to the median dose required for the upper age limit of that group.

2) Dose Calculation

The dose of IVM (in pg/kg) for each participant was calculated using three methods: i) Weight-based; ii) Height-based
(dose-pole); iii) Fixed-dose as determined in Step 1. The weight and height- based doses used were those recommended
by WHO [1,13].

Ivermectin dosing method Not currently recommended 3 mg 6 mg 9 mg 12 mg 15 mg
Weight-based <15Kg 15 -24 kg 25-35kg 36 - 50 kg 51-65kg 66 — 79 kg
Height-based <90 cm 90 -119 cm 120 -139 cm 140 - 159 cm >159 cm

3) Dose Categorization

Participants were categorized into six groups based on the dose received under each regimen:

» Not currently recommended: For weight-based regimen, body weight <15kg; for height-based regimen, height <90cm.
* Underdosed: <200 pg/kg.

» Target Range: 200—400 ug/kg.

» Above the Target Range (Level 1): 401-600 pg/kg.

Above the Target Range (Level 2): 601-800 pg/kg.
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» Above the Target Range (Level 3):>800 ug/kg.

4) Comparison Between Regimens

The proportion of participants in each dosing category (not currently recommended, undertreated, correctly treated,
or above the target range) was calculated for each treatment regimen. To assess differences in proportions across regi-
mens, pairwise comparisons with Chi-square test (a=0.05) was performed. Additionally, median doses across the three
regimens were compared using the Related Samples Friedman Test, stratified by group (PSAC, SAC, WRA). If signifi-
cant differences were found, Wilcoxon signed-rank tests with Bonferroni correction were applied for post-hoc pairwise
comparisons.

Outcomes

The primary outcome of this study was: proportion of participants receiving target range dose of IVM (200—400 pg/kg)
with a fixed-dose regimen based on age. A secondary outcome was the comparison of the performance of the fixed-dose
regimen with height or weight-based dosing methods. The measure of effect for this outcome were proportion and median
doses differences between dosing regimens.

Additional secondary outcomes were prevalence of undernutrition in children globally and by country in the study popu-
lation and identification of a threshold age at which ivermectin administration may be contraindicated.

Results
IPD database sources

IPD were gathered from various original study datasets through the following sources: 1) Three studies focused on
soil-transmitted helminths (STH) interventions conducted in Africa and Latin America [16,17,27]; 2) One study accessed
via the Harvard Dataverse data repository [28]; 3) One dataset downloaded from the Digital Commons@Becker data
repository [11]; 4) Datasets from 48 countries were requested to the Demographic and Health Surveys (DHS) Program
[29]; and 5) Datasets from 57 studies were requested from the Infectious Diseases Data Observatory (IDDO) [30-88].
The participant flow diagram is shown in Fig 1, and additional details on the included studies are provided in the support-
ing information (S1 Table). During data checking, we identified issues in some individual records, such as missing values
for age or weight, implausible height or weight measurements, or formatting errors in age registration. We addressed
these problems by applying predefined exclusion criteria to remove affected participants from the dataset. These criteria
were applied systematically across the full dataset and were not specific to any study, country, or subgroup. Importantly,
the distribution of excluded participants was similar across countries, and no significant geographical selection bias was
introduced. No entire study was excluded from the analysis; only individual participants were removed based on the crite-
ria described. After the selection process, a total of 741,700 participants from 53 countries were included. The countries
where preventive chemotherapy is recommended by WHO and those with available data to be represented in the study
are highlighted in Fig 2.

Characteristics of the study population

The study population included 398,376 WRA and 343,324 children, of whom 173,205 (50.4%; 95% CI: 50.3-50.6) were
female. Among children, 317,401 (92.4%; 95% Cl: 92.3-92.5) were PSAC, while 25,923 (7.55%; 95% ClI: 7.4—7.6) were
SAC. In accordance with WHO definitions, the WRA category begins at 15 years of age [89]. In this analysis, 15-year-old
participants were included in both the SAC and WRA groups: in the SAC group to reflect data availability for both sexes,
and in the WRA group, which included only females. Presenting this age in both categories highlights that 15 years could
serve as a practical cut-off age for transitioning between fixed-dose regimens in MDA programs. Heterogeneity analysis
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S Digital Commons@Becker (n= 26,836)
g IPD from studies of interventions against STH:
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§ Not eligible age (n= 334,243)
3] 3
7]
Analyzed with WHO anthro or Excluded for inconsistencies of
WHO Anthro plus anthropometric data
(n=813,486) (n=7,7886)
_5 Participants included in the IPD MA
& (N=741,700)
©
£

PSAC (n= 317,401)
SAC (n= 25,923)
WRA (n= 398,376)

Fig 1. Flow diagram of participants of the Individual participant data meta-analysis of ivermectin fixed-dose feasibility.

https://doi.org/10.1371/journal.pntd.0013059.9001

showed I? values of 17%, 18%, and 15% for PSAC, SAC, and WRA, respectively, indicating minimal heterogeneity. 12 val-
ues (0.005, 0.01, and 0.01) further confirmed low variability, suggesting that despite structural differences, heterogeneity
across datasets was minimal.

Nutritional status assessment revealed that 120,718 children (35.2%; 95% CI: 35-35.3) were stunted (HAZ<-2). Con-
sequently, the severity of malnutrition, as indicated by stunting prevalence, was classified as high across all countries (S2
Table) [26].

Ivermectin dose exploration

Fixed-dose selection. The distribution of weight by age was analyzed, revealing a homogeneous sample. Among
PSAC, the mean weight was 12.93 (SD: 2.45) kg, with a median of 12.70kg (IQR: 11.2-14.4). In SAC, the mean was
27.25 (SD: 11.08) kg, and the median 24.80kg (IQR: 19-33). For WRA, the mean was 54.99 (SD: 11.96) kg, and the
median 52.90kg (IQR: 46.8-60.9).

The weight-based calculation identified a median IVM dose of 2.54 mg (IQR: 2.24—2.88) for PSAC; 4.96 mg (IQR:
3.8-6.6) for SAC; and 10.58 mg (IQR: 9.36—12.18) for WRA, required to achieve the dose of 200 ug/kg. Percentiles of the
calculated IVM dose by year of age for children and by group for WRA are presented in Table 1 (also in S1 Fig).

Based on these findings, fixed-dose regimens of 3mg for PSAC and 9mg for SAC were chosen to approximate the
median required dose for the upper age limit of each group of children (median value for 4 yo for PSAC, median value for
15 yo for SAC). For WRA, an 18 mg fixed-dose was selected to approximate the 95th percentile for this group, minimizing
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[ Countries requiring preventive chemotherapy for soil-transmitted helminthiases: 2023 - WHO
Countries represented in this study (Individual participant data available)

Fig 2. Map showing the countries included in the Individual Participant Data Meta-analysis (N=741,700). Note: Map created in QGIS. Base
map data from Natural Earth (public domain). Available at: https://www.naturalearthdata.com. Map of countries requiring preventive chemotherapy for
soil-transmitted helminthiases in 2023 adapted from WHO (https://apps.who.int/neglected_diseases/ntddata/sth/sth.html).

https://doi.org/10.1371/journal.pntd.0013059.9002

Table 1. Percentiles of calculated amount of ivermectin required for reaching the recommended dose (200 pg/kg) by age (N=741,700).

Target Group | AGE 5th Percentile | 10th Percentile | 25th Percentile | 50th Percentile | 75th Percentile | 90th Percentile | 95th Percentile
(years) | (mg) (mg) (mg) (mg) (mg) (mg) (mg)
PSAC 2 1.72 1.82 2.02 2.22 2.46 2.70 2.88
(n=317,401) |3 2.00 2.10 2.32 2.56 2.84 3.10 3.30
4 2.24 2.40 2.60 2.88 3.18 3.50 3.72
SAC 5 2.40 2.80 3.00 3.20 3.60 4.00 4.40
(n=25923) ¢ 2.80 2.80 3.20 3.60 4.00 4.63 5.00
7 3.00 3.06 3.43 4.00 4.52 5.05 5.60
8 3.20 3.40 3.90 4.40 5.00 5.61 6.20
9 3.42 3.80 4.20 4.80 5.60 6.26 7.00
10 3.80 4.00 4.60 5.20 6.00 7.00 7.80
11 4.20 4.60 5.03 6.00 6.87 8.00 9.00
12 4.40 4.80 5.20 6.12 7.40 8.80 10.00
13 5.00 5.41 6.20 7.28 8.60 10.20 11.39
14 5.53 6.00 7.00 8.00 9.40 10.94 12.30
15 6.20 6.80 7.60 8.80 10.00 11.60 12.94
WRA 15-45 7.94 8.42 9.36 10.58 12.18 14.06 15.46
(n=398,376)

Note: Dose calculated for each participant with the formula: weight (kg) * 0.2mg.

https://doi.org/10.1371/journal.pntd.0013059.t001
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the risk of underdosing (S3 Table). The median dose of IVM with the selected fixed-dose regimen by age group was 236
Ma/kg (IQR: 208-267) for PSAC; 363 ug/kg (IQR: 272—-473) for SAC and; 340 pg/kg (IQR: 295-384) for WRA. The highest
variability observed was in the SAC group. Fig 3A displays the distribution of IVM dose by age group using the fixed-dose
regimen with median and IQR.

Comparison between dosing regimens

Considering the entire study population (PSAC, SAC, and WRA), the fixed-dose regimen resulted in the highest propor-
tion of participants receiving the target range dose (79.9%), compared to the weight-based (32.7%) and height-based
regimens (37.3%), (p<0.001). Conversely, the fixed-dose regimen had the lowest proportion of participants classified

as underdosed (8.7%), with this difference also being statistically significant compared to the other regimens (p<0.001)
(Table 2). The proportion of participants classified as receiving doses above the recommended range was significantly
higher with the fixed-dose regimen (11.27%) compared to the weight-based and height-based dosing methods, which had
proportions of 0% and 0.003%, respectively. Among participants who received doses above the target range, most fell
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Fig 3. Ivermectin dose (pg/kg) distribution across dosing regimens. Panel A: Ivermectin dose using the fixed-dose regimen by age group (PSAC,
SAC, and WRA); Panel B: Distribution of ivermectin doses across the study population, comparing weight-based, height-based, and fixed-dose methods
(N=741,700).
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Table 2. Proportion of participants within each dosing category by dosing regimen (N=741.700).

Dose Category Weight-Based Height-Based (HB) | Fixed-dose (FD) % | p-value
(WB) % (95% ClI) % (95% Cl) (95% CI) p1: WB vs HB

p2: WB vs FD

p3: HB vs FD
Not currently recommended* 34.7 (34.6 — 34.8) 16.4 (16.3 — 16.5) NA p1:<0.001
Underdosed (< 200 pgr/kg) 32.6 (32.5-32.7) 46.3 (46.2 — 46.5) 8.7 (8.6 — 8.8) p1; p2; p3:<0.001
Target Range Dose (200 — 400 ugr/kg) 32.7 (32.5-32.8) 37.3(37.2-37.4) 79.9 (79.8 — 80) p1; p2; p3:<.001
Above the Target Range Dose Level 1 (401 — 600 pgr/kg) |0 0.003 (0.002 — 0.004)  11.1 (11 -11.2) p1; p2; p3:<0.001
Above the Target Range Dose Level 2 (601 — 800 pgr/kg) |0 0 0.15(0.14-0.16) |p1:1-p2; p3:<0.001
Above the Target Range Dose Level 3 (< 800 ugr/kg) 0 0 0.02 (0.016 — 0.022) | p1: 1 - p2; p3:<0.001

Notes: * Not currently recommended: For weight-based regimen, body weight <15kg; for height-based regimen, height <90cm. NA: No exclusion criteria
were applied for the age-based fixed-dose regimen.

https://doi.org/10.1371/journal.pntd.0013059.t002

within level 1 (400-600 ug/kg). However, 0.02% exceeded the highest threshold (>800 ug/kg, level 3), with the maximum
recorded dose reaching 1125 ug/kg. Fig 3B illustrates the distribution of IVM doses across the study population, present-
ing the median and interquartile ranges for each dosing approach, with most participants receiving doses below the target
range of 200—400 ug/kg with both weight-based and height-based regimens. Fig 4A, 4B and 4C display the proportion of
participants by dose category and by dosing regimen for each age group.

Differences in the proportion of participants receiving the target IVM dose with the fixed-dose regimen were analyzed
across countries. No significant variation was found between countries with a high prevalence of malnutrition and those
without. Moreover, countries with severe stunting had fewer underdosed participants with fixed-dose compared to other
countries.

In the comparison of median IVM doses, the fixed-dose regimen (median dose: 298; IQR: 269-330 ugr/kg) consis-
tently provided a higher dose compared to the weight-based (median dose: 112; IQR: 99.5-189) ugr/kg) and height-
based (median dose: 181; IQR: 110-206 pgr/kg) regimens. Additionally, current regimens failed to achieve the intended
200 ug/kg dose. In contrast, the fixed-dose regimen consistently maintained doses within the target range. In PSAC, the
fixed-dose regimen provided a higher dose than both the height-based (Z=-321.021, p<0.001) and weight-based regi-
mens (Z=-438.539, p<0.001). In SAC, the fixed-dose regimen yielded a higher dose than the height-based (Z=-63.915,
p<0.001) and weight-based regimens (Z=-126.721, p<0.001). In WRA, the fixed-dose regimen again provided a higher
dose compared to both the height-based (Z=-245.987, p<0.001) and weight-based regimens (Z=-546.611, p<0.001).
Since all comparisons yielded consistently low p-values (p<0.001), Bonferroni correction was not required.

Sex differences

In the PSAC group, the median weight was 13kg (IQR: 3.2kg) for boys and 12.5kg (IQR: 3.2kg) for girls. A significant
difference in weight distribution between sexes was observed, as confirmed by the Mann-Whitney U test (p<0.001). In
the SAC group, boys had a median weight of 24 kg (IQR: 13kg), while girls had a median weight of 25kg (IQR: 14kg). A
statistically significant difference was also identified in this group (Mann-Whitney U test, p=0.046). In the PSAC group,
79.6% of boys and 83.8% of girls received the recommended dose of IVM with the fixed dose of 3mg. Additionally, 0.2%
of boys and 0.4% of girls received doses above the recommended range (200-400 pg/kg), with these differences being
statistically significant (Fisher’s exact test, p<0.001). No child in the PSAC group, regardless of sex, received a dose
above 600 pg/kg.

In the SAC group, 50.9% of boys and 51.5% of girls achieved the recommended dose using the fixed dose of 9mg;
this difference was not statistically significant (Fisher’s exact test, p=0.154). However, when analysing doses above the
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recommended (400 pg/kg), 42% of boys and 40% of girls exceeded this threshold with a statistically significant difference
(p=0.039). Within this group, only 0.5% of boys and 0.6% of girls received doses above 800 ug/kg, and this difference
was not statistically significant (p=0.232). Sex-based differences are presented in S2 and S3 Figs.

PSAC subgroup analysis

Among PSAC, 80.7% (95% CI: 80.6—80.9) of children were excluded from IVM use based on the weight-based regi-
men, as their weight was below 15kg. In contrast, 37.9% (95% CI: 37.8-38.2) were excluded based on the height-based
approach. This difference was statistically significant (p<0.001). Fig 5A illustrates the correlation between weight and
height among PSAC participants. Fig 5B further highlights some lack of concordance between these two criteria, as the
intersection of a 15kg weight and 90 cm height aligns with the 95th percentile.

If a fixed 3mg dose were administered to all PSAC without applying any anthropometric criteria for exclusion, the
median dose delivered would be 236 pg/kg (IQR: 446 pg/kg). Under this approach, 81.1% (95% CI: 81.5-81.8) of children
would receive a dose within the recommended range. Less than 0.3% (95% CI: 0.2-0.3) would exceed 400 pg/kg, and
none would surpass 600 ug/kg.

Regarding the threshold age for ivermectin administration, children typically reach 15kg between 4 and 5 years of age
(median weight: 14.4kg at 4 yo and 16kg at 5 yo). However, our findings suggest that children aged 2 years and older
could receive a 3mg dose without exceeding the 600 ug/kg upper limit, irrespective of current contraindication criteria. Fig
5C depicts the median dose achieved by age in PSAC under a fixed 3mg dosing regimen.

Discussion

This IPD meta-analysis, which included 741,700 participants from 53 NTD endemic countries, provides a compre-
hensive assessment of fixed-dose ivermectin regimens. By modelling drug exposure under different dosing methods
and calculating the dose that each participant would receive, our analysis demonstrates that an alternative age-based
fixed-dose regimen achieves therapeutic dosing in a higher proportion of individuals compared to weight- and height-
based regimens. Furthermore, we found that a simplified dosing approach reduces systematic underdosing without

a great risk of exceeding established safety thresholds. This alternative approach, aligned with existing public health
classification of at-risk groups (PSAC, SAC and WRA), could simplify drug administration logistics while contributing
to dose optimization [1].

Compared to weight- or height-based approaches, an age-based fixed-dose regimen reduces wide-spread underdosing
and, significantly increases the proportion of adequately treated individuals, with small risk of doses over 800 ug/kg. Our
findings align with those of Goss (2019) regarding IVM underdosing in adult populations and further expand the evidence
of this issue in school-aged children (SAC). This concern was also highlighted by Buonfrate (2023), who found that fewer
than 50% of SAC participants achieved the optimal dose with the current dosing approaches [11,90].

Available data indicate that IVM doses of 600 ug/kg, and possibly 800 ug/kg, are safe and suggest that the target dose
range for IVM is due for reconsideration [15—17]. This supports the feasibility of implementing age-based fixed-dose regi-
mens in PSAC, SAC, and adults, ensuring doses remain within the therapeutic index. In adults, trials have demonstrated
the safety of single doses up to 2,000 pg/kg in healthy volunteers and daily doses of 1,200 ug/kg for five consecutive days
in COVID-19 patients [91,92].

While these findings support the feasibility of higher and age-based fixed-dose regimens, safety remains a key con-
cern, particularly regarding the potential risks associated with exceeding recommended dose thresholds. Although iver-
mectin does not normally cross the blood—brain barrier, there is a theoretical risk of increased permeability in individuals
with severe malnutrition, potentially elevating the risk of central nervous system toxicity. Despite the safety profile of iver-
mectin is well established, with millions of doses administered worldwide, serious neurological events have been reported,
mostly in individuals with high-intensity Loa loa infections or during treatment for onchocerciasis [93]. Additionally, rare
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https://doi.org/10.137 1/journal.pntd.0013059.g005

genetic mutations affecting drug transport mechanisms can predispose individuals to severe adverse effects and could
become more relevant in large-scale MDA campaigns [94]. These considerations highlight the importance of including
robust pharmacovigilance systems (both active and passive) as an essential component of any intervention using fixed-
dose strategies based on age, despite the logistical and financial challenges they may entail.

Regarding potential sex-based differences in dosing, our stratified analysis indicated that while some differences were
statistically significant, they are unlikely to be clinically relevant. No clear pattern emerged suggesting a disproportionate
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risk of misdosing between males and females under age-based fixed-dose regimens. This finding aligns with current iver-
mectin dosing methods, which do not differentiate between sexes.

PSAC are systematically excluded from ivermectin treatment based on age, weight, or height criteria. However, these
exclusion thresholds are inconsistently applied and not clearly aligned with the actual risk of overdosing. For example,
age-based criteria often exclude children under five, even when their weight exceeds 15kg [7]. Similarly, weight- and
height-based regimens do not align with standard growth curves, resulting in poor concordance and the unnecessary
exclusion of eligible children. This is especially concerning given the high burden of diseases like soil-transmitted hel-
minthiases and scabies in PSAC, and their increased vulnerability to related morbidity. Our findings suggest that a fixed
3mg dose would achieve adequate drug exposure in most PSAC, while addressing concerns about potential overdosing
[13,95]. The observed drug exposure by age aligns with the systematic review by Jittamala et al., which found a compa-
rable safety profile in children weighing below and above 15kg [14]. Revisiting current exclusion criteria could prevent
unnecessary barriers to treatment and support more equitable access of young children to ivermectin-based interventions.

A key strength of this study is the large number of participants, all from countries endemic for STH and other NTDs.
The participants represent “real-world” recipients of MDA interventions, characterized by a high prevalence of malnutrition.
As a result, evaluating fixed-dose IVM in this population enhances confidence in the low risk of excessive dosing. It is also
relevant the homogeneity of the results across geographic regions.

This study has several limitations. SAC were underrepresented compared to PSAC and WRA, which may affect the
generalizability of findings for this group. Despite SAC receiving the highest volume of anthelmintic drugs globally through
school-based MDA programs targeting STH, anthropometric data remain scarce. Additionally, determining a fixed dose for
SAC was challenging due to weight variation, as growth in this age range is steady. The selected dose prioritized minimiz-
ing underdosing.

The study relied on secondary data and the sources of IPD was diverse, which may have introduced inconsistencies or
missing values, though heterogeneity analysis showed overall variability was low. Countries were assumed to be similar
to be analyzed as a single population, but site-specific factors, such as India’s unique nutritional and regulatory context,
warrant further investigation of those sites, beyond the scope of this study.

Findings may also lack applicability to adult males, as no IPD were available for this group. Nonetheless, given that
NTDs cause substantial morbidity in men and impact productivity in endemic regions, adult males would also likely benefit
from IVM treatment [96,97]. The fixed dose for WRA was set at the upper weight range, ensuring adequate treatment and
may also provide appropriate dosing to adult males.

The timing of these findings add urgency to the growing data suggesting that the target dose range for IVM
should be revisited. Further research will continue to contribute to our collective understanding, these results offer a
strong foundation for considering a shift in practice to a fixed-dose regimen. WHO and national NTD programs may
identify specific implementation research needs to assess the cost-effectiveness, and practical application of this
approach in endemic settings, alongside its acceptability among healthcare workers and communities. Additionally,
pharmaceutical development of paediatric formulations ensuring palatability and bioequivalence for PSAC remains
an important research gap [98,99]. The upper safety limit for ivermectin dosing has not yet been clearly established.
Further studies, including analyses of data from its widespread use during the COVID-19 pandemic, could help
define this limit more precisely [91]. However, any call for additional studies should be weighed against the risk of
prolonging the widespread use of sub-therapeutic IVM dosing, which could delay meaningful improvements in treat-
ment outcomes.

In conclusion, the findings of this study provide robust evidence to inform policy discussions on IVM dosing, supporting
the feasibility and benefits of transitioning from weight- and height-based IVM dosing to an age-based fixed-dose regimen.
They offer critical insights into drug exposure among PSAC, a group currently excluded from MDA interventions. A fixed-
dose strategy would reduce the substantial proportion of underdosed individuals without increasing the risk of toxicity [18].
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Taken together, these findings present a compelling case as policy-makers at international, regional, and national levels
consider updating treatment guidelines. The potential public health benefits -greater efficiency, broader coverage, and
improved community engagement-underscore the importance of translating this evidence into action.
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