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Abstract 

Background

Post-kala-azar dermal leishmaniasis (PKDL) appears as a rash in some individuals who have 

recovered from visceral leishmaniasis caused by Leishmania donovani. Today, basic knowl-

edge of this neglected disease and how to predict its progression remain largely unknown.

Methods and findings

This study addresses the use of several biochemical, haematological and immunological 

variables, independently or through unsupervised machine learning (ML), to predict PKDL 

progression risk. In 110 patients from Sudan, 31 such factors were assessed in relation 

to PKDL disease state at the time of diagnosis: progressive (worsening) versus stable. To 

identify key factors associated with PKDL worsening, we used both a conventional statisti-

cal approach and multivariate analysis through unsupervised ML. The independent use of 

these variables had limited power to predict skin lesion severity in a baseline examination. 

In contrast, the unsupervised ML approach identified a set of 10 non-redundant variables 

that was linked to a 3.1 times higher risk of developing progressive PKDL. Three of these 

clustering factors (low albumin level, low haematocrit and low IFN-γ production in PBMCs 

after Leishmania antigen stimulation) were remarkable in patients with progressive dis-

ease. Dimensionality re-establishment identified 11 further significantly modified factors 

that are also important to understand the worsening phenotype. Our results indicate that 

the combination of anaemia and a weak Th1 immunological response is likely the main 

physiological mechanism that leads to progressive PKDL.

Conclusions

A combination of 14 biochemical variables identified by unsupervised ML was able 

to detect a worsening PKDL state in Sudanese patients. This approach could prove 
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instrumental to train future supervised algorithms based on larger patient cohorts both for 

a more precise diagnosis and to gain insight into fundamental aspects of this complication 

of visceral leishmaniasis.

Author summary
Post-kala-azar dermal leishmaniasis (PKDL) is a neglected disease that causes stigmatiza-
tion and carries a significant socioeconomic and personal burden in South Asia and East 
Africa. Currently, predicting its progression to a severe form remains largely unknown. 
In this study, we used machine learning (ML) methods to identify biomarkers of disease 
progression in PKDL using clinical, biochemical, haematological, and immunological 
data from a large cohort of Sudanese patients with either progressive (worsening) or sta-
ble conditions at diagnosis. For the first time, this study identified a combination of pa-
tient factors that may help provide a more accurate diagnosis of difficult-to-treat PKDL 
cases, with potential implications for improving patient management and quality of life.

Introduction
Post-kala-azar dermal leishmaniasis (PKDL) is a dermal complication of visceral leishmaniasis 
(VL) caused by Leishmania donovani. Presently, it emerges as a new neglected disease seen 
mainly in two regions: South Asia (India, Nepal, Bangladesh) and East Africa, where Sudan 
shows the highest incidence [1–4]. Although mortality from PKDL is low, it is a stigmatizing 
disease that carries a significant socioeconomic and personal burden [5,6]. There is also con-
cern that patients with PKDL could be a reservoir of VL, and its eradication has been linked to 
effective VL control [1–4].

The clinical features of PKDL differ from South Asia and East Africa. In South Asia, PKDL 
manifests as a chronic dermal condition with polymorphic lesions (coexistence of macules/
patches along with papulonodules) [7]. This form of PKDL develops in 5-10% of patients and 
usually appears 2-3 years after VL treatment [3,8]. In East Africa, particularly in Sudan, PKDL 
include a hypopigmented macular or erythematous maculopapular rash around the mouth 
(interfering with feeding in the very young when involving the oral mucosa) and trunk, which 
may gradually extend to the entire body. Nodular forms and mixed types of skin lesions are 
also observed. The typical distribution pattern has resulted in the description of three clini-
cal grades of severity, grade 2 and 3 being the more severe. In Sudan, 50-60% of VL patients 
develop PKDL either after VL remission or even during treatment. PKDL lesions often self-
heal after 12 months, with only more severe cases requiring treatment [3,8].

In Sudan, recommended treatment is a combination of sodium stibogluconate (SSG) 20 mg/
kg plus paromomycin 11 mg/kg for 17 days or SSG 20 mg/kg/day for 40–60 days. These regi-
mens carry a high risk of kidney and liver toxicity and require prolonged hospitalization and 
painful daily intramuscular injections [1]. If treatment is not satisfactory, it can be extended by 
another 1-2 months. As second line treatment, liposomal amphotericin B can be given in hospi-
tal at 2.5 mg/kg/day for 20 days. These shortcomings mean that treatment is only recommended 
if the disease is disfiguring (grade 3), lesions are progressive, it is concomitant with anterior 
uveitis, or if patients are young children with oral lesions that interfere with feeding [9,10].

Symptoms and disease course are heterogeneous, and disease status classification only relies 
on late clinical assessment. From the appearance of PKDL lesions, it takes at least 6 months to 
identify who will progress to a worsening phenotype. However, while there is a clear need to 
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determine how to prioritize the early treatment of these cases, currently no measurable factors 
associated with a risk of progressive disease have been identified, primarily due to the limited 
understanding of the mechanisms involved in the progression of skin lesions in PKDL. It is 
hypothesized that inflammatory reactions and dysregulated inflammasome activity can lead to 
skin hypopigmentation and facilitate Leishmania persistence [11]. Additionally, chronic kidney 
disease can also cause skin issues [12,13] and renal involvement may occur due to VL-related 
kidney damage and nephrotoxic therapy [14]. But, as mentioned above, limited studies have 
been performed to explore the involvement of host immunological responses or the contribu-
tion of specific tissues to the PKDL development, likely because its neglected disease condition.

New techniques based on machine learning (ML) methods are proving to be efficient 
alternative tools for the diagnosis, stratification and treatment outcome prediction of infec-
tious diseases [10]. ML facilitates the accurate classification of elements in complex problems 
based on selected feature subsets. Although ML has been successfully applied to bacterial and 
viral infections such as sepsis and COVID-19 [11,12], respectively, its use for rare or neglected 
tropical diseases like PKDL remains largely unexplored.

The aim of this study was to identify biomarkers of disease progression in PKDL. To this 
end, we used a prognostic machine learning approach based on clinical, biochemical, haema-
tological and immunological data obtained in 110 Sudanese patients. The detection of specific 
factors associated with a worsening disease phenotype may help to rationally substantiate the 
diagnosis of difficult-to-treat PKDL cases for early preventive treatment.

Methods

Ethics statement
For the present study, we only analyzed variables determined in PKDL patients during the 
baseline examination following enrolment (before treatment) from an already published 
clinical trial (ClinicalTrials.gov NCT03399955). Safety, efficacy and immunological results 
of each arm were previously published in the context of the clinical trial (Torres et al, 2024; 
Younis BM et al., 2023 [2,15], Supporting information: S1 Trial Protocol and S1 CONSORT 
Checklist; ClinicalTrials.gov NCT03399955). Approval was granted by the independent ethics 
committee at the Faculty of Medicine, University of Khartoum, and the Sudanese National 
Medicines and Poisons Board (Ref. FM/DO/EC, Date 8.8.2019). The study adhered to the 
Declaration of Helsinki, the International Council for Harmonization Good Clinical Practice 
(GCP) guidelines, and all relevant state, local, and international laws protecting human sub-
jects’ rights and welfare. Informed consent and assent (when applicable) were obtained in line 
with regulatory requirements. Written voluntary informed consent was secured from adult 
participants and from the parents or guardians of children under 18 years old; assent from 
minors was also obtained as per country regulations.

Recruitment of patients
Our study was conducted in Geradef state, Sudan. Participants were patients with docu-
mented stable disease, disease progressing over at least 6 months, or grade 3 disease, as con-
firmed by clinical presentation and the detection of parasites either in a skin smear or by PCR 
[more details in [15]].

Patients whose disease state was described as progressive (or worsening) phenotype were 
those whose lesions were seen to worsen in 6 months. Those with lesions that remained 
unchanged over the same time period were described as having stable disease. These two clin-
ical states were used to stratify patients and to identify associated haematological, biochemical 
and/or immunological factors.
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Details of participant characteristics may be found in S1 Table

Clinical examinations
Medical history.  The medical history of each patient was recorded including PKDL type 

(macular, papular, maculopapular or plaque-like), disease state (stable or worsening in the 
past 6 months), number of months of disease, and PKDL severity grade in terms of lesion 
distribution and density (grades 1-3) [16]. For lesion distribution grading: grade 1 = mainly on 
the face with some lesions on trunk and arms; grade 2 = face, upper parts of the trunk, arms, 
and legs (gradually becoming less distal), hands and feet free of lesions; and grade 3 = all over 
body, including hands and feet. Lesion density was graded as: grade 1 = scattered lesions; grade 
2 = moderate density with normal skin between lesions; and grade 3 = dense rash, no normal 
skin [17,18]. Patients with grade 2 or 3 in terms of both lesion distribution and/or density 
are therefore considered to have severe disease. In addition, we recorded the VL treatment 
received: 60% of the patients had been given SSG and paromomycin, and 39.1% SSG [15].

Clinical laboratory tests.  Upon examination, 6 mL of blood were collected: 1 mL in EDTA 
tubes (haematological analysis), 2 mL in a dry tube (biochemical analysis) and 3 mL in lithium 
heparin tubes (cytokine assays) [15].

Ten haematological and 6 biochemical variables were determined: haematocrit, haemoglo-
bin, RBC count, WBC count and differentials (lymphocytes, monocytes, neutrophils, baso-
phils, eosinophils), platelet count; and plasma concentrations of albumin, creatinine,  
potassium, alanine aminotransferase (SGOT/ALT), aspartate aminotransferase (SGPT/AST), 
and bilirubin (S1 Table).

Immunological status
Stimulation of whole blood with soluble Leishmania antigen (whole blood assay 

[WBA]).  Whole blood samples were stimulated as previously described [19,20]. Briefly, for each 
sample an aliquot of 500 μL of blood was transferred to a control tube (unstimulated), a tube 
containing 5 μg soluble Leishmania antigen (SLA) from L. donovani, and a positive control tube with 
5 µg of phytohemagglutinin (PHA). The antigen preparation of L.donovani antigen (SLA) was carried 
out as previously described [21]. All tubes were then incubated at 37°C for 24 h. After incubation, 
supernatants were collected and stored at -80°C until cytokine/chemokine measurement.

Cytokine and chemokine determinations.  For immunodetection of cytokine and 
chemokine levels, a magnetic multiplex kit for 12 human cytokines (Human XL Cytokine 
Luminex Performance Base Kit, cat# LUXLM000), a high sensitivity kit for the determination of 
IL-22 and IL-23 (Human IL-22 High Sensitivity Magnetic Luminex Performance Assay; Human 
IL-23 High Sensitivity Magnetic Luminex Performance Assay, cat# LBHS5782 and LBHS1716) 
and a kit for TFG-β1 (TGF-beta 1 Magnetic Luminex Performance Assay, cat# LTGM100) were 
purchased from R&D Systems (Minneapolis, MN, USA) and used following the manufacturer’s 
instructions. The following 15 immunological factors: IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-13, 
IL-17A, IP-10, PDL-1, TNF, granzyme B, IL-10, IL-22, IL-23 and TFG-β1 were quantified as 
described elsewhere [20]. Data were acquired using a Bio-Plex 200 system (Bio-Rad, CA, USA) 
with automatic clustering and analyzed using Bio-Plex Manager Software (Bio-Rad).

Results for each chemokine/cytokine were expressed as the difference between SLA- 
stimulated and control plasma concentrations in pg/ml.

Statistical analysis.  Data analysis was performed with GraphPad Prism v9.0 software 
(GraphPad Software, USA). Normality was examined using the Shapiro-Wilk test, and the 
non-parametric Mann-Whitney U test (two-tailed test) used to analyse differences between 
unpaired groups. Significance was set at p ≤ 0.05.
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Statistical analysis and unsupervised machine learning
Numeric procedures were carried out using Python standard libraries and in-house 
scripts [22].

The normality of the distribution of each variable was determined by the Shapiro–Wilk test 
using the scipy.stats.shapiro function/module. The scipy.stats.ttest and scipy.stats.mannwhit-
neyu Python methods were used for the two-sided parametric Student’s t-test and non- 
parametric Mann-Whitney U test, respectively. The r value of linear regression was  
calculated with the scipy.stats.linregress module. Properties containing zero values for more 
than 80% patients were deemed sparse and not considered thereafter. Data were normalized 
using sklearn.preprocessing.robustscaler, a scaler that process data considering the median 
and the quantile range, and thus reduce the impact of outliers. Dimensionality was reduced 
through principal component analysis (PCA) using the sklearn.decomposition.PCA proce-
dure. Clustering of unsupervised machine-learning was conducted by the K-means method 
using sklearn.cluster.KMeans with default values including Euclidian distances, except the k 
(number of cluster) parameter of the Scikit-learn suite [22]. K-mean screening was conducted 
with an in-house script programmed in Python. The significance of the relationship between 
cluster content and disease state at baseline was assessed by the two-sided Fisher’s exact test 
using the scipy.stats.fisher_exact module. For agglomerative hierarchical clustering, we used 
sklearn.cluster.AgglomerativeClustering and scipy.cluster.hierarchy.dendrogram methods. Data 
were visualized with the matplotlib library. For supervised learning, logistic regression with 
ten non-redundant relevant features was carried out using sklearn.linear_model.LogisticRe-
gression and considering class weight. Grid hyperparameter tuning was performed done with 
the following values: (l1 and l2), (0.1, 1, 10) and (‘lbfgs’, ‘liblinear’,’saga’) for penalty, C and 
solver parameters, respectively. Assessment of model performance were carried out through 
Matthews correlation coefficient (MCC) using the sklearn.metrics.matthews_corrcoef method, 
due to class imbalance, and accuracy with sklearn.metrics.accuracy_score method. For that, 
data were divided into 50% training and testing with sklearn.model_selection.train_test_split, 
or the application of either five-fold cross-validation using sklearn.model-selection.KFold or 
leave one out protocol with sklearn.model-selection.LeaveOneOut.

Results

Cohort dataset and description of feature scheme
Twenty-eight of the PKDL patients (25%) satisfied clinical criteria for a worsening dis-
ease state, while the remaining individuals (82 patients, 75%) were considered to have 
stable PKDL. Lesion distributions and densities for these two phenotypes are provided in 
Table 1.

Thirty-one factors were determined: 6 biochemical, 10 haematological and 15 immunolog-
ical (Fig 1).

Conventional statistics and feature correlations
The discriminatory capacity of the 31 variables used to predict disease phenotype was assessed 
by conventional parametric and non-parametric statistical methods.

The predictive power of independent features was calculated for those with progressive 
(worsening) disease versus stable disease. Twenty-seven features followed a Gaussian distri-
bution (p < 0.05, Shapiro–Wilk test) (S2 Table). The median values of all features analyzed 
fell within normality ranges, except for haemoglobin level in the worsening group (S1 Table). 
Only four of these properties (creatinine, potassium, total bilirubin and TNF) showed weak 
significant association with the worsening phenotype (0.05 < p > 0.01, Student’s t-test). 
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None of the four non-normally distributed properties yielded significance as assessed by the 
Mann-Whitney U test (Table 2). The limited performance overall of the univariate approach 
suggested the use of multivariate procedures.

Table 1.  Clinical variables according to a stable or worsening PKDL state.

STABLE WORSENING TOTAL
N (%) 82 (74.54) 28 (25.45) 110
Age (years), median (IQR) 9 (7-11) 9 (7-10) 9 (7-10)
PKDL type, n (%)
 � Macular 1 (1.22) 2 (7.14) 3 (2.73)
 � Maculopapular 65 (79.27) 20 (71.43) 85 (77.27)
 � Papular 14 (17.07) 6 (21.43) 20 (18.18)
Distribution of lesions, n (%)
 � Grade 1 66 (80.49) 18 (64.29) 84 (76.36)
 � Grade 2 13 (15.85) 7 (25.00) 20 (18.18)
 � Grade 3 3 (3.66) 3 (10.71) 6 (5.45)
Density of lesions, n (%)
 � Grade 1 55 (67.07) 16 (57.14) 71 (64.55)
 � Grade 2 22 (26.83) 11 (39.29) 33 (30.00)
 � Grade 3 5 (6.10) 1 (3.57) 6 (5.45)

https://doi.org/10.1371/journal.pntd.0012924.t001

Fig 1.  Physiological data framework. Patient metadata and feature scheme. Created in BioRender. Torres, A. (2025) https://BioRender.com/j75e448.

https://doi.org/10.1371/journal.pntd.0012924.g001

https://doi.org/10.1371/journal.pntd.0012924.t001
https://BioRender.com/j75e448
https://doi.org/10.1371/journal.pntd.0012924.g001
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Before testing the effects of any feature combinations, correlations between all variables 
were calculated (Fig 2). Expected dependencies were detected (indicated in dark blue in Fig 
2) among haemoglobin, %haematocrit and RBC (r ≥ 0.68, p < 10-15), and between the liver 
enzymes SGOT and SGPT (r = 0.69, p = 5 x 10-17), supporting the accuracy of these experi-
mental measurements. Levels of the pro-inflammatory interleukins IFN-γ, IL-2 and TNF (r = 
0.47 – 0.70, p < 10-6) were also highly correlated. Further, when we examined ‘r’ values instead 
of ‘r2’, anti-correlations were also detected (indicated in red in Fig 2). The most remarkable 
example was %lymphocytes and %neutrophils that were anti-correlated with r value of -0.90 
(p = 10-40). All in all, detecting expected correlations serves as technical quality control of the 
measurement analysis process.

Unsupervised learning: PCA and clustering
In view of the limited univariate statistical performance of independent biomarkers, we 
adopted a multivariate analysis approach through ML. These techniques are able to find hid-
den multi-feature patterns underlying non-linear relationships in the data. Unfortunately, the 
use of supervised approximations in our case has several limitations. These include the small 
size of our cohort and class unbalance (only 25%, 28 worsening patients) involving insuffi-
cient “a priori” labelled data for training and validation, besides the uncertainty of whether 
PKDL corresponds to a unique pathophysiological mode. Instead, we explored the data 
through unsupervised ML techniques. This alternative strategy serves to detect natural groups 
of patients using the data in an agnostic way, and these groups can be analyzed later applying 
distinct classificatory scenarios [23,24].

For this purpose, it should be first noted that features show a wide range of magnitudes, 
sparsity, and the presence of outlying data. Despite their continuous nature, many measures 
were below the limits of detection (i.e.,: null). Thus, only 21 properties (of the 31 examined) 
showing non-zero values for >80% subjects were considered for further analysis (S2 Table). 
Notably, Th2 cytokine levels produced after SLA stimulation were close to zero, and these data 
were discarded during normalization for PCA and clustering. Next, we conducted a prelim-
inary data normalization step using a scaling method based on medians and interquartile 
ranges to avoid the overinfluence of some factors and particular outliers.

In a second step, we reduced data dimensionality for feature selection by principal com-
ponent analysis (PCA). Eleven principal components (PCs) accounted for > 90% (90.7%) 
of the total variance (Fig 3A). Ten properties were selected as the most important variables 
contributing to the eleventh PCs, as IL-2 was calculated as such for two of these PCs: albumin, 
potassium, SGPT, %haematocrit, %lymphocytes, platelets, WBC, IFN-γ, IL-1β and IL-2.

The two principal eigenvectors, despite explaining ≈39% of the total variance (27.8% and 
11.3%, respectively), still showed an intermingled worsening versus stable pattern (Fig 3B). 
The fact that data from subjects with both phenotypes were dispersed across the graph indi-
cates that disease state relies on a number of factors in our scheme whose variance exceeds 
that of the two features with the higher variance.

Finally, we considered that clustering methods would capture more complex correla-
tions between variables and PKDL state using the non-redundant 10mer property subspace. 
For this, we used K-means, as a widely used technique that offers easy-to-interpret results. 
K-means does not find an ideal number of clusters but this parameter (the k value) must be 
provided beforehand, and the clustering output then assessed by external metrics.

K-means clustering was conducted with k values ranging from 2 to 20. The resulting clus-
ters were assessed through consistency (or inertia, i.e., intracluster closeness) and associations 
with the worsening phenotype. Inertia decreased sharply from two to ten clusters; thereafter 
cluster partitioning did not remarkably change cluster compactness (Fig 4A). Significance for 
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each cluster was calculated with a posteriori labelling in relation to the fraction of worsening 
patients to reveal if any of the clusters generated achieved relative enrichment of this pheno-
type with respect to the remaining clusters and absolute cluster size. Only two clusters showed 
a significant increase in the worsening phenotype being the most remarkable (p = 0.0074, 
Fisher’s exact test) the 5th cluster at a clustering k value of 8 (termed here “cl5-k8”). This clus-
ter contained 33 patients of whom 16 (48.5%) had a worsening disease state. This is 3.1-fold 
more abundant with respect to the remaining subjects (control) grouped in other clusters (12 
worsening patients out of 77, 15.6%). This strongly suggests that the cl5-k8 cluster captures 
normalized values for the 10mer property subspace prone to the worsening behaviour (Fig 
4B). Despite data scarcity prevent efficient supervised approaches, this was attempted with 
logistic regression and scaled data for the ten variables. Even after intensive hyperparameter 

Table 2.  Variable analysis using conventional statistics.

Variable STABLE WORSENING Stable vs Worsening
Mean±SD Mean±SD P-value

Haematology
Basophils (%) 0.00 ± 0.00 0.00 ± 0.00 NC
Eosinophils (%) 2.33 ± 1.51 2.71 ± 1.82 0.272
Haematocrit (%) 37.11 ± 3.05 36.29 ± 4.65 0.287
Haemoglobin (g/dL) 12.54 ± 1.05 12.01 ± 1.71 0.057
Lymphocytes (%) 45.70 ± 8.05 45.14 ± 9.63 0.766
Monocytes (%) 7.74 ± 2.74 8.07 ± 3.14 0.600
Neutrophils (%) 44.23 ± 8.64 44.11 ± 9.79 0.949
Platelets (x10E3/µL) 347.99 ± 99.88 322.61 ± 79.50 0.226
RBC (x10E6/µL) 4.71 ± 0.40 4.58 ± 0.60 0.199
WBC (x10E6/µL) 7.34 ± 3.75 6.62 ± 1.91 0.334
Biochemistry
Albumin (g/L) 39.07 ± 4.16 39.31 ± 4.79 0.799
Creatinine (mg/dL) 0.39 ± 0.20 0.49 ± 0.17 0.021
Potassium (mmol/L) 3.94 ± 0.33 4.12 ± 0.30 0.011
SGOT/AST (U/L) 30.99 ± 10.17 31.43 ± 9.73 0.842
SGPT/ALT (U/L) 27.11 ± 12.71 24.86 ± 11.39 0.408
Total bilirubin (mg/dL) 0.51 ± 0.29 0.37 ± 0.25 0.029
Immunology
Granzyme B (pg/mL) 155.04 ± 307.11 41.23 ± 70.91 0.055
IFN-γ(pg/mL) 564.57 ± 826.46 287.55 ± 379.32 0.090
IL-1β(pg/mL) 457.07 ± 577.40 231.17 ± 326.78 0.052
IL-2 (pg/mL) 123.59 ± 204.16 53.17 ± 78.77 0.079
IL-4 (pg/mL) 0.26 ± 0.93 0.16 ± 0.59 0.603
IL-5 (pg/mL) 0.77 ± 1.70 0.49 ± 1.28 0.415
IL-10 (pg/mL) 39.66 ± 94.29 21.22 ± 58.14 0.333
IL-13 (pg/mL) 4.68 ± 13.03 4.57 ± 8.50 0.967
IL-17A (pg/mL) 7.02 ± 31.17 1.83 ± 4.68 0.384
IP-10 (pg/mL) 1555.06 ± 1140.01 1996.36 ± 1372.48 0.096
PDL-1 (pg/mL) 10.36 ± 19.05 8.28 ± 10.49 0.584
TNF (pg/mL) 612.65 ± 935.65 181.19 ± 318.34 0.019
IL-22 (pg/mL) 51.36 ± 126.20 15.07 ± 57.03 0.145
IL-23 (pg/mL) 0.12 ± 0.60 0.24 ± 0.93 0.425
TGF-β1 (pg/mL) 12216.23 ± 20683.62 7604.68 ± 11864.16 0.267

https://doi.org/10.1371/journal.pntd.0012924.t002

https://doi.org/10.1371/journal.pntd.0012924.t002
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tuning, maximal accuracies of 69% (MCC = 0.278), 61% (MCC = 0.252) and 66% (MCC = 
0.278) were reached using 50% data for testing, five-fold cross-validation and leave-one-out 
validation methods, respectively. This modest achievement roughly concords with the fact 
that data unsupervisedly support a rather majority trend, cluster cl5-k8 here, but not the exis-
tence of a single and pure “worsening” class.

Additionally, our analysis of metadata from patients with severe PKDL (grades 2 and 3) 
within the cl5-k8 cluster identified lesion density as the only factor that showed a signifi-
cant difference. Based on this association, patients were further stratified according to lesion 
density. Of the 33 patients in cluster cl5-k8, 26 patients (26/33, 78.78%) had grade 1 lesions 
whereas only 7 patients in this cluster (7/33, 21.2%) had a severe clinical condition (grades 2 

Fig 2.  Heatmap indicating r values for all-against-all properties > 80% non-zero numbers. The chart was built with the heatmap function of the seaborn Python 
library.

https://doi.org/10.1371/journal.pntd.0012924.g002

https://doi.org/10.1371/journal.pntd.0012924.g002
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and 3). In contrast, a larger proportion of patients with severe disease were found to group in 
another cluster: cl1-k8 (18/41, 43.9%).

When the original variable values for control and cl5-k8 subjects were recovered, these 
were within the normality range. However, they showed significant differences in terms 
of three factors used for clustering: albumin (40.0 ± 4.2 vs 37.1 ± 4.0 g/L, mean ± standard 
deviation, p = 0.0002, Student’s t-test), %haematocrit (37.4% ± 3.3 vs 35.8 ± 3.6, p = 0.025) and 
IFN-γ produced after SLA stimulation (615 ± 856 vs 211 ± 209 pg/mL, p = 0.009) (Table 3). 
Consequently, the other seven properties defining the PCA were not as relevant to describe a 
worsening condition.

In addition, significant differences were found for 11 other features not considered for 
clustering after dimensionality reduction (Fig 4C and S2 Table). In combination with the three 
factors first identified, these also emerged as important to define the worsening phenotype.

These procedures identified a total of 14 variables able to properly define a worsening 
PKDL phenotype (Table 4).

When the three variables differing most significantly in cluster cl5-k8 were represented 
three-dimensionally, clear separation was observed between patients within and outside the 
cluster (Figs 5 and S1).

When compared to the remaining clusters, cl5-k8 showed relative enrichment in worsening 
subjects for both grade 1 (38.5% cl5-k8 vs 13.3% non-cl5-k8, p = 0.05, two-tailed Fisher’s exact 
test) and more severe disease, i.e., grades 2-3 (85.7% cl5-k8 vs 18.7% non-cl5-k8, p = 0.03). 
These results suggest that, even though grade 1 lesions are considered non-severe, the presence 
of the factors described within cl5-k8 may predispose these patients to disease progression.

In addition, several other trends were identified (S3 Table), namely a higher occurrence of 
subjects of younger age (8.9 ± 2.4 vs 9.8 ± 4.5 years, means ± SD) and a higher occurrence of 
the papular PKDL form (27.3% vs 11.3%) in cl5-k8. The 16 worsening patients in cl5-k8 were 
even younger on average (8.6 ± 1.9 years) and showed longer disease durations (34.3 ± 36.0 vs 
26.6 ± 25.6 months). In none of these analyses, were other relevant factors, such as VL treat-
ment, found to play a role in the worsening phenotype.

Discussion
As the clinical manifestations of PKDL range from mild to severe, identifying specific patient 
factors associated with disease progression could help guide therapeutic decisions. In this 

Fig 3.  Dimensionality reduction by PCA. (A) Dimensionality reduction using robust normalized data. Cumulative variance by PCA. 
(B) Bidimensional scatter plot showing patient data for “stable” (blue) and “worsening” (red) PKDL.

https://doi.org/10.1371/journal.pntd.0012924.g003

https://doi.org/10.1371/journal.pntd.0012924.g003
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Fig 4.  Clustering charts. (A) K-means clustering inertia for k values from 2 to 20. (B) Significance of clinical phenotype enrichment in patients with stable (blue) 
or worsening (red) PKDL disease for clusters with k values from 2 to 20. Sphere diameter is proportional to cluster size (number of patients). Dashed grey lines 
indicate significant (p < 0.05) and highly significant (p < 0.01) values for enrichment in either stable or worsening patients. (C) Boxplot panel showing value 
distributions of features, both PCA-selected and non-selected, significantly differing in cluster cl5-k8 compared to the remaining subjects. Boxes represent the 
interquartile range; the line is the mean. Whiskers indicate up to 1.5 fold the interquartile range. Outliers are shown in circles. Significance: *p < 0.05, **p < 0.01, 
***p < 0.001.

https://doi.org/10.1371/journal.pntd.0012924.g004

https://doi.org/10.1371/journal.pntd.0012924.g004
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study, single measurable factors were inefficient at predicting PKDL lesion severity, as only 
a modest relationship with PKDL worsening was found for four variables (creatinine, potas-
sium, total bilirubin and TNF). In contrast, our ML study served to identify a combination of 
patient factors with potential implications for patient management.

Through filtered k-means clustering, several distinct clusters grouping clinical features 
and laboratory profiles were identified. One of these, the cl5-k8 cluster, comprised data from 
48.5% patients with worsening phenotype, a proportion 3.1-fold higher than for the remain-
ing patients in the cohort. Consequently, the features characterizing cl5-k8 seem to be a 
valuable set of biomarkers able to identify patients whose PKDL is progressing but who do not 
yet show severe lesions, as evidenced by the 78.78% of grade 1 patients within this cluster. In 
effect, only a small proportion of patients (21.2%) had lesion densities graded as 2 or 3. These 
PKDL patients had experienced progressive disease in the past yet were now stable within 
their severe disease state. The values of three factors (albumin, haematocrit and SLA-IFN-γ) 
selected for clustering differed significantly in the PKDL-enriched cluster compared to values 

Table 3.  Cluster cl5-k8 values. Mean ± SD for original (non-normalized) PCA variables are shown with respect to 
the same ciphers for the remaining cluster subjects (control).

Feature class Feature Control cl5-k8 P-value
Haematology %Haematocrit 37.4 ± 3.3 35.8 ± 3.6 0.025*

%Lymphocytes 45.3 ± 7.8 46.1 ± 9.6 0.61
Platelets 348 ± 105 326 ± 64 0.25
WBC 6.81 ± 1.64 7.97 ± 5.55 0.10

Chemistry Albumin 40.0 ± 4.2 37.1 ± 4.0 0.0011**

Potassium 3.96 ± 0.35 4.03 ± 0.27 0.41
SGPT 27.6 ± 13.3 24.0 ± 9.3 0.16

Immunology IFN-γ 615 ± 850 211 ± 206 0.0087**

IL-1β 463 ± 590 251 ± 308 0.055
IL-2 124 ± 210 63 ± 69 0.11

Significance: *p < 0.05, **p < 0.01

https://doi.org/10.1371/journal.pntd.0012924.t003

Table 4.  Variables defining worsening PKDL.

Variable P-value cl5-k8 vs non-cl5-k8
Albumin (g/L) 0.0011
Creatinine (mg/dL) 0.00185
Total bilirubin (mg/dL) 0.0000014
Eosinophils (%) 0.00876
Haematocrit (%) 0.025
Haemoglobin (g/dL) 0.000686
Monocytes (%) 0.01
RBC (x10E6/µL) 0.00532
Granzyme B (pg/mL) 0.011
IFN-γ(pg/mL) 0.00871
IP-10 (pg/mL) 0.00000034
TNF (pg/mL) 0.00632
IL-22 (pg/mL) 0.015
TGF-β1 (pg/mL) 0.038

https://doi.org/10.1371/journal.pntd.0012924.t004

https://doi.org/10.1371/journal.pntd.0012924.t003
https://doi.org/10.1371/journal.pntd.0012924.t004
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in the outgroup individuals, indicating these features represent the differential physiological 
core of this cluster. Consequently, lower values of albumin levels, %haematocrit and SLA-
IFN-γ production were found here to define progressive PKDL. When original dimensionality 
was re-established, a further 11 modified variables were detected in the main cluster. This 
meant that a worsening PKDL phenotype was also defined by in general lower levels of bili-
rubin, haemoglobin, and RBC, and of SLA-granzyme B, TNF, IL-22 and TGF-β production, 
and higher levels of creatinine, eosinophils, monocytes and SLA- IP-10 production. Despite 
several clinical meaning parameters were commonly detected in these patients, causal and 
precise combinations of value ranges for these properties would require further prospective 
studies. Otherwise, overinterpretation of connections between properties should be avoided 
with present data to prevent falling into the multiple comparison problem.

Through ML analysis of existing experimental data, we were able to identify key molec-
ular players affecting the pathogenesis and severity of PKDL. We noted that PKDL patients 
showing a worsening condition had lower plasma bilirubin and albumin levels than those 
with stable disease, while liver enzymes were unaltered. In studies addressing PKDL, lower 
bilirubin levels were detected in Sudanese patients compared to healthy subjects [25]. Unfor-
tunately, these variables have not been examined in PKLD patients classified according to 
disease severity. In patients with VL, higher AST, ALT and total bilirubin have been associated 
with abnormal liver function [26]. Hence, the only subtle biochemical alterations observed 
in subjects with PKDL could indicate the absence of noticeable hepatocellular injury [1,27], 
regardless of the density grade of their lesions. It has been reported that hypoalbuminemia 
impairs the healing of skin and mucous membrane lesions in patients with tegumentary leish-
maniasis or cutaneous leishmaniasis [28,29]. In turn, this protein depletion inhibits fibroblast 
proliferation, lengthens the inflammatory period, reduces collagen synthesis and wound 
tensile force, limits the phagocytic capacity of leukocytes, and increases parasite survival 

Fig 5.  Spatial representation of three of fourteen features found to define the worsening PKDL phenotype. Red dots: worsening 
patients in cluster cl5-k8; Orange dots: stable patients in cluster cl5-k8; Black dots: worsening patients outside cluster cl5-k8; Grey 
dots: stable patients outside cluster cl5-k8.

https://doi.org/10.1371/journal.pntd.0012924.g005

https://doi.org/10.1371/journal.pntd.0012924.g005
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[30]. Consequently, the lower plasma albumin observed here in individuals with progres-
sive disease might be linked to worsening of their cutaneous lesions, although other possible 
causes include inflammatory states [31] or deteriorating kidney function [32–34]. In effect, 
we detected higher creatinine and potassium levels in the progressing PKDL-enriched cluster 
and in worsening patients of the whole cohort, respectively. These findings might be related to 
potential tubulointerstitial alterations arising during previous VL [35,36], although glomeru-
lar filtration is unaffected in PKDL [25]. Unfortunately, the literature lacks reports of hepato-
renal alterations in Sudanese PKDL patients or mice models to improve our understanding of 
the impacts and of this disease and underlying causes of its progression.

The progressing PKDL-enriched cluster identified here included lowered indices of 
haemoglobin, red blood cells and haematocrit, with haemoglobin levels below the normality 
range. These blood variables have been described as unaffected in PKDL patients from India 
and Bangladesh [37], yet there are no records for Sudanese patients. Sudanese VL and PKDL 
patients have been described to feature lower haemoglobin and RBC levels [38–40]. Peculiarly, 
anaemia is a characteristic feature of patients with VL, regardless of whether they progress 
or not to PKDL [41]. Haemophagocytosis plays an important role in anaemia and has been 
related to hyper-activation of parasitized macrophages [42,43], mainly of heavily infected 
macrophages [43]. Given that patients with PKDL no longer show the leukopenia and anae-
mia seen in VL, the pathology of PKDL seems to be restricted to lesion site [37]. In our study, 
the abnormal haematological profile found in worsening PKDL patients suggests the dissemi-
nation of active infected macrophages throughout the skin, enhancing damage. Other factors 
like nutritional iron, folate or vitamin B12 deficiency could also cause these alterations [44].

Several immunological and molecular features were observed in our worsening cohort 
suggesting these are ineffective at controlling the infection. Increased monocyte and eosino-
phil counts have been reported in Sudanese patients with progressive PKDL, and this has also 
been described in Indian PKDL patients [45]. Some studies have shown evidence of eosin-
ophil phagocytosis of the Leishmania parasite [46,47]. Eosinophils can shape the local and 
systemic response to leishmaniasis through the secretion of immunomodulatory cytokines 
[48]. Accordingly, eosinophils from subjects with VL have been found to downregulate Th1 
IL-12 and IFN-γ cytokines in response to SLA [49]. In subjects with PKDL, monocyte/macro-
phage subsets appear to be alternatively activated (M2) to release anti-inflammatory cytokines 
and thus ensure Leishmania parasite survival and lesion chronicity [45]. In our patients with 
worsening lesions, SLA-specific IL-10 and TNF production was drastically diminished, and 
SLA-IP-10 levels increased. Although cytokines from monocytes were not measured, this 
profile might be related to M2 polarization [50]. In addition, we observed the low produc-
tion of SLA-specific IFN-γ and granzyme B, indicating a poor Th1 response and debilitated 
NK and CD8+ lymphocyte cytotoxic response against Leishmania-infected cells. Further, low 
SLA-IL-22 levels were found in patients with progressive PKDL. IL-22 protects against tissue 
damage during cutaneous leishmaniasis [51,52]. This cytokine is secreted by Th17 cells when 
triggered by L. donovani antigens [53]. As widely known, the Th17 response complements 
Th1 when reducing the parasite burden in VL [54], inducing the local and systemic produc-
tion of TNF and nitric oxide [4]. Consequently, a poor Th1 plus Th17 response is linked to a 
lack of immunological control, increasing the risk of leishmaniasis progression [53].

While the induction of IFN-γ, TNF, IL-2 and granzyme B by SLA has been widely linked to 
the successful resolution of VL [21,55–56], PKDL elicits a mixed Th1/Th2 immune response 
[41,57]. Although the immunological profile of progressive PKDL has not yet been described, 
based on our findings, a weaker Th1 response in these patients could be perhaps explained by 
anergy/exhaustion of T lymphocytes, and/or the low presence of memory cells or short-term 
memory against Leishmania [58]. This scenario would be compatible with the presence of the 
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parasite beyond the skin in PKDL patients [3,40,59] and with a greater propensity to develop 
extended disease [60,61].

Our study is limited by the lack of literature reports providing biochemical, haematological 
and immunological data for individuals with progressing PKDL. This could be the conse-
quence of the limitations of conventional statistics. Also, addressing rare endemic diseases 
using data-intensive tools is challenging due to difficulties in recruiting high patient numbers. 
The biomarkers detected in our constrained observational cohort may therefore not be extrap-
olatable to other endemic areas and should be validated. For example, the trends observed 
here of a younger age, longer PKDL duration, and papular PKDL type related to a worsening 
PKDL state require confirmation in studies based on metadata. Our multivariate analysis is a 
pioneer approach that needs to be completed with data from larger studies in PKDL patients 
from Sudan and from other countries such as India where a different phenotype and idiosyn-
crasy of PKDL prevails. Comparable feature schemes emerging from PKDL patient popula-
tions may be adequate to train supervised ML algorithms able to generate predictive tools for 
a precise and early diagnosis of PKDL. Importantly, these tools will help improve our under-
standing of this disease.

In conclusion, using conventional laboratory tests and advanced machine learning tech-
niques we were able to identify specific variations in key biochemical, haematological and 
immunological factors related to the differential progression of PKDL. This study can be 
considered a first step towards predicting a worse PKLD state in patients following the resolu-
tion of VL. Further research is needed to determine the applicability in clinical practice of the 
biomarkers identified in this study.
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