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Abstract

Background

Bangladesh is facing a formidable challenge in mitigating waterborne diseases risk exacer-

bated by climate change. However, a comprehensive understanding of the spatio-temporal

dynamics of these diseases at the district level remains elusive. Therefore, this study aimed

to fill this gap by investigating the spatio-temporal pattern and identifying the best tree-

based ML models for determining the meteorological factors associated with waterborne

diseases in Bangladesh.

Methods

This study used district-level reported cases of waterborne diseases (cholera, amoebiasis,

typhoid and hepatitis A) obtained from the Bangladesh Bureau of Statistics (BBS) and mete-

orological data (temperature, relative humidity, wind speed, and precipitation) sourced from

NASA for the period spanning 2017 to 2020. Exploratory spatial analysis, spatial regression

and tree-based machine learning models were utilized to analyze the data.

Results

From 2017 and 2020, Bangladesh reported 73, 606 cholera, 38, 472 typhoid, 2, 510 hepati-

tis A and 1, 643 amoebiasis disease cases. Among the waterborne diseases cholera

showed higher incidence rates in Chapai-Nawabganj (456.23), Brahmanbaria (417.44), Far-

idpur (225.07), Nilphamari (188.62) and Pirojpur (171.62) districts. The spatial regression

model identified mean temperature (β = 12.16, s.e: 3.91) as the significant risk factor of

waterborne diseases. The optimal XGBoost model highlighted mean and minimum temper-

ature, relative humidity and precipitation as determinants associated with waterborne dis-

eases in Bangladesh from 2017 to 2020.

Conclusions

The findings from the study, incorporating the One Health perspective, provide insights for

planning early warning, prevention, and control strategies to combat waterborne diseases in

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012800 January 16, 2025 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chowdhury AH, Rahman M.S (2025)

Machine learning and spatio-temporal analysis of

meteorological factors on waterborne diseases in

Bangladesh. PLoS Negl Trop Dis 19(1): e0012800.

https://doi.org/10.1371/journal.pntd.0012800

Editor: Ben Pascoe, University of Oxford, UNITED

KINGDOM OF GREAT BRITAIN AND NORTHERN

IRELAND

Received: June 6, 2024

Accepted: December 18, 2024

Published: January 16, 2025

Copyright: © 2025 Chowdhury, Rahman. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All necessary data

and source codes are available at https://github.

com/arman2018/waterborne-disease-in-

Bangladesh-from-2017-2020.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-1498-287X
https://orcid.org/0000-0001-8925-6544
https://doi.org/10.1371/journal.pntd.0012800
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012800&domain=pdf&date_stamp=2025-01-16
https://doi.org/10.1371/journal.pntd.0012800
http://creativecommons.org/licenses/by/4.0/
https://github.com/arman2018/waterborne-disease-in-Bangladesh-from-2017-2020
https://github.com/arman2018/waterborne-disease-in-Bangladesh-from-2017-2020
https://github.com/arman2018/waterborne-disease-in-Bangladesh-from-2017-2020


Bangladesh and similar endemic countries. Precautionary measures and intensified surveil-

lance need to be implemented in certain high-risk districts for waterborne diseases across

the country.

Author summary

Bangladesh is increasingly vulnerable to waterborne illnesses, exacerbated by climate

change. This study uses spatial analysis, regression, and machine learning models to inves-

tigate the spatiotemporal patterns of cholera, typhoid, hepatitis A, and amoebiasis across

districts from 2017 to 2020. Districts with the highest prevalence of cholera include Brah-

manbaria, Chapai-Nawabganj, and others. The study identifies mean and minimum tem-

peratures, relative humidity, and precipitation as the main climatic factors influencing

disease transmission. The findings highlight the need for targeted interventions, early

warning systems, and improved surveillance in high-risk areas to prevent waterborne

infections. These insights align with the One Health approach to managing health risks in

Bangladesh and similar regions.

Introduction

Waterborne diseases (WBDs) are illnesses brought on by harmful microorganisms that are

spread by water, including bacteria, viruses, and protozoa. These microorganisms might have

detrimental impacts on human health, including disability, disease, disorders, or death, if

action is delayed [1]. When contaminated water is used for drinking, cooking, or cleaning

clothing, these germs can spread [2]. However, the majority of waterborne diseases are trans-

mitted by the fecal–oral route, which is mainly brought on by improper management of waste

and sanitation. This pathway occurs when human or animal feces, such as those from rats, are

consumed by drinking polluted water or eating contaminated food. Waterborne pathogens

cause death and disability, significantly impacting public health and accelerating the onset of

waterborne illnesses [3]. WBDs include cholera, amoebiasis, typhoid, hepatitis A etc. WBDs

cause 2.2 million fatalities annually worldwide, as more than 2.1 billion individuals lack access

to safe drinking water [4]. According to the World Health Organization (WHO), as of 2019,

an estimated 9 million people fall ill with typhoid annually, and approximately 110,000 people

die from the disease each year [5].

Bangladesh faces significant risk of contracting waterborne diseases [6] because of several

issues, including persistent climate, inadequate sanitation, overpopulation, lack of pure water

access, and scarcity of medical resources [7,8]. Historically, over the past 30 years, the average

annual temperature in Bangladesh hovers around 26˚C, with seasonal fluctuations ranging

between 15˚C and 34˚C [9,10]. Elevated temperatures could potentially foster the proliferation

of waterborne diseases, making the northern and northwestern regions of the country particu-

larly vulnerable. Additionally, it’s crucial to note that the extension of summers, milder win-

ters, and unusually unpredictable monsoons may all influence the prevalence and

transmission of these ailments [8]. Bangladesh is particularly susceptible to WBDs because of

its geographical location, weather, and high population density [11], frequent flood [12] and

rising sea levels [13]. The most prevalent waterborne infections in Bangladesh include cholera,

typhoid fever, amoebiasis and hepatitis A. According to the Directorate General of Health Ser-

vices (DGHS), more than 3,400 individuals have contracted different WBDs as a result of the

floods since June 18, 2022 [14]. Prior studies has shown that meteorological factors such as
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temperature, relative humidity and precipitation impact the transmission of WBDs [15–17].

Studies have also indicated that these climatic factors, along with wind speed significantly

affect tuberculosis [18,19]. Higher humidity was positively associated with malaria and diar-

rhea [20]. Additionally, the high population density [21], and weak healthcare infrastructure

further exacerbate Bangladesh susceptible to waterborne diseases [22].

Several prior studies have employed various methods to explore the relationship between

meteorological factors and different waterborne diseases, including time series analysis [23],

the SEIAR model [24], Poisson regression model [25], lag non-linear model [26] and boosted

regression tree model [27]. However, these studies investigated the relationship as a whole and

didn’t capture the spatial characteristics of the diseases. While some research in Bangladesh

has examined the link between meteorological factors and waterborne diseases [20,28], spatial

analyses are lacking. For example, some studies [29,30] have begun exploring these patterns,

but a comprehensive spatial analysis is needed to identify the most vulnerable areas and con-

tributing meteorological factors. On the other hand, the transmission of waterborne disease is

usually influenced by various factors which exhibit a nonlinear pattern that causes several

issues. These issues can be effectively addressed by robust machine learning (ML) techniques,

which handle nonlinear relationships through methods like feature transformation, ensemble

approaches etc. ML models have proven to be highly robust and efficient for prediction and

classification across a wide range of fields, including both communicable and non-communi-

cable diseases [17,31–35]. However, their potential remains largely untapped in the realm of

waterborne diseases, particularly when it comes to analyzing continuous data. Therefore, the

objective of our study was two-fold: first, to analyze the spatio-temporal patterns of different

waterborne diseases using geospatial mapping to show incidence rates, and second, to apply

spatial regression and the best tree-based ML models to pinpoint the crucial climate factors

influencing these diseases in Bangladesh. The insights gained will help policymakers and gov-

ernment officials allocate resources to the most affected areas, enabling more targeted and

effective interventions. This will support the development of early warning systems, preventive

strategies, and control measures to address waterborne diseases and reduce their impact.

Materials and methods

Study location

Bangladesh, located in South Asia, spans latitudes between 20˚34’ to 26˚38’ north and longi-

tudes between 88˚01’ to 92˚41’ east. It stretches approximately 440 km from east to west and

760 km from north-northwest to south-southeast [36]. The country covers a total area of

147,570 square kilometers and is divided into 64 districts across 8 divisions, all of which were

subject to investigation in this study (Fig 1A) [37]. Due to its subtropical to tropical monsoon

climate, Bangladesh undergoes pronounced seasonal shifts marked by significant rainfall, hot

temperatures, and elevated humidity levels.

Data source

Our study compiled a dataset of waterborne diseases—including cholera, amoebiasis, typhoid,

and hepatitis A—and seven meteorological factors (maximum, minimum, and mean tempera-

ture, relative humidity, maximum and minimum wind speed, and precipitation) spanning

from 2017 and 2020. The meteorological data were collected in yearly format from the NASA

Langley Research Center (LaRC) website [38]. To ensure district-level data accuracy, the data

were acquired using the latitude and longitude values corresponding to each district. Instead

of using measurements from weather stations, the NASA data are reanalyzed grid data with a

spatial resolution of ½˚ ×⅝˚ [39] that provide consistent geographic coverage appropriate for
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regional studies. One of the primary challenges in studying waterborne diseases in Bangladesh

is data availability and granularity. The available waterborne disease data consist of yearly

aggregated counts, with each data point representing the total number of recorded cases for a

specific district and disease in a given year. These counts reflect the total number of infected

individuals, derived from individual records. The disease cases (2017–20) were collected from

Bangladesh Environment Statistics 2020, under the Strengthening Environment, Climate

Change and Disaster Statistics (ECDS) Project. This project was carried out by the Department

of Statistics and Information, Bangladesh Bureau of Statistics (BBS) [40]. To address missing

values, we used Microsoft Excel (Version 2013) [41], applying the mean imputation method

[42]. The rationale for employing mean imputation stems from its ease of use and ability to

substitute missing values based on data distribution [43]. Subsequently, we performed a log

transformation to mitigate issues related to outliers, skewness, and multicollinearity, which

helped improve model fit. The weather factors were aligned with district-level health outcomes

by matching the meteorological data with the corresponding district and year. The district-

wise population data for computing incidence rate were obtained from the Population and

Housing Census (PHC-2011) [44]. A detailed description of the data is presented in Table 1.

Statistical analyses

To calculate the incidence rates, we aggregated data for each disease across all districts and

computed the incidence rate per 100,000 population (S1 Text) [36]. Using the transformed

Fig 1. (A) Geographic map of Bangladesh showing its districts and neighboring countries, including the Bay of Bengal, (B) District-wise incidence rates of

waterborne diseases per 100,000 individuals. For map creation, we utilized the ’ggplot2’, ’maps’, and ’sf’ packages with publicly available shapefile data

sourced from Global Administrative Areas Database (GADM) [46].

https://doi.org/10.1371/journal.pntd.0012800.g001
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dataset, we conducted Pearson’s bivariate product-moment correlation analysis to initially

assess the relationship between waterborne diseases and climate factors. To further investigate

the impact of climate factors on waterborne diseases, we employed a spatial error regression

model (Fig 2). We also evaluated the performance of three tree-based ML models to identify

the best one for determining the meteorological risk factors associated with waterborne dis-

eases. For developing the machine learning (ML) models in predicting waterborne diseases,

we split the data into training and testing sets, with 70% of the data allocated for training and

30% for testing. All analyses, including spatial plots, correlation plots, spatial regression, and

ML modeling, were performed using RStudio (Version 4.4.0) [45]. For map creation, we uti-

lized the ’ggplot2’, ’maps’, and ’sf’ packages with publicly available shapefile data sourced from

Global Administrative Areas Database (GADM) [46], while the correlation plot was generated

using the ’ggcorrplot’ package. The spatial error regression model was constructed with the

’sp’, ’spData’, ’spdep’, and ’spatialreg’ packages. Furthermore, tree-based interpretable machine

learning models were developed using a variety of R packages, such as ’caret’, ’xgboost’, ’dplyr’,

’MLmetrics’, ‘randomForest’, ‘rpart’ and others. We also conducted SHAP analysis using the

’SHAPforxgboost’ package. Data and detailed R codes for data analysis are available at https://

github.com/arman2018/waterborne-disease-in-Bangladesh-from-2017-2020.

Spatial error regression

The ordinary least squares (OLS) estimator, commonly used in linear regression models, was

found to be less likely than other estimators to be the Best Linear Unbiased Estimator (BLUE)

when there are geographical dependencies. When variable values show connections between

geographic units, these dependencies become apparent [47]. Anselin (2002) proposed the spa-

tial regression approach, which was employed to offer a more accurate estimation in situations

where geographic dependencies were present.

The spatial error model was employed when the error term of the OLS model exhibited

geographical dependencies. It encompassed the spatial error term (Wε), defined

Table 1. Description of all input predictors and response variables.

Type Codes Description

Spatial temporal Year Year

District District names

Latitude Latitude values

Longitude Longitude values

Climate x1 MERRA-2 Temperature at 2 Meters (C)

x2 MERRA-2 Relative Humidity at 2 Meters (%)

x3 MERRA-2 Temperature at 2 Meters Maximum (C)

x4 MERRA-2 Temperature at 2 Meters Minimum (C)

x5 MERRA-2 Precipitation Corrected (mm)

x6 MERRA-2 Wind speed at 50 Meters Maximum (C)

x7 MERRA-2 Wind speed at 50 Meters Minimum (C)

Waterborne diseases y1 Cholera

y2 Typhoid and Paratyphoid fevers

y3 Amoebiasis

y4 Acute Hepatitis A

y5 Total Waterborne diseases

MERRA-2: Modern-Era Retrospective Analysis for Research and Applications, version 2

https://doi.org/10.1371/journal.pntd.0012800.t001
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mathematically as follows:

y ¼ Xbþ ε; ε ¼ lWε þ m ð1Þ

Where, y represents the response variable, representing waterborne diseases across districts

(n×1 matrix), X represents the predictor variable which includes meteorological factors (n×k
matrix), Wε represents the spatial weight matrix, indicating spatial relationship between the

districts (n×n), λ denotes the spatial error parameter measuring the strength of the spatial

dependency in the error term, β is the slope of the regression (k×1) and μ represents the matrix

of random error [48]. The widely used technique of moments was applied to estimate the spa-

tial error model.

Decision Tree (DT)

A tridiagonal (DT) methodology is one of the easiest and most natural methods in machine

learning [49,50]. A DT allocates a class label (or outcome) to an input feature by classifying it

using the tests in the tree, which have leaf nodes that are classifications of structures and inte-

rior nodes that are tests on input vectors. The results of each test are mutually exclusive and

exhaustive in nature [51]. DTs play a key role in environmental epidemiology because they

can simulate intricate interactions between environmental conditions and health outcomes,

including the ability to forecast disease prevalence based on climatic variables [52]. Because of

its hierarchical decision-making process, decision trees (DTs) are effective in modeling the

association between climate parameters and the occurrence of waterborne diseases. DTs are

flexible for both continuous and categorical data analysis, as they can be used for regression in

Fig 2. Overview of the proposed study design, including its key components. RF: Random Forest; DT: decision tree;

XGBoost: eXtreme Gradient Boosting; SHAP: Shapely Additive eXplanation.

https://doi.org/10.1371/journal.pntd.0012800.g002
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addition to classification. In our study, we used DT as a regressor to analyze continuous water-

borne disease data.

Random Forest (RF)

A machine learning based classifier using decision trees is called random forest (RF), a method

initially suggested by Breiman [53]. It can be performed in both classification and regression

tasks and has been employed in a variety of biomedical studies [54,55]. RF is particularly valu-

able in environmental epidemiology because it can simulate intricate, non-linear relationships

between various environmental components and health outcomes [56]. This makes it an effec-

tive technique for identifying the key factors that predict illnesses influenced by environmental

factors such as air quality or climatic variables. Beyond its versatility, RF can handle both cate-

gorical and continuous data, allowing it to predict continuous outcomes like disease incidence

rates. In this study, we used RF as a regressor to examine continuous data on waterborne dis-

eases. We produced several trees which consist of a forest and voted for specified input vari-

ables using each tree in the forest. After computing the mean votes, RF provides a final

prediction that is more robust and accurate [57]. The general equation of RF can be expressed

as

Y ¼
1

P

XP

i¼1
FiðxÞ ð2Þ

Where, Y is the predicted disease cases, P denotes the number of trees in the ensemble and

Fi(x) is the output of the ith tree for the input feature vector x (meteorological factors). In order

to reduce variation and improve model performance, Random Forests (RF) were utilized in

this work to simulate the association between climatic conditions and the prevalence of water-

borne diseases. By averaging the findings across many decision trees, RF can identify the most

relevant risk factors.

XGBoost model

The eXtreme Gradient Boosting (XGBoost) is a tree-based ensemble ML technique that can

increase the accuracy and strength of overall training and prediction by including several weak

learners [35]. It was first developed in 2011 by Chen Tianqi and Carlos Gestrin, and in the sub-

sequent study, several researchers refined and enhanced it [58]. It has demonstrated to be an

effective and capable problem solution for machine learning, particularly in environmental

epidemiology. It is valuable for both classification and regression for modeling non-linear rela-

tionships between environmental factors and health outcomes [59]. The main idea of boosting,

which is the process of improving machine learning models, is to combine a large number of

weak forecasting models into a single, robust ensemble model. Different models need to be fre-

quently merged to have excellent prediction accuracy with acceptable parameter values. The

model might need to be run several times or more in order to achieve appropriate precision

for complex data. The XGBoost model can better handle this issue [60]. The general objective

function of the XGBoost model is

ObjðtÞ ¼
Xn

i¼1
lðyi; ŷ

ðt� 1Þ

i þ ftðxiÞÞ þ OðftÞ þ constant ð3Þ

Where yi is the observed counts of disease cases, ŷðt� 1Þ

i indicates the predicted value from

the previous iteration, xi is the input vector of meteorological factors, n denotes the number of

observations (district-level data points), ft denotes a distinct function which algorithm trains,

O(ft) is the regularization term which prevents models from overfitting. l represents the loss
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function, which computes the deviance between the label and the estimate in the earlier stage,

the new tree’s output [17]. In this study, we employed XGBoost as a regressor to explore the

relationship between meteorological variables and waterborne disease prevalence.

Interpretation of machine learning models: SHAP (SHapley Additive

eXplanations)

SHAP (SHapley Additive eXplanations) is a method for interpreting ML model output devel-

oped by Lundberg and Lee [61]. The term "Shapley Additive Explanation" refers to an additive

explanation model developed by SHAP that was motivated by collaborative game theory and

considered all attributes as “contributors”. The model creates a projected value for each esti-

mated sample, and the SHAP value is the weighted average of all the features in the estimated

sample. Consider an XGBoost model that predicts an output (N) from a group N (with n char-

acteristics). According to each characteristic’s marginal impact the impact of each feature (;i is

impact of feature i) on the model output v(N) is assigned in SHAP. Depending on a number of

axioms to assist equitably distribute each feature’s influence, shapely values can be expressed

by the following equation [62]:

;i ¼
X

S�N

jSj!ðn � jSj � 1Þ!

n!
vðS [ fig � vðSÞ½ � ð4Þ

In our study, SHAP was employed to determine feature importance specifically for the

best-performing ML model, identified through comparisons among the three models used,

helping us interpret the contributions of various climate factors to the model’s predictions.

Model validation and assessment metrics

The tree-based ML models were built using the training data, with hyperparameter tuning (S3

Table, S1–S3 Figs) and cross-validation to enhance model performance. Specifically, we uti-

lized 10-fold cross-validation, a technique that divides the data into 10 subsets, iteratively

training the model on 9 subsets while testing on the remaining one. This helps in reducing

overfitting and underfitting [63]. Additionally, we applied L1 and L2 regularization [63] to fur-

ther stabilize the models.

The primary assessment metric for model evaluation is the accuracy computation of model.

The accuracy of the model refers to the closeness of the true and estimated values. There are

numerous ways to determine the model’s accuracy. In our study, we utilized three distinct

model accuracy metrics including mean absolute percentage error (MAPE), mean absolute

error (MAE), and root mean square error (RMSE). These metrics can be explained mathemati-

cally as follows:

MAE ¼
1

n

Xn

i¼1
jŷi � yij ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðŷi � yiÞ

2

r

ð6Þ

MAPE ¼
1

n

Xn

i¼1
j
ŷi � yi

yi
j � 100% ð7Þ

Where n denotes the number of observation, ŷi denotes the estimated number and yi repre-

sents the true number, and ŷi � yi represents the residual number [60].
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Results

Characteristics of waterborne diseases

In our study, we examined four waterborne diseases. Among the waterborne diseases, cholera

emerged as the most widespread, reaching its peak in 2017 and hitting a low point in 2020

(Table 2). Typhoid followed as the second most prevalent, with the highest occurrence in 2019

and the lowest in 2020. Meanwhile, amoebiasis, although less common, saw its highest inci-

dence in 2017 and its lowest in 2020 in Bangladesh (Table 2).

The mean number of cholera cases varied less across the years, ranging from 147.05 to

388.18, with the highest mean of 388.18 cases recorded in 2017 (Table 2). Similarly, the mean

number of amoebiasis cases varied from 2.09 to 10.20, with the highest mean number of 10.20

cases in 2017. More details about the summary statistics of the waterborne diseases are pre-

sented in Table 2.

Characteristics of climate variables

We included seven climate factors in the study including maximum, minimum, and mean

temperature, relative humidity, maximum and minimum wind speed, and precipitation. Fig 3

depicts the temporal development of climatic factors from 2017 to 2020. The observed aberra-

tions, peaks, and oscillations in the plot underscore the inherent nonlinear relationships within

the data. Fluctuations in yearly mean, maximum and minimum temperatures, relative humid-

ity, maximum and minimum wind speed, and precipitation levels resist a linear pattern,

emphasizing a nonlinear pattern (Fig 3). The summary statistics of the climatic parameters

will be found in S2 Table.

Spatio-temporal pattern of waterborne diseases

Waterborne diseases are more prevalent in Bangladeshi districts such as Chapai Nawabganj,

Brahmanbaria, Faridpur, Nilphamari and Chuadanga (Fig 1B). Among these diseases, Cholera

Table 2. Descriptive statistics for different waterborne diseases in Bangladesh from 2017 to 2020.

Diseases Year Min Median Max Mean±SD Total

Cholera 2017 0 75 7576 388.14±1017.25 24841

2018 0 74 3784 312.95±604.56 20029

2019 0 45.50 6596 301.95±873 19325

2020 0 25.50 1870 147.05±314.34 9411

Typhoid 2017 0 85 1131 175.73±242.12 11247

2018 0 72.50 1217 156.14±223.11 9993

2019 0 96.50 1231 196.25±265.19 12560

2020 0 28 730 73±120.20 4672

Amoebiasis 2017 0 1 335 10.20±42.56 653

2018 0 2 82 5.61±12.03 359

2019 0 1 190 7.77±25.07 497

2020 0 0 19 2.09±4.28 134

Hepatitis A 2017 0 3 64 6.80±10.93 435

2018 0 6 212 15.45±30.54 989

2019 0 6 158 11.31±20.93 724

2020 0 2 67 5.75±9.94 362

Min: Minimum; Max: Maximum; SD: Standard deviation

https://doi.org/10.1371/journal.pntd.0012800.t002
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is the most prevalent waterborne disease in the Chapai Nawabganj, Brahmanbaria, Faridpur,

Nilphamari and Pirojpur districts, whereas the central Bangladeshi districts of Manikganj,

Munshiganj and many more districts reported no incidence of cholera (S1 Table). Typhoid is

another highly prevalent disease in the Kushtia Chuadanga, Jhenaidah, Rajshahi and Barguna

districts, with no incidence in Mymensingh, Netrokona and many more districts. Kishoreganj,

Shariatpur, Laksmipur, Bogra and Faridpur districts reported the highest prevalence rate of

amoebiasis, while Narayanganj, Narshingdi, Meherpur and many more reported no incidences

of amoebiasis. Hepatitis A is more prevalent in Chandpur, Rangamati, Jhalokati, Patuakhali

and Cox’s Bazar districts, whereas Maulvi bazar, Narail, Meherpur and many more districts

reported no incidence of hepatitis A (Fig 4).

Association of climate factors with waterborne diseases

In the case of waterborne diseases, bivariate correlation analysis revealed that cholera was sig-

nificantly associated with mean temperature (S4 Table). Mean and minimum temperatures

were significantly associated with typhoid disease. Amoebiasis was significantly associated

with relative humidity and minimum wind speed. Hepatitis A was significantly associated with

mean, maximum, and minimum temperatures, as well as precipitation. Overall, we found that

mean temperature was significantly correlated with the total cases of waterborne diseases

(Fig 5).

The aforementioned significant climate factors were then used as covariates in the spatial

error regression model, with each outcome variable. For example, in the first model, focusing

on cholera disease, the spatial distribution of the residual was observed to exhibit a statistically

significant positive association. The prevalence of cholera disease showed a positive association

with mean temperature. In model 2, focusing on typhoid disease, the spatial distribution of the

residual was observed to exhibit a statistically significant positive association. The prevalence

of typhoid disease positively correlated with mean temperature but was negatively related to

minimum temperature. In model 3, focusing on amoebiasis disease, the spatial distribution of

the residual was observed to exhibit a statistically significant positive association. The

Fig 3. Time series plot of yearly climate factors from 2017 to 2020.

https://doi.org/10.1371/journal.pntd.0012800.g003

PLOS NEGLECTED TROPICAL DISEASES Spatial regression and ML modeling of waterborne diseases in Bangladesh

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012800 January 16, 2025 10 / 19

https://doi.org/10.1371/journal.pntd.0012800.g003
https://doi.org/10.1371/journal.pntd.0012800


prevalence of amoebiasis disease was negatively associated with maximum wind speed. In

model 4, focusing on hepatitis A disease, the spatial distribution of the residual was observed

to exhibit a statistically significant positive association. The prevalence of hepatitis A was posi-

tively associated with mean temperature but negatively associated with maximum tempera-

ture. In model 5, focusing on overall waterborne disease, the spatial distribution of the residual

was observed to exhibit a statistically significant positive association. Waterborne illnesses

were positively associated with mean temperature (Table 3).

Performance evaluation of ML models

The spatial regression model extends beyond the linear regression model and is utilized to

identify linear relationships. However, the transmission of waterborne diseases is often influ-

enced by various climatic factors exhibiting nonlinear patterns (Fig 3), posing challenges for

linear models. This issue can be effectively addressed through ML techniques. In this study,

Fig 4. Spatial distribution of waterborne diseases incidence rates per 100,000 population in Bangladesh from 2017

to 2020. For map creation, we utilized the ’ggplot2’, ’maps’, and ’sf’ packages with publicly available shapefile data

sourced from Global Administrative Areas Database (GADM) [46].

https://doi.org/10.1371/journal.pntd.0012800.g004
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the three tree-based ML models (DT, RF and XGBoost) were fitted and their performance was

presented in Table 4. The assessed performance revealed that the XGBoost model is more effi-

cient than DT and RF in predicting waterborne diseases in Bangladesh. For instance, the mean

absolute percentage error (MAPE) values for the testing set of the XGBoost model were lower

compared to the RF and DT models, with MAPE values of 0.13%.

Fig 5. Pairwise correlation matrix illustrating the relationships between waterborne diseases and climate

variables; x1: mean temperature; x2: relative humidity; x3: maximum temperature; x4: minimum temperature; x5:

precipitation; x6: maximum wind speed; x7: minimum wind speed.

https://doi.org/10.1371/journal.pntd.0012800.g005

Table 3. Estimated parameters of significant climate factors of spatial error model for different waterborne diseases.

Factors Cholera

Model 1

Typhoid

Model 2

Amoebiasis

Model 3

Hepatitis A

Model 4

Overall

Model 5

Coef s.e Coef s.e Coef s.e Coef s.e Coef s.e
Maximum Temperature – – – – – – -2.14* 1.13 – –

Minimum Temperature – – -1.25* 0.36 – – – – – –

Mean Temperature 10.05* 5.65 21.45* 4.24 – – 8.88* 3.78 12.16* 3.91

Relative Humidity – – – – – – – –

Minimum Wind Speed – – – – -0.18* 0.09 – – – –

Spatial error parameter (λ) 0.44* 0.05 0.55* 0.04 0.28* 0.10 0.38* 0.05 0.40* 0.09

Coef: Coefficient; s.e: Standard error; Asterisk (*) indicates significance at 5% level

https://doi.org/10.1371/journal.pntd.0012800.t003
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Risk factors examined by ML models

Using the XGBoost model as the optimal choice, we identified crucial features for predicting

waterborne diseases in Bangladesh using SHAP analysis. The analysis indicated that mean and

minimum temperature were the primary determinants of waterborne diseases (S5 Table)

while relative humidity, and precipitation were the tentative features of waterborne diseases in

Bangladesh (Fig 6).

Discussion

Waterborne diseases (WBDs) impose a significant health burden at the district level in Bangla-

desh. This study found that among the four WBDs analyzed, cholera was the most prevalent,

with higher incidence rates observed in the districts of Chapai-Nawabganj, Brahmanbaria, Far-

idpur, Nilphamari, and Pirojpur followed by typhoid, amoebiasis and hepatitis A. Addition-

ally, when considering overall WBDs incidence, the districts of Chapai-Nawabganj,

Brahmanbaria, Faridpur, Nilphamari, and Chuadanga were identified as the most affected.

This study further explored the key meteorological factors influencing the transmission of

Table 4. Performance evaluation with different metrics of the tree-based models that predict waterborne diseases in Bangladesh from 2017 to 2020.

Models Dataset RMSE MAE MAPE

Decision Tree Training 898.44 446.33 0.80

Testing 465.71 365.98 0.66

Random forest Training 554.82 288.7 0.47

Testing 572.60 404.22 0.68

XGBoost Training 503.25 121.06 0.14

Testing 208.00 83.32 0.13

RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error; XGBoost: eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pntd.0012800.t004

Fig 6. Important feature analysis of waterborne diseases by SHAP values; x1: mean temperature; x2: relative

humidity; x3: maximum temperature; x4: minimum temperature; x5: precipitation; x6: maximum wind speed; x7:

minimum wind speed.

https://doi.org/10.1371/journal.pntd.0012800.g006
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these diseases. The findings, while consistent with some prior research, diverged from others,

underscoring the complex relationship between climate variables and disease spread. For

example, mean temperature is significantly related to the transmission of cholera which aligns

with a previous study conducted in Kolkata, India [64]. Similarly, mean temperature, precipi-

tation and wind speed were significantly associated with the transmission of typhoid which

aligns with a previous study conducted in Indonesia [65]. However, maximum temperature

was negatively associated with hepatitis A which aligns with a previous study conducted in

Korea [66]. Mean temperature showed a positive relationship with hepatitis A which contrasts

with a previous study conducted in Korea [66]. Overall mean temperature was significantly

associated with the transmission of waterborne diseases in Bangladesh.

The intricacies of these findings might be attributed to the diverse characteristics of water-

borne diseases and the interactions among several factors. Waterborne disease transmission is

often influenced by several nonlinear factors, posing challenges for traditional OLS regression

or spatial regression methods to capture these nonlinear effects. However, these problems can

efficiently be addressed by the ML models. In this study, we assessed the predictive performance

of three tree-based ML models, e.g., decision tree (DT) model, random forest (RF) and ensem-

ble extreme gradient boosting (XGBoost) for waterborne diseases using three prominent evalua-

tion metrics such as root mean square error (RMSE), mean absolute error (MAE) and mean

absolute percentage error (MAPE). Among these, the XGBoost model demonstrated superior

performance in predicting waterborne diseases in Bangladesh, achieving a MAPE of just 0.13%

which was the lowest among the models. Therefore, employing SHAP analysis based on the

XGBoost model, we identified the primary risk factors that contribute the most to the transmis-

sion of waterborne diseases. The findings revealed that mean and minimum temperature, rela-

tive humidity and precipitation were the key determinants for the transmission of waterborne

diseases in Bangladesh. A salient finding of our study was the discernible decline in the number

of cases of WBDs in 2020. The COVID-19 pandemic, which resulted in extensive public health

efforts including lockdowns, social distancing, and improved hygiene procedures, is most likely

to blame for this anomaly. These actions probably stopped the spread of other infectious dis-

eases, such as waterborne infections, in addition to curbing the spread of COVID-19.

The study’s findings show a relationship between the transmission of waterborne illnesses

and climatic conditions. Insights into disease dynamics may be gained from the spatiotempo-

ral distribution of waterborne illnesses and their correlation with climate factors. The diverse

ways that climate conditions affect different diseases highlight how complicated these interac-

tions are, pointing to a region-specific effect that is probably driven by subtle differences in the

local climate. This emphasizes how crucial it is to place interactions with meteorological

parameters within the particular climatic setting of each field of study. Our research highlights

the necessity for a targeted approach to disease prevention and control at the district level and

has significant implications for public health in Bangladesh. By applying three tree-based

machine learning models—DT, RF, and XGBoost—we were able to forecast waterborne infec-

tions without relying on assumptions. These models were simple to integrate into common

software applications. Specifically, the XGBoost model outperformed the others in terms of

prediction accuracy, as demonstrated by its superior performance across several evaluation

metrics. Due to its high predictive accuracy and SHAP analysis’s ability to identify important

risk factors, our proposed model may prove to be a valuable resource for organizing early

warning systems. Even though our research does not focus on seasonality or future forecasts,

the model’s ability to pinpoint key climatic risk factors—such as temperature, precipitation,

and humidity—can assist in proactive disease management by alerting decision-makers to

periods of increased risk. This can help guide prompt actions and targeted preventive mea-

sures to control waterborne illness outbreaks in Bangladesh.
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Limitation

Although not all of these characteristics were found to be statistically significant, the study’s

findings show that some climatic conditions are linked to the spread of waterborne infections.

A key limitation is the availability of only four years’ worth of annual data, which restricted the

number of disease data and the ability to control for confounders, and the measurement of sea-

sonal effects. Additionally, factors known to influence waterborne infections, such as popula-

tion density, air pressure, and air quality, were not included. The absence of detailed

socioeconomic data also limits our understanding of the complex interactions between socio-

economic factors and the prevalence of waterborne illnesses. This underscores the need for

future research to include socioeconomic elements and more comprehensive data to better

elucidate these interactions.

Conclusion

This study, especially in light of climate change, emphasizes the important role that tempera-

ture plays as a climatic risk factor for waterborne infections in Bangladesh. The results high-

light the necessity of district-level public health plans that are customized to the unique

geographic and climatic circumstances of the area. By using a One Health concept, this

research offers valuable insights for district administration and local development activities.

The findings underscore the significance of creating adaptable plans to lessen the effects of cli-

mate change on public health, particularly in vulnerable areas. To address these issues, we rec-

ommend bolstering climate-responsive health systems, raising community awareness of the

dangers of waterborne illnesses, investing in essential infrastructure for access to clean water

and sanitation, and supporting multidisciplinary research. Policymakers should incorporate

these findings into climate adaptation plans to maintain the effectiveness of public health

interventions in the face of environmental changes.
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