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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to

pose global health challenges. Current treatments face issues like resistance, safety, effi-

cacy, and cost. This review covers the discovery, mechanisms of action, clinical applica-

tions, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin

B, miltefosine, paromomycin, and pentamidine. Despite toxicity and resistance (antimoni-

als), hospitalization needs and side effects (amphotericin B), regional efficacy variability

(miltefosine), inconsistent outcomes (paromomycin), and severe side effects (pentamidine),

these drugs are vital. Novel strategies to overcome the deficiencies of current therapies are

highlighted, including combination regimens, advanced drug delivery systems, and immuno-

modulatory approaches. Comprehensive and cooperative efforts are crucial to fully realize

the potential of advancements in antileishmanial pharmacotherapy and to reduce the unac-

ceptable worldwide burden imposed by this neglected disease.

Introduction

Leishmaniasis, caused by the Leishmania species within the Trypanosomatidae family, is a sig-

nificant global health challenge, with about 20 pathogenic species transmitted via sandfly bites

[1,2]. The disease manifests in various forms, including visceral, mucosal, cutaneous, and

mucocutaneous leishmaniasis (VL, ML, CL, and MCL), with severity influenced by the Leish-
mania strain and host immune response [3,4]. Outcomes range from self-healing cutaneous

lesions to potentially fatal visceral diseases, illustrating the intricate parasite–host interactions

[1]. Macrophages, pivotal in disease pathogenesis, are the primary host cells for Leishmania,

highlighting complex parasite–host dynamics [5]. Despite significant research efforts,
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leishmaniasis continues to present challenges, including drug resistance and restricted access

to treatments, which underscores the urgent need for novel therapeutic approaches.

Addressing these challenges requires improved drug therapy, as current treatments face

issues such as toxicity, resistance, and limited availability, particularly in resource-poor

regions. Initially, pentavalent antimonials (sodium stibogluconate and meglumine antimoni-

ate) were primary treatments [1], but resistance, especially in regions like India, has reduced

their use [6]. Amphotericin B, though effective, carries significant toxicities [7–9]. Liposomal

amphotericin B, FDA-approved for leishmaniasis, is hampered by logistical issues in low-

resource settings [10]. Miltefosine has been approved for the treatment of leishmaniasis [11],

but other drugs like paromomycin and pentamidine are still in use. However, these treatments

face significant challenges, such as resistance, high costs, and severe side effects [12], highlight-

ing the pressing need for safer and more effective therapeutic options.

Our review discusses various currently available therapeutic strategies regarding leishmania-

sis treatment, delving into the molecular mechanisms and evaluating the merits and drawbacks

of mainstream drugs, including pentavalent antimonials, amphotericin B, miltefosine, paromo-

mycin, and pentamidine. Being one of the most dangerous Neglected Tropical Diseases NTDs,

leishmaniasis requires immediate attention and cutting-edge treatment approaches to overcome

its multifaceted challenges. This requirement sets the setting for the following sections, where

we will discuss new treatments and how to improve the ones that already exist.

Methods

A comprehensive literature search was conducted using databases such as PubMed, Scopus,

Google Scholar, and Web of Science to identify relevant articles published from 2000 to March

2024 on antileishmanial drug discovery and development. Keywords used in the search

included “leishmaniasis,” “antileishmanial drugs,” “drug resistance,” “treatment,” and “novel

therapies.” The search was limited to articles published in English. Titles and abstracts were

screened for relevance, and full-text articles were reviewed to extract key information on the

mechanisms of action, clinical efficacy, and limitations of current treatments. Additional

sources were identified through the reference lists of selected articles.

1. Pentavalent antimonial

Pentavalent antimonial compounds, including sodium stibogluconate and meglumine anti-

moniate, have been the cornerstone of leishmaniasis treatment for over 70 years. Discovered

in the early 20th century, antimony potassium tartrate marked a significant advancement in

antileishmanial therapy [13]. Despite its initial success against VL in various regions, the treat-

ment faced setbacks due to high toxicity, lengthy treatment durations, and emerging parasite

resistance [14]. A turning point came in 1947 with the introduction of the less toxic sodium

stibogluconate, achieving up to 90% cure rates [15]. Even in recent years, pentavalent antimo-

nials remain vital, albeit with growing resistance concerns [16,17].

1.1 Molecular mechanism of the inhibition of Leishmania by pentavalent antimony.

The antileishmanial activity of pentavalent antimonial (Sb(V)) compounds is understood

through multiple interconnected mechanisms (Fig 1). Initially considered a prodrug, Sb(V) is

bioreduced within Leishmania parasites to yield the trivalent form (Sb(III)), which directly

imparts antiparasitic effects [18]. Sb(III) forms stable complexes with thiol groups, particularly

glutathione in mammalian cells [19,20] and trypanothione in trypanosomatid parasites [21–

23], disrupting critical cellular processes. Exposure to pentavalent antimonials prompts Leish-
mania to activate multidrug resistance transporters, expelling Sb(III)-thiol complexes and

leading to thiol depletion, oxidative stress, and apoptosis [24–27]. Moreover, Sb(III) inhibits
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the trypanothione reductase system, pivotal for maintaining the intracellular redox balance within

trypanosomatids, further exacerbating oxidative damage [28–30]. Crystallographic evidence eluci-

dates the interaction of Sb(III) with the trypanothione reductase enzyme, underscoring a direct

mechanism of action [31]. Moreover, pentavalent antimonials exhibit intrinsic antileishmanial

effects, independent of bioreduction to Sb(III). Sodium stibogluconate and ureastibamine disrupt

DNA topoisomerase I activity in Leishmania donovani, impeding DNA supercoiling, essential for

replication and transcription [32,33]. Investigations also show Sb(V) forming stable complexes

with adenine nucleosides, suggesting interference with nucleic acid metabolism [34]. These find-

ings highlight the dual action of Sb(V), combining the generation of bioactive Sb(III) within cells

and direct disruption of vital parasitic functions. Moreover, research on leishmaniasis and penta-

valent antimonial compounds (such as SSG) also demonstrated that SSG affects the immune sys-

tem [35]. This comprehensive approach, including both prodrug conversion and direct

antileishmanial activity, illustrates the complexity of Sb(V)’s mechanism against Leishmania,

offering insights for overcoming drug resistance and enhancing treatment efficacy.

1.2 Current clinical applications of pentavalent antimonials. Pentavalent antimonial

drugs, encompassing meglumine antimoniate (also known as Glucantime) and sodium stibo-

gluconate (also called Pentostam), have historically been pivotal in treating all primary leish-

maniasis forms, including CL, MCL, and VL [14,36,37]. Their use as the premier choice for CL

and ML treatments stems from extensive clinical validation and their influence on the

Fig 1. Mechanism of action of pentavalent antimonials in Leishmania. Upon administration, pentavalent antimony (Sb(V)) is bioreduced to trivalent

antimony (Sb(III)) within Leishmania parasites, leading to 2 primary pathways of action. Sb(III) inhibits trypanothione reductase (TryR), disrupting the

parasite’s redox balance and increasing oxidative stress. Concurrently, Sb(III) affects DNA topoisomerase I activity, impairing DNA supercoiling essential for

replication and transcription. Additionally, Sb(V) shows intrinsic antileishmanial activity independent of its reduction to Sb(III), further complicating the

parasite’s survival. Trypanothione peroxidase (TryP) participates in detoxifying reactive oxygen species (ROS), and the inhibition of TryR enhances ROS

generation, leading to further damage to parasite macromolecules, including DNA and proteins, disrupting homeostasis and contributing to parasite death.

https://doi.org/10.1371/journal.pntd.0012735.g001
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evolution of novel formulations and combination therapies [16]. According to the WHO 2010

guidelines, pentavalent antimonials are among the first-line treatment options for certain spe-

cies of Leishmania, such as L. aethiopica in Old World CL. In the Indian subcontinent and

East Africa, despite being administered intramuscularly or intravenously at a standard dosage

of 20 mg Sb(V) per kg body weight daily over roughly a month, resistance in some regions has

necessitated the search for optimized protocols and alternatives, underscoring the drug’s vari-

able success and the pressing need for new strategies to address toxicity, resistance, and acces-

sibility [1,6]. However, for other species like L. major, alternative therapies such as fluconazole

are recommended as first-line treatments, particularly in North Africa, as endorsed by

ASTMH/IDSA guidelines [38,39].

While pentavalent antimonial compounds initially showed promising therapeutic efficacy

against leishmaniasis, varied clinical outcomes over time across different regions have become

evident [40]. The side effects associated with pentavalent antimony are generally mild, including

injection site pain, arthralgia, reversible peripheral neuropathy, and gastrointestinal discomfort.

However, patients with HIV co-infection have a heightened risk of developing pancreatitis

[41,42]. Prolonged use of higher doses has been linked to severe toxicities such as liver and renal

failure, with some instances of significant cardiotoxicity, characterized by inverted T-waves,

extended QTc interval on ECG, and potentially fatal arrhythmias [42–45]. The emergence of

resistance to antimonial treatments significantly challenges their efficacy, with resistance lead-

ing to suboptimal outcomes and persistent infections, notably in India where failure rates

surged dramatically between 1980 and 1997, reaching up to 65% in some areas [6,37,46]. The

issue of drug resistance has prompted extensive research by scientists. Walker and colleagues

found that S-adenosylmethionine synthetase (SAMS) and S-adenosylhomocysteine hydrolase

(SAHH) were overexpressed in Sb(III)-resistant lines and isolates, which is the key molecule in

Sb-resistance in Leishmania [47]. Analysis showed that Leishmania parasites overexpressing

LABCG2 were resistant to antimony due to reduced Sb(III) accumulation via increased efflux.

LABCG2 also transported thiols in the presence of Sb(III), as confirmed by biotinylation assays

[48]. This underscores the need for new therapeutic options and optimized treatment protocols

to counteract resistance and uphold the utility of pentavalent antimonials against leishmaniasis.

Several approaches have been explored to address the limitations of conventional pentava-

lent antimony therapy, including optimizing treatment protocols and combining therapies.

For example, local antimony injections into CL lesions, endorsed by WHO, reduce side effects

[49,50], and combination with cryotherapy shows efficacy against CL [16,51]. For VL, pentava-

lent antimony combined with other drugs like paromomycin has improved outcomes in Africa

[52]. Sb(V) oxide and its complexes spontaneously form nanoaggregates or micelles in water,

making it feasible to design new Sb(V) complexes with supramolecular assemblies for treating

leishmaniasis effectively [53].

Beyond protocol optimization, advancing novel pentavalent antimony formulations is piv-

otal for enhancing antileishmanial efficacy. Liposome encapsulation improves solubility and

targeted delivery [54,55], and designing amphiphilic Sb(V) molecules aims at better oral

absorption for VL treatment [56]. Additionally, cyclodextrin complexes are developed to

increase oral bioavailability [57]. These innovations aim to maintain pentavalent antimony’s

clinical relevance through new combination regimens, administration methods, and address-

ing toxicity, resistance, and delivery challenges.

2. Amphotericin B

Amphotericin B (AmB), discovered in 1955 from Streptomyces nodosus, has been a corner-

stone in treating serious fungal infections and shows broad activity against various pathogens
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including yeasts, dimorphic fungi, and molds [58,59]. Its antileishmanial potential was recog-

nized early, with in vitro effectiveness established in 1960 and the first successful clinical use

against VL reported in 1963 [8,9]. The primary challenge with AmB’s use is its insolubility in

water, leading to the adoption of a nephrotoxic deoxycholate form as a second-line treatment

for VL, CL, and MCL since the 1960s [60–62]. The development of liposomal delivery systems

in the 1970s facilitated the creation of AmBisome, a liposomal formulation with improved bio-

availability and reduced toxicity [62,63]. Although resistance to AmB in Leishmania species

was historically considered a minor concern, emerging strains indicate potential patient haz-

ards [64,65].

2.1 Molecular mechanism of the inhibition of Leishmania by amphotericin B. AmB

exerts its potent antileishmanial effects predominantly through binding ergosterol in Leish-
mania and fungi cell membranes [66,67] significantly stronger than cholesterol in human cells

[68,69], highlighting its preferential affinity that’s critical for its action. This preferential inter-

action is facilitated through hydrogen bonding and van der Waals forces [64,70], where AmB’s

configurational compatibility with ergosterol, notably at C7, C22 double bonds, and C24 side-

chain methylation [60,64], enhances its selective toxicity towards Leishmania by forming ion

channels or lipid aggregates on membranes [61,70], leading to cell death through osmotic

imbalance and ion homeostasis disruption. Recent studies further elucidate AmB’s mecha-

nism, suggesting that beyond ion channel formation, AmB may aggregate on membrane sur-

faces to extract essential lipids, directly leading to Leishmania cell death [71], aligning with the

sterol sponge model [72–74]. Additionally, structural studies using NMR and molecular

dynamics simulations have revealed that AmB assembles into stable seven-molecule ion chan-

nels when interacting with ergosterol [75]. This formation, while established in fungal mem-

branes, may also suggest a potential role in disrupting ergosterol-rich Leishmania membranes.

Collectively, AmB has strong antileishmanial effects via intricate processes (Fig 2).

2.2 Current clinical applications of amphotericin B. Amphotericin B’s clinical applica-

tion is substantially constrained by its poor water solubility and low oral bioavailability, driving

the exploration of alternative formulations to circumvent these limitations [76,77]. Due to its

molecular size, AmB tends to precipitate in acidic environments, resulting in an oral bioavail-

ability of merely 0.3% [78,79]. Consequently, the deoxycholate form of AmB, which is more

soluble, necessitates inconvenient hospitalization for intravenous administration due to its

inherent toxicity [80,68]. To address these challenges, liposomal formulations, particularly

AmBisome, have been developed. By encapsulating AmB within phospholipid bilayers, these

formulations improve drug distribution to tissues and enhance plasma levels, which signifi-

cantly reduces toxicity while retaining AmB’s efficacy against Leishmania [63,81–84]. Recent

research emphasizes the importance of optimizing the physicochemical properties of lipo-

somal AmB formulations for improved treatment outcomes in both cutaneous and visceral

leishmaniasis, with ongoing advancements in topical and oral liposomal AmB formulations

being explored [85]. Additionally, the development of pH-sensitive nanostructured lipid carri-

ers (AmB-NLCs) has demonstrated promising results, with enhanced drug release under

acidic conditions, potentially offering a targeted approach for localized leishmaniasis treat-

ment [86]. This approach not only mitigates the side effects associated with traditional AmB

but also enhances its therapeutic effectiveness, particularly in treating visceral leishmaniasis,

underscoring the importance of advancements in drug delivery systems for leishmaniasis

treatment [87,88]. Liposomal formulations have thus emerged as critical alternatives to tradi-

tional AmB, providing effective treatment options in regions with high leishmaniasis

prevalence.

AmB became the primary therapy in Bihar, India, in the 1990s, addressing resistance to

first-line drugs [70]. Its effectiveness is notable, but use is restricted due to the need for
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prolonged hospitalization and nephrotoxicity [62,68,80,89]. Treatment protocols vary, with dos-

ages ranging from 7 to 20 mg/kg, potentially requiring up to 43 days to achieve near 100% cure

rates against both antimony-sensitive and refractory cases [90]. Liposomal AmB (L-AmB) was

introduced to reduce these drawbacks, leading to shorter hospital stays and improved outcomes

[91–94]. A study in India reported a 95.7% cure rate with a single 10 mg/kg dose of L-AmB

[95], prompting the WHO to recommend it as the first-line treatment in South Asia [96].

L-AmB enhances drug delivery to organs, allowing for high doses with less kidney damage

[92] and nearly 100% cure rates [93]. This formulation has proven effective in both children

and adults across various regions, including the Mediterranean, the Middle East, and Brazil,

with doses of 20 mg/kg [97,98]. The Pan American Health Organization endorses L-AmB as

the primary VL treatment, with 3 to 5 mg/kg doses showing up to 100% success in southern

Europe [99]. While effective against VL, outcomes for ML and disseminated disease vary [87].

Topical L-AmB gel emerges as a new option for localized CL, offering an alternative to low-

efficacy topicals and systemic treatments with toxicity risks [100]. A recent study showed mild

local adverse reactions in less than 30% of CL patients [100].

Fig 2. Chemical structure and proposed action mechanism of amphotericin B (AmB) against Leishmania parasites. (A) The chemical structure of AmB,

highlighting its polyene core that binds the membrane sterol ergosterol in fungi and Leishmania, as well as cholesterol in human. (B) The classical pore

formation/ion channel model proposes AmB incorporated into the sterol-rich membrane, forming aqueous cytotoxic pores. (C) The ergosterol extraction

mechanism is characterized by an alternative surface adsorption model and a sterol sponge model. (D) AmB-induced ROS generation, a result of auto-

oxidation, further damages the parasite by targeting membrane lipids, DNA, proteins, and disrupting ion homeostasis, contributing to parasite cell death.

Created with Biorender.com.

https://doi.org/10.1371/journal.pntd.0012735.g002
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Clinical applications have revealed variable AmB efficacy against different Leishmania strains

and clinical manifestations. Uruguayan outbreak isolates associated with VL demonstrated

higher infectivity and reduced drug sensitivity compared to South American reference strains

[101]. In French Guiana, CL among military personnel showed significant treatment failures

with pentamidine and L-AmB, necessitating alternative treatments [102]. A case of imported

CL caused by Leishmania infantum in Korea was successfully treated with liposomal AmB [94].

The main concerns with AmB include its nephrotoxicity and severe infusion-related side effects,

such as renal insufficiency and metabolic disorders [62,103], contrasting with L-AmB’s fewer

adverse effects [94]. Advances have led to AmB derivatives with reduced renal toxicity and pre-

served antifungal efficacy [104], though their potential against diverse Leishmania strains

remains under evaluation. Drug resistance is another challenge [105]; for example, in vitro stud-

ies indicate that L. infantum strains associated with VL in dogs showed resistance following mil-

tefosine-allopurinol treatments, which also conferred cross-resistance to AmB [106].

Additionally, reports from Brazil have highlighted resistance to AmB in L. amazonensis strains,

which are associated with CL, underscoring the need for vigilant resistance monitoring across

different regions [107]. Similar AmB-miltefosine cross-resistance was observed in mutant and

clinical relapse L. martiniquensis strains, affecting both VL and CL cases [108].

A significant drawback of the novel, commercial, low-toxicity amphotericin B lipid formu-

lation is the economic burden. This product has a much higher price than the conventional

amphotericin B deoxycholate, which limits its accessibility and affordability for many patients

[109]. As the high expense of L-AmB hinders widespread use, costs are lowered in India with

the 10 mg/kg single L-AmB dose scheme [95]. Further optimization continues on delivery

matrices like chitosan and dendrimer nanoparticles to improve amphotericin B solubility,

release, and toxicity against Leishmania major [110]. Combination strategies with short-course

miltefosine may also enhance efficacy compared to miltefosine alone against VL spread in

India [111].

3. Miltefosine

Miltefosine, an alkylphosphorylcholine compound with broad-spectrum antitumor, antipara-

sitic, and antifungal properties [112], is the only oral agent currently approved for leishmania-

sis treatment, representing a significant advantage over injectable alternatives [113]. Initially

developed as an anticancer drug, its efficacy against Leishmania parasites was serendipitously

discovered in the late 1980s, marking it as a promising candidate for both VL and CL treat-

ment [114]. Its unique oral administration convenience underscores miltefosine’s pivotal role

in advancing leishmaniasis treatment modalities [11].

3.1 Molecular mechanism of the inhibition of Leishmania by miltefosine. Miltefosine is

a pleiotropic drug with multiple targets [115]. The research indicates that miltefosine may

involve interfere with parasite lipid metabolism, induce programmed apoptosis-like death,

modulate host immunity, and disrupt mitochondrial function [116]. Recent studies suggest

that miltefosine may also exert antiparasitic effects by affecting calcium homeostasis in Leish-
mania [115,117]. However, miltefosine exerts its antileishmanial effects primarily through dis-

rupting lipid metabolism within Leishmania parasites and interfering with their activation of

host cell lipid signaling pathways, crucial for their survival. In the past, multiple hypotheses

have been proposed for the mechanism of action about miltefosine in anti-Leishmania lipid

metabolism [118]. For example, interfering with glycosylphosphatidylinositol (GPI) anchor

biosynthesis and inhibiting glycosomal alkyl-specific acyl-CoA acyltransferase as the target of

action to interfere with ether-phospholipid metabolism [119], but all have received challenges

in recent years [120].
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Specifically, it hampers the phosphatidylinositol 3-kinase (PI3K) signaling exploited by

Leishmania to enter host cells and form an anti-apoptotic niche [121,122]. Miltefosine sup-

presses Akt activation, reversing PI3K-mediated survival signals, leading to apoptosis and

infection control [123]. Though its exact target is unidentified, miltefosine likely competes

with Akt pleckstrin homology (PH) domain for binding to PI(3,4)P2/PI(3,4,5)P3 phospholip-

ids [124–126]. As a synthetic phosphatidylcholine analog, it is suggested to directly affect the

parasite’s glycolipid, phospholipid, and sterol metabolism [118,127]. Omics profiling of milte-

fosine-treated L. donovani highlights its impact on biosynthesis pathways, underscoring the

need for further research to detail its mechanisms and enhance treatment efficacy [128,129].

Thus, the multifaceted mechanism of action of miltefosine not only disrupts the basic survival

pathway of Leishmania protozoa, but also has a modulatory effect on the immune system of

the host (Fig 3). This emphasizes the imperative for in-depth study of miltefosine to further

explore its therapeutic potential.

3.2 Current clinical applications of miltefosine. Miltefosine, the only orally adminis-

tered VL treatment to date [130], offers clear advantages over injectables. It is seen as safe,

with mild gastrointestinal upset as the most common side effect [131]. Yet, its use in preg-

nant patients presents teratogenic risks [132], and there have been instances of ocular com-

plications in post-kala-azar dermal leishmaniasis (PKDL) [133,134]. Additionally,

reversible male reproductive toxicity has been reported [135], indicating the necessity for

additional investigations. Miltefosine’s global utilization spans all major leishmaniasis

forms, including VL, CL, MCL, and PKDL [136–140], notably approved in India for oral

VL therapy as Impavido in 2002 [141]. Endorsed by WHO for PKDL treatment in East

Africa, Bangladesh, India, and Nepal [142,143], it is recommended at 2.5 mg/day for 28

days for CL [140]. Its efficacy against New World CL rivals sodium stibogluconate [1],

though bioavailability and efficacy vary by region and leishmaniasis type, partly due to

pharmacogenomic differences [144]. Moreover, the FDA’s approval is based on studies that

have shown that the susceptibility of Leishmania to miltefosine varies by Leishmania spe-

cies, strains of a Leishmania species, and different geographic regions [145,146]. Despite

these challenges, miltefosine’s oral administration, affordability, and safety profile maintain

its significant role in global leishmaniasis treatment.

Despite emerging resistance issues [1], miltefosine remains a key player in combination

therapies for leishmaniasis, favored for its cost-effectiveness and patient compliance. It is nota-

bly less expensive than L-AmB [147], offering economic advantages for VL treatment in the

Indian subcontinent [140]. However, it is worth noting that due to the embryotoxicity of mil-

tefosine, a contraceptive coverage period of 2 to 5 months is required after miltefosine use in

the potential population, depending on the duration of treatment, which will limit its overall

effectiveness [144]. Combining miltefosine with paromomycin or amphotericin B enhances its

efficacy [144], which significantly reduce treatment duration and costs, thereby improving

adherence [1,148]. In detail, the combination regimen of L-AmB 5 mg/kg single dose plus mil-

tefosine 2.5 mg/kg per day in the treatment of visceral leishmaniasis was able to shorten the

classical 28-day treatment by miltefosine to 7 days [148]. Moreover, synergies with antimony

sodium gluconate have been noted [149]. Recent advancements, like thermotherapy and metal

nanoparticle-encapsulated miltefosine, are tackling the challenge of prolonged treatment dura-

tions, showing promise in early studies for boosting efficacy and reducing toxicity [144,150].

These innovations underline miltefosine’s enduring significance in antileishmanial pharmaco-

therapy, supported by new therapies and combination treatments that extend its applicability

against leishmaniasis.
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4. Paromomycin

Paromomycin, an antibiotic first isolated from Streptomyces krestomuceticus in the 1950s, is

unique for its clinically significant antileishmanial properties [151]. Recognized for its antil-

eishmanial potential since 1961 through murine studies [152], its effectiveness against VL was

confirmed in human trials by the Kenya Medical Research Institute (KEMRI) in Nairobi and

the Hospital for Tropical Diseases in London later in the 1990s [153,154]. This led the Institute

for OneWorld Health to develop an intramuscular paromomycin sulfate formulation,

approved in India in 2006 for affordable VL treatment [1,151,155,156].

4.1 Molecular mechanism of the inhibition of Leishmania by paromomycin. Paromo-

mycin’s antileishmanial activity primarily involves disrupting ribosomal function and

Fig 3. Mechanisms of anti-leishmanial action by miltefosine. (A) Miltefosine disrupts Leishmania parasites through multiple mechanisms. It interferes with

lipid metabolism by integrating into parasite membranes, disrupts calcium ion homeostasis, and inhibits mitochondrial cytochrome C oxidase, collectively

leading to parasite death. (B) In host cells, miltefosine modulates the immune response by affecting the PI3K/Akt signaling pathway, inducing apoptosis in

infected cells, which further enhances its antiparasitic efficacy. Created with Biorender.com.

https://doi.org/10.1371/journal.pntd.0012735.g003
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mitochondrial membrane potential, affecting protein synthesis and energy metabolism [157–

159]. It likely targets Leishmania protein translation by binding to ribosomal RNA, similar to

its antibacterial effects [160,161], specifically disrupting peptide chain translation by binding

to the 30S ribosomal subunit and interacting with 16S rRNA [162]. Further, paromomycin

impedes translation by enhancing ribosomal subunit association and preventing dissociation

[161], with RNA sequencing and experiments identifying inhibitory interactions [160,163].

Cryoelectron microscopy has shown paromomycin binds the 91S subunit, disrupting tRNA

recruitment [164], and also disrupts mitochondrial respiration and membrane potential [159],

illustrating its broad antileishmanial mechanism (Fig 4).

4.2 Current clinical applications of paromomycin. Paromomycin, effective against VL

and CL, is widely available and affordable, especially in endemic regions [156,165]. Its admin-

istration is mainly intramuscular for VL or topical for CL due to limited oral bioavailability

[157,165]. The WHO recommended a paromomycin and sodium stibogluconate combination

for VL in East Africa in 2010 [96], with subsequent studies validating up to 95% cure rates

[166]. A 2015 Phase III trial in Bangladesh also highlighted a 94% efficacy of paromomycin

monotherapy at 11 mg/kg for VL over 21 days, showing 94% efficacy and mild side effects

[167]. In Israel since the 1990s, a topical ointment with 15% paromomycin and 12% reactive

Fig 4. Paromomycin targets the decoding center of the Leishmania cytosolic ribosome. (A) A cryo-EM structure of the

Leishmania cytosolic ribosome, showing 3 tRNAs positioned at the A-site (orange), P-site (beige), and E-site (yellow), with

the mRNA in red. Paromomycin (PAR) is shown in purple, bound to the ribosomal RNA (rRNA), with ribosomal proteins

in green and light blue representing the small (40S) and large (60S) subunits, respectively. (B) A close-up view of the PAR-

binding pocket, highlighting its interaction with the decoding center of the ribosome, analogous to its binding site in

bacterial ribosomes. (C) Paromomycin binds to the aminoacyl-tRNA recognition site on the small ribosomal subunit

(40S), interfering with the translation process by causing mistranslation of the peptide chain, which compromises

Leishmania growth. Created with Biorender.com.

https://doi.org/10.1371/journal.pntd.0012735.g004
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oxygen species has been utilized for CL, showing effectiveness against L. major, L. panamensis,
L. mexicana, and L. braziliensis across various regions [168–171].

Nevertheless, the efficacy of paromomycin exhibits variability among different strains and

populations [165]. Additionally, it is associated with adverse reactions such as localized pain at

the injection site and transient auditory impairment, with a small percentage of patients

experiencing nephrotoxic effects [156]. In light of these challenges, ongoing efforts focus on

optimizing protocols and exploring novel delivery systems to enhance its risk-benefit ratio

including the investigation of modified formulations such as 15% paromomycin with 10%

urea [172] or 0.5% gentamicin [173,174] to mitigate adverse effects. Innovative paromomycin

formulations like microspheres, liposomes, and hydrogels for both VL and CL are enhancing

its efficacy and safety [175,165]. Khan and colleagues’ microsphere approach notably reduces

nephrotoxicity [176], while liposomal formulations improve absorption and exhibit immuno-

logical benefits [177]. Solid lipid nanoparticles offer sustained release and reduced toxicity,

increasing antileishmanial efficacy [178,179]. Biodistribution assays showed iontophoretic

transport delivered higher PAR amounts to deeper skin layers than conventional ointment

[180]. These advances are optimizing paromomycin’s therapeutic profile, promising to

enhance its role in leishmaniasis treatment.

5. Pentamidine

Pentamidine, a synthetic amidine derivative synthesized in the late 1930s [181], initially treated

VL before the 1950s [182] and later addressed drug-resistant CL in the 1970s [183]. Commer-

cialized as an isethionate ester in 1984 [184,185], it now serves as a second-line option for

leishmaniasis due to efficacy limits and toxicity [186]. As drug resistance escalates, elucidating

pentamidine’s mechanisms of action and developing safer derivatives may unlock new possi-

bilities for this old medication.

5.1 Molecular mechanism of the inhibition of Leishmania by pentamidine. Pentami-

dine’s effects on Leishmania parasites are notably complex and not yet fully understood. It

interacts with various nucleic acids, disrupting nucleotide incorporation and oxidative phos-

phorylation, thereby affecting the biosynthesis of DNA, RNA, phospholipids, and proteins. It

disrupts the MBNL1-CUG repeat complex in DM1, affecting alternative splicing of pre-

mRNAs [187], and shows broad RNA-binding activity, including interactions with CUG RNA

repeats and intron stem-loop RNA [188]. Furthermore, pentamidine’s nonspecific tRNA bind-

ing interferes with aminoacylation processes [189], adding another layer to its multifaceted

inhibitory effects. Pentamidine may bind to the kinetoplast DNA, inhibiting mitochondrial

respiratory chain complex II, inducing apoptosis through increased intracellular calcium

[185]. Its competing with polyamines [190] significantly inhibits polyamine synthesis, critical

for purine-lacking Leishmania [191]. These interactions highlight the need for thorough evalu-

ation of pentamidine’s target engagement and its promiscuous binding behavior [192].

5.2 Current clinical applications of pentamidine. Previously a first-line leishmaniasis

treatment, pentamidine’s use has declined due to adverse effects and new therapies, now serv-

ing mainly as a second-line option [186]. Its efficacy varies across Leishmania species, remain-

ing a first-line recommendation for L. guyanensis-induced CL and MCL in several South

American countries, backed by high cure rates and mild toxicity in trials [193,194]. Similarly,

it is recommended for MCL from L. panamensis and diffuse CL from L. aethiopica, reflecting

its species-specific effectiveness [195–197].

When primary treatments (pentavalent antimonials) fail, pentamidine serves as a secondary

option for leishmaniasis [198]. Its efficacy, however, is inconsistent across studies: in Peru,

only a 35% cure rate was reported for L. braziliensis infections, contrasting the 78% efficacy of
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meglumine antimoniate [199], whereas in Colombia, a study showed a 96% success rate [197].

This suggests that pentamidine’s effectiveness varies by region and Leishmania strain,

highlighting the need for more research to define its precise therapeutic role.

Pentamidine’s clinical use is hampered by its safety profile and resistance development.

Immediate reactions like hypotension, nausea, and vomiting, along with injection site pain,

leukopenia, and hypoglycemia, underscore its toxicity [181]. Notably, glucose metabolism dis-

orders affected 15.3% of patients, with a 3.6% incidence of acute kidney injury and widespread

mild cardiovascular effects [200]. Resistance is also a significant issue, leading to over 30% fail-

ure rates in areas like India, necessitating dose increases that heighten toxicity risks [201].

These factors underline the urgent need for new treatments without these drawbacks to

improve leishmaniasis care.

Conclusions and outlook

Leishmaniasis, a significant NTD caused by Leishmania spp., challenges global health. Histori-

cally treated with pentavalent antimonials, their use has declined due to toxicity and treatment

failure. Other treatments like amphotericin B, miltefosine, and paromomycin face issues of

cost, safety, and efficacy across species, stifling drug development due to insufficient invest-

ment and interest. Table 1 listed a further detailed comparison of the effectiveness, limitations

of use, and side effects of the discussed antileishmanial drugs. However, recent efforts aim to

overcome these barriers through advances in omics, combination regimens, immunomodula-

tory approaches, structure-based drug design, and other novel therapies. Emphasizing multi-

disciplinary approaches, global collaboration, and a balance of research aims is essential for

advancing antileishmanial drug development and potentially eradicating the disease. To

achieve this mission, the following issues central to antileishmanial pharmacotherapy warrant

thorough discussion.

Given the outlined challenges, antileishmanial drug development faces critical issues, nota-

bly the suboptimal efficacy and drug resistance of current treatments, underscoring the need

for safer and more effective alternatives. The adverse effects and safety concerns of drugs like

pentavalent antimonials, along with the high costs and limited accessibility of treatments such

as L-AmB and miltefosine, constrain their use, particularly in under-resourced areas. Further-

more, the administration routes of most existing agents, typically requiring parenteral injec-

tions, contribute to poor patient compliance and highlight the need for oral or topical options.

Another key obstacle is the lack of treatment specificity against diverse Leishmania species and

clinical manifestations, which hampers the development of tailored therapeutic regimens. To

address these challenges, research advancements are crucial, particularly in the areas of combi-

nation therapies and novel drug delivery systems, such as nanoparticles, liposomes, and hydro-

gels, which offer promising avenues for enhancing treatment efficacy and reducing toxicity.

Recent innovations in drug delivery have introduced advanced nanotechnology and liposomal

carriers to boost bioavailability and mitigate toxicity. For example, pH-sensitive NLCs for

AmB have been developed to enable targeted drug release under the acidic conditions typical

of localized leishmaniasis lesions, thus meeting the need for localized treatments. Likewise,

liposomal formulations, such as those created for AmB, enhance drug distribution and reduce

side effects, proving particularly effective in the treatment of VL [62,63]. These technologies

exemplify how innovations in drug delivery can expand treatment options [202] and improve

outcomes for patients across various forms of the disease. Moving forward, the future of antil-

eishmanial therapy hinges on continued innovation that addresses these diverse challenges,

aiming for treatments that are not only efficacious but also safe, cost-effective, and widely

accessible.
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Table 1. Summary of key features of antileishmanial drugs of interest.

Drug name Route of

administration

Effective against Limitations and side

effects

Cost of treating

leishmaniasis

Insight into drug

improvements

Pentavalent

antimonial

Intramuscular injection

or intravenous infusion

[1, 214]

VL:

Leishmania donovani (East

Africa): Highly effective (94%

cure rate)

Leishmania infantum (all

regions): Highly effective (97%

cure rate)

PKDL:

● East Africa: Good efficacy in

combination with

paromomycin

CL:

Old World species (L. major,
L. tropica, L. infantum):

Highly effective

New World species (L.

braziliensis, L. panamensis, L.

guyanensis): Highly effective

ML:

● New World species:

Moderate efficacy, may

require combination therapy

● Common side effects:

Musculoskeletal pain,

headache, nausea, and

asthenia

● Cardiotoxicity,

hepatotoxicity,

nephrotoxicity, and

pancreatitis as rare, and

associated with cumulative

doses [215–219]

● Abdominal colic,

diarrhea, skin rashes,

pancreatitis

● Painful to administer

and prolonged treatment

● Drug resistance (in the

Indian subcontinent) [1,6]

Meglumine antimoniate

(Glucantime):

US$ 85 per patient cured

[220]

● Natural Cell-Penetrating

Nanopeptide: Combined with

Pentavalent Antimonial [221]

● Liposomal Encapsulation:

Pentavalent Antimonials

encapsulated in conventional

liposomes [55–57]

● Polymer-Based Delivery

Systems: Polyacryl starch

microparticles containing

covalently bound SSG [222]

● Cyclodextrin-Based Oral

Formulation: Composition

with MA and β-cyclodextrin

enhances oral absorption in a

murine model of CL [57]

Topical Formulations for CL:

Sb(V)-guanosine hydrogel

highly effective against

intracellular Leishmania
amastigote [223–225]

Amiodarone and

Itraconazole: In hamsters,

either alone or in

combination, enhances

glucantime activity in treating

L. amazonensis lesions with

no evident side effects [226]

Amphotericin

B

Intravenous injection

(for AmB deoxycholate

and L-AmB) [80,68] or

topical (for L-AmB gel)

[100]

L-AmB:

Showed efficacy against

Leishmania infantum in a

documented Korean case [94]

Emerging resistance reported

in some L. martiniquensis
strains may confer cross-

resistance [108]

Topical L-AmB gel:

Highly effective against

patients with CL caused by L.

major [100]

AmB deoxycholate:

● Inherent nephrotoxicity

[62,68,80]

● Longer hospitalization

[89]

● Infusion reactions like

fever, chills [103]

L-AmB:

●Milder toxicity than

amphotericin B

deoxycholate [62,68,80–

84,88]

Topical L-AmB gel:

●Mild local adverse

reactions like pain, itch,

erythema, and discharge

[100]

US$ 659.79 (price adopted

by WHO) or US$ 11,559.15

(price adopted by the Drug

Regulation Board of Brazil)

for treating an adult patient

with VL in Brazil [227]

● Improve liposomal

formulations to reduce

toxicity [228]

● Short-course combination

with miltefosine [111]

● Nanoparticle incorporation

to improve delivery [110]

Miltefosine

(trade name:

Impavido)

Oral administration

[116,145]

L. donovani was found to be

the most sensitive, while L.

major is not sensitive

[116,229]

● Gastrointestinal

complaints

● Teratogenicity [116,144]

● Ocular complications

[144,230]

● Reversible male

reproductive toxicity

[116,145]

US$ 259.92 in the outpatient

treatment regimen in Brazil

[231]

● Combination therapy [144]

● Formulation innovation

[150]

Paromomycin Intramuscular

injection;

intravenous injection;

topical application

[165]

Strains: Efficacy against several

Leishmania strains, including

L. major, L. panamensis, L.

mexicana, and L. braziliensis
in varying regions [168–171]

● Advantageous regions:

Africa and India [151]

● Injection-site pain [157]

●Mild side effects [157]

● Laboratory strains

developed resistance [165]

Cost-effective: US$ ~10 per

patient [232]

Develop some innovative

formulations to enhance the

efficacy and safety of

paromomycin

(Continued)
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Additionally, rationale structural optimization guided by insights into drug–parasite inter-

actions may yield derivatives with increased potency and selectivity. Developing novel formu-

lations for diverse administration routes, including oral and topical options, could further

expand therapeutic reach and access. New compounds play an important role in anti-parasitic

treatment. Wyllie and colleagues have identified small molecule drugs that can inhibit the

growth and reproduction of parasites by inhibiting the CRK12 enzyme [203]. As a prominent

among drugs for treatment of infectious disease, macrocycles were more potent than miltefo-

sine identified in a phenotypic screen of Leishmania infantum [204]. Melittin-containing

fusion crystal [205], dioclea violacea lectin [206], 8-hydroxy-2-quinoline carbaldehyde deriva-

tives [207], cyanotriazoles that rapidly cure trypanosome infections [208] also have been dis-

covered to be used for treating leishmaniasis. Beyond traditional chemicals, newly developed

gene editing methods also present opportunities to eliminate remaining parasites following

therapy. To improve efficacy and reduce side effects, Lago and colleagues utilized topical

rSm29 in conjunction with intravenous meglumine antimoniate for the treatment of cutane-

ous leishmaniasis [209]. As the conventional treatments often use drugs with high toxicity, A

chitosan/collagen biomembrane, loaded with 2,3-dihydrobenzofuran can be employed for the

treatment of CL [210]. Nahanji and colleagues enhanced the efficacy of fluconazole against

Leishmania major for topical delivery using FLZ-nanoemulsions [211]. Besides, PA and AmpB

together could form a promising new treatment strategy against Leishmania infections, offer-

ing enhanced efficacy without added toxicity [212]. Nanotechnology can enhance leishmania-

sis treatment using drug-carrying nanosystems like metallic nanoparticles, liposomes, and

polymeric/lipid nanoparticles, minimizing side effects, dose, and costs. Encapsulating antil-

eishmanial drugs in nanosystems boosts bioavailability, sustained release, macrophage uptake,

and target cell/tissue delivery, while enhancing efficacy and reducing toxicity [150]. Allahver-

diyev and colleagues found Ag-NPs inhibited L. tropica promastigote proliferation and meta-

bolic activity by 1.5–3× in the dark and 2–6.5× under UV light [213]. By combining strengths

in parasitology, pharmacology, immunology, formulation science, and bioengineering, the

next generation of antileishmanial regimens may be within reach.

The future of antileishmanial therapy looks promising, driven by innovations that broaden

treatment possibilities. The development of broad-spectrum agents to combat various Leish-
mania species and manifestations is crucial. Enhancing current treatments through novel for-

mulations and delivery systems, alongside multidisciplinary methods including

immunopharmacology, gene editing, and bioengineering, could offer synergistic benefits,

improving safety and efficacy. Additionally, uncovering unknown drug actions and resistance

mechanisms is vital for creating targeted therapies. Achieving these advancements requires

global collaboration and investment, emphasizing the need to address this neglected disease’s

impact. This concerted effort could usher in a new era of improved outcomes for leishmaniasis

patients.

Table 1. (Continued)

Drug name Route of

administration

Effective against Limitations and side

effects

Cost of treating

leishmaniasis

Insight into drug

improvements

Pentamidine Intramuscular injection

[165]

First-line recommendation for

CL and MCL caused by L.

guyanensis, which is endemic

to Brazil, Colombia, French

Guiana, and Suriname

[193,194]

Efficacy varies between

Leishmania species [165]

● Drug resistance [201]

US$ 70 for relapsed patients

[233]

Developing agents devoid of

resistance and toxicity issues

https://doi.org/10.1371/journal.pntd.0012735.t001
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Key Learning Points

Current antileishmanial drugs and their limitations

The review discusses the main antileishmanial drugs: pentavalent antimonials, ampho-

tericin B, miltefosine, paromomycin, and pentamidine. Each of these drugs faces signifi-

cant limitations, such as high toxicity, resistance issues, and variable efficacy across

different regions and Leishmania species.

Drug resistance mechanisms

Leishmania parasites develop resistance through various mechanisms, including alter-

ations in drug targets, increased efflux of drugs, and metabolic changes. Understanding

these mechanisms is essential for developing new, more effective treatments.

Advancements in drug delivery systems

Innovative drug delivery methods, such as liposomal formulations and advanced drug

delivery systems, have been developed to improve the efficacy and reduce the toxicity of

antileishmanial drugs. Liposomal amphotericin B, for example, offers improved out-

comes with reduced toxicity.

Combination therapies and new approaches

The review highlights the potential of combination therapies and new therapeutic strate-

gies, including combination regimens, immunomodulatory approaches, and advanced

drug delivery systems, to overcome the limitations of current treatments and improve

patient outcomes.

Future directions and research needs

Continued research is needed to explore novel therapeutic targets, develop safer and

more effective drugs, and implement comprehensive strategies to manage drug resis-

tance. Collaborative efforts and multidisciplinary approaches are crucial for advancing

antileishmanial pharmacotherapy and addressing the global burden of leishmaniasis.

Five Key Papers in the Field

1. Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a com-

prehensive review. Expert Opin Drug Discov. 2022 Feb;17(2):151–166.

2. Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug

discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strate-

gies to identify drug targets. Drug Dev Res. 2022 Apr;83(2):225–252.
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12. Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease,

leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents. 2020; 55:105906. https://doi.

org/10.1016/j.ijantimicag.2020.105906 PMID: 31987883

13. Vianna G. Tratamento da leishmaniose tegumentar por injeções intravenosas de tártaro emético. Arq
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36. Garza-Tovar TF, Sacriste-Hernández MI, Juárez-Durán ER, Arenas R. An overview of the treatment

of cutaneous leishmaniasis. F1000Prime Rep. 2020; 9. Available from: https://connect.h1.co/prime/

reports/b/9/28/. https://doi.org/10.12703/r/9-28 PMID: 33659960

37. Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, et al. Visceral leishmaniasis: current

status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet

Infect Dis. 2002; 2:494–501. https://doi.org/10.1016/s1473-3099(02)00347-x PMID: 12150849

38. Francesconi VA, Francesconi F, Ramasawmy R, Romero GAS, Alecrim MDGC. Failure of fluconazole

in treating cutaneous leishmaniasis caused by leishmania guyanensis in the brazilian amazon: An

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012735 January 3, 2025 17 / 28

https://doi.org/10.1074/jbc.M005423200
http://www.ncbi.nlm.nih.gov/pubmed/11110784
https://doi.org/10.1128/AAC.45.3.913-916.2001
http://www.ncbi.nlm.nih.gov/pubmed/11181379
https://doi.org/10.1046/j.1432-1327.2000.01605.x
http://www.ncbi.nlm.nih.gov/pubmed/10951203
https://doi.org/10.1146/annurev.mi.46.100192.003403
http://www.ncbi.nlm.nih.gov/pubmed/1444271
https://doi.org/10.1515/BC.2003.062
http://www.ncbi.nlm.nih.gov/pubmed/12751784
https://doi.org/10.1007/s00775-003-0468-1
http://www.ncbi.nlm.nih.gov/pubmed/12827457
https://doi.org/10.1074/jbc.M405635200
https://doi.org/10.1074/jbc.M405635200
http://www.ncbi.nlm.nih.gov/pubmed/15252045
https://doi.org/10.1128/AAC.45.7.2064-2069.2001
http://www.ncbi.nlm.nih.gov/pubmed/11408224
https://doi.org/10.1073/pnas.93.19.10383
http://www.ncbi.nlm.nih.gov/pubmed/8816809
https://doi.org/10.1128/AAC.49.5.1988-1993.2005
https://doi.org/10.1128/AAC.49.5.1988-1993.2005
http://www.ncbi.nlm.nih.gov/pubmed/15855523
https://doi.org/10.1016/j.bbagen.2008.03.006
http://www.ncbi.nlm.nih.gov/pubmed/18395526
https://doi.org/10.1126/science.3883489
http://www.ncbi.nlm.nih.gov/pubmed/3883489
https://doi.org/10.1046/j.1365-2958.2000.01721.x
http://www.ncbi.nlm.nih.gov/pubmed/10672177
https://doi.org/10.1021/jm900185q
http://www.ncbi.nlm.nih.gov/pubmed/19317451
https://doi.org/10.1016/s0006-291x%2888%2980081-0
http://www.ncbi.nlm.nih.gov/pubmed/2835038
https://doi.org/10.1128/AAC.42.8.1990
http://www.ncbi.nlm.nih.gov/pubmed/9687395
https://doi.org/10.1016/s0304-4165%2802%2900198-8
http://www.ncbi.nlm.nih.gov/pubmed/12020809
https://doi.org/10.2340/actadv.v102.2079
http://www.ncbi.nlm.nih.gov/pubmed/35229163
https://connect.h1.co/prime/reports/b/9/28/
https://connect.h1.co/prime/reports/b/9/28/
https://doi.org/10.12703/r/9-28
http://www.ncbi.nlm.nih.gov/pubmed/33659960
https://doi.org/10.1016/s1473-3099%2802%2900347-x
http://www.ncbi.nlm.nih.gov/pubmed/12150849
https://doi.org/10.1371/journal.pntd.0012735


open, nonrandomized phase 2 trial. PLoS Negl Trop Dis. 2018; 12:e0006225. https://doi.org/10.1371/

journal.pntd.0006225 PMID: 29481560

39. Hill N, Irwin A, Graham N, Leung C, Francis JR, Wall N, et al. Treatment of cutaneous leishmaniasis in

a nonendemic country: A case series of children in australia. Pediatr Infect Dis J. 2022; 41:e177.

https://doi.org/10.1097/INF.0000000000003445 PMID: 34966136

40. Tuon FF, Amato VS, Graf ME, Siqueira AM, Nicodemo AC, Neto VA. Treatment of New World cutane-

ous leishmaniasis–a systematic review with a meta-analysis. Int J Dermatol. 2008; 47:109–124.

https://doi.org/10.1111/j.1365-4632.2008.03417.x PMID: 18211479
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85. Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, et al. Liposomal Ampho-

tericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes

to the Design of Effective Topical and Oral Formulations. Pharmaceutics. 2023; 15:99. https://doi.org/

10.3390/pharmaceutics15010099 PMID: 36678729

86. Rebouças-Silva J, Tadini MC, Devequi-Nunes D, Mansur AL, Silveira-Mattos PS, de Oliveira CI, et al.

Evaluation of in vitro and in vivo efficacy of a novel amphotericin B-loaded nanostructured lipid carrier

in the treatment of leishmania braziliensis infection. Int J Nanomedicine. 2020; 15:8659–8672. https://

doi.org/10.2147/IJN.S262642 PMID: 33177824

87. Chivinski J, Nathan K, Naeem F, Ekmekjian T, Libman MD, Barkati S. Intravenous Liposomal Ampho-

tericin B Efficacy and Safety for Cutaneous and Mucosal Leishmaniasis: A Systematic Review and

Meta-analysis. Open Forum. Infect Dis. 2023; 10:ofad348. https://doi.org/10.1093/ofid/ofad348 PMID:

37520422

88. Wasan E, Mandava T, Crespo-Moran P, Nagy A, Wasan KM. Review of Novel Oral Amphotericin B

Formulations for the Treatment of Parasitic Infections. Pharmaceutics. 2022; 14:2316. https://doi.org/

10.3390/pharmaceutics14112316 PMID: 36365135

89. Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, et al. Recent Developments

in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis. Chem Rev. 2014;

114:11305–11347. https://doi.org/10.1021/cr500365f PMID: 25365529

90. Giri OP, Singh AN. Experience with amphotericin B in sodium stibogluconate—unresponsive cases of

visceral Leishmaniasis in north Bihar. J Assoc Physicians India. 1994; 42:690–691. PMID: 7883660

91. Davidson RN, Di Martino L, Gradoni L, Giacchino R, Russo R, Gaeta GB, et al. Liposomal amphoteri-

cin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. QJM Int J Med. 1994;

87:75–81. https://doi.org/10.1093/oxfordjournals.qjmed.a068903 PMID: 8153291

92. Olson JA, Adler-Moore JP, Smith PJ, Proffitt RT. Treatment of Candida glabrata Infection in Immuno-

suppressed Mice by Using a Combination of Liposomal Amphotericin B with Caspofungin or Micafun-

gin. Antimicrob Agents Chemother. 2005; 49:4895–4902. https://doi.org/10.1128/AAC.49.12.4895-

4902.2005 PMID: 16304150

93. Mohamed-Ahmed AHA, Brocchini S, Croft SL. Recent advances in development of amphotericin B for-

mulations for the treatment of visceral leishmaniasis. Curr Opin Infect Dis. 2012; 25:695. https://doi.

org/10.1097/QCO.0b013e328359eff2 PMID: 23147810

94. Kim HJ, Kim EJ, Choi JW, Kim YC, Lee H-I, Shin H-I. A Rare Case of Imported Cutaneous Leishmani-

asis Caused by Leishmania infantum in the Republic of Korea, 2021. Trop Med Infect Dis. 2023;

8:223. https://doi.org/10.3390/tropicalmed8040223 PMID: 37104348

95. Sundar S, Singh A, Agrawal N, Chakravarty J. Effectiveness of Single-Dose Liposomal Amphotericin

B in Visceral Leishmaniasis in Bihar. Am J Trop Med Hyg. 2019; 101:795–798. https://doi.org/10.

4269/ajtmh.19-0179 PMID: 31436156

96. World Health Organization. Control of the leishmaniases: report of a meeting of the WHO Expert Com-

mitee on the Control of Leishmaniases, Geneva, 22–26 March 2010. World Health Organization;

2010. Available from: https://iris.who.int/handle/10665/44412.
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214. Frézard F, Martins PS, Barbosa MCM, Pimenta AMC, Ferreira WA, de Melo JE, et al. New insights

into the chemical structure and composition of the pentavalent antimonial drugs, meglumine antimo-

nate and sodium stibogluconate. J Inorg Biochem. 2008; 102:656–665. https://doi.org/10.1016/j.

jinorgbio.2007.10.010 PMID: 18061680

215. Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, et al. Systematic

review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop.

2011; 118:87–96. https://doi.org/10.1016/j.actatropica.2011.02.007 PMID: 21420925

216. Clementi A, Battaglia G, Floris M, Castellino P, Ronco C, Cruz DN. Renal involvement in leishmania-

sis: a review of the literature. NDT Plus. 2011; 4:147–152. https://doi.org/10.1093/ndtplus/sfr008

PMID: 25984144

217. Lyra MR, Passos SRL, Pimentel MIF, Bedoya-Pacheco SJ, Valete-Rosalino CM, Vasconcellos ECF,

et al. PANCREATIC TOXICITY AS AN ADVERSE EFFECT INDUCED BY MEGLUMINE ANTIMONI-

ATE THERAPY IN A CLINICAL TRIAL FOR CUTANEOUS LEISHMANIASIS. Rev Inst Med Trop São

Paulo. 2016; 58:68. https://doi.org/10.1590/S1678-9946201658068 PMID: 27680173

218. El Jeri KH, Harzallah A, Barbouch S, Bacha MM, Kheder R, Turki S, et al. Visceral Leishmaniasis in

Adults with Nephropathy. Saudi J Kidney Dis Transpl. 2017; 28:95. https://doi.org/10.4103/1319-

2442.198159 PMID: 28098109

219. Marques SA, Merlotto MR, Ramos PM, Marques MEA. American tegumentary leishmaniasis: severe

side effects of pentavalent antimonial in a patient with chronic renal failure. An Bras Dermatol. 2019;

94:355–357. https://doi.org/10.1590/abd1806-4841.20198388 PMID: 31365669
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C, et al. Current and promising novel drug candidates against visceral leishmaniasis. Pure Appl Chem.

2019; 91:1385–1404. https://doi.org/10.1515/pac-2018-1102

233. WHA60.13 Control of leishmaniasis. [cited 2024 Jan 19]. Available from: https://www.who.int/

publications-detail-redirect/wha60.13.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012735 January 3, 2025 28 / 28

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1236952
https://doi.org/10.3389/fimmu.2023.1236952
https://doi.org/10.3389/fimmu.2023.1236952
http://www.ncbi.nlm.nih.gov/pubmed/37638047
https://doi.org/10.4269/ajtmh.2011.10-0155
http://www.ncbi.nlm.nih.gov/pubmed/21292895
https://doi.org/10.1590/0037-8682-0454-2020
https://doi.org/10.1590/0037-8682-0454-2020
http://www.ncbi.nlm.nih.gov/pubmed/33533816
https://doi.org/10.1515/pac-2018-1102
https://www.who.int/publications-detail-redirect/wha60.13
https://www.who.int/publications-detail-redirect/wha60.13
https://doi.org/10.1371/journal.pntd.0012735

