

RESEARCH ARTICLE

Variable effects of transient *Wolbachia* infections on alphaviruses in *Aedes aegypti*

Brittany L. Dodson¹, Sujit Pujhari², Marco Brustolin³, Hillary C. Metz¹, Jason L. Rasgon^{1,4,5,6*}

1 Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America, **2** Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, South Carolina, United States of America, **3** Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, **4** Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America, **5** The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America, **6** Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America

* jlr54@psu.edu

OPEN ACCESS

Citation: Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL (2024) Variable effects of transient *Wolbachia* infections on alphaviruses in *Aedes aegypti*. PLoS Negl Trop Dis 18(11): e0012633. <https://doi.org/10.1371/journal.pntd.0012633>

Editor: Gordana Rasic, QIMR Berghofer Medical Research Institute, AUSTRALIA

Received: May 26, 2023

Accepted: October 15, 2024

Published: November 4, 2024

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: <https://doi.org/10.1371/journal.pntd.0012633>

Copyright: © 2024 Dodson et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data are available in the figures, tables, and [supplementary material](#)

Funding: This study was supported by NIH grants R01AI116636 and R01AI150251, USDA Hatch project 4769, a grant with the Pennsylvania

Abstract

Wolbachia pipiensis (= *Wolbachia*) has promise as a tool to suppress virus transmission by *Aedes aegypti* mosquitoes. However, *Wolbachia* can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of *Wolbachia* on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of *Wolbachia* (*wAlbB* and *wMel*) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in *Ae. aegypti*. We found variable effects of *Wolbachia* including enhancement and suppression of viral infections, with some effects depending on *Wolbachia* strain. Both *wAlbB*- and *wMel*-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with *wAlbB*-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of *Wolbachia* were observed. The effects of *Wolbachia* on MAYV infections were strikingly strain-specific; *wMel* strongly blocked MAYV infections and suppressed viral titers, while *wAlbB* had more modest effects. The variable effects of *Wolbachia* on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.

Author summary

In recent years, wild populations of *Aedes aegypti* mosquitoes in over a dozen countries have been deliberately infected with *Wolbachia pipiensis* ("*Wolbachia*"); an intracellular bacterium that, in some circumstances, helps to curb the spread of mosquito-borne pathogens including dengue virus. But how does *Wolbachia* affect the ability of mosquitoes to become infected with and spread the many different viruses they encounter in nature?

Department of Health using Tobacco Settlement Funds, and funds from the Dorothy Foehr Huck and J. Lloyd Huck endowment to JLR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All authors had partial salary support from NIH.

Competing interests: The authors have declared that no competing interests exist.

Here, we use transient somatic infections in *Aedes aegypti* to characterize the effects of *Wolbachia* on three different alphaviruses that cause illness in humans: Sindbis virus, O’nyong-nyong virus, and Mayaro virus. We find that transient *Wolbachia* infections have variable effects on these different pathogens, ranging from significant suppression of Mayaro virus to significant enhancement of Sindbis virus. Our research has important implications for the design of vector control strategies, and suggests further research is needed to understand how *Wolbachia* shapes the replication and transmission of diverse viruses in mosquitoes.

Introduction

More than half of the world’s population is at risk for vector-borne diseases, with an estimated one billion new infections and one million deaths every year [1]. Vector-borne diseases are an increasing threat to human health due to global travel, insecticide resistance, and climate change [2–5], and novel strategies to combat mosquitoes and the pathogens they transmit are urgently needed. One of the most promising new tools is the bacterium *Wolbachia pipiensis* (= *Wolbachia*), which can suppress vector populations [6] and prevent replication of viruses in mosquitoes, an effect called pathogen blocking [7–8].

Wolbachia is a genus of intracellular bacteria present in many arthropod species [9–11]. Because it can suppress the transmission of specific mosquito-borne viruses and parasites when transferred to novel mosquito hosts, *Wolbachia* has been the focus of much recent research (e.g., [12–15]). *Wolbachia*-infected mosquitoes have been released into the field in multiple countries to curb the spread of dengue virus (DENV) by *Ae. aegypti* vectors [8,9,16–20]. In some cases, *Wolbachia*-infected animals can replace native populations and retain a pathogen-blocking phenotype for multiple years after release [8,9,21–25]. However, native population replacement with *Wolbachia*-infected mosquitoes is not always successful [16,26–30]. Moreover, the effects of *Wolbachia* on pathogens can be variable and may depend on factors such as the virus–mosquito–*Wolbachia* strain pairing, environmental conditions, population dynamics, and *Wolbachia* density [8,13,31–35]. In several mosquito genera, *Wolbachia* may enhance some pathogens by increasing both infection frequency and infection intensity, including *Plasmodium berghei*, *Plasmodium yoelii*, *Plasmodium gallinaceum*, and West Nile virus (WNV) [35–39]. Our previous work with *Culex tarsalis* demonstrated that a single strain of *Wolbachia* can have different effects on different pathogens. Specifically, the *Wolbachia* strain *wAlbB* enhanced WNV infection frequency but suppressed Rift Valley fever virus titers [39–40]. These findings of enhancement stress the importance of better understanding the multifaceted effects of *Wolbachia* on vectors and pathogens, as *Wolbachia* has the potential to negatively impact mosquito-borne disease control efforts.

To better understand the range of outcomes *Wolbachia* can have on vector competence, we investigated the effects of two *Wolbachia* strains (*wAlbB* and *wMel*) on alphavirus infections in *Aedes aegypti*. We focused on *Ae. aegypti*, one of the most pernicious vectors of medically relevant pathogens, and to date, the only species used for *Wolbachia* field releases. *Wolbachia* is not naturally found in wild populations of *Aedes aegypti* [41–42]. We studied the alphaviruses Sindbis virus (SINV), O’nyong-nyong virus (ONNV), and Mayaro virus (MAYV). All three viruses are human pathogens and share important characteristics with Chikungunya virus [43–45], an emergent human pathogen spread primarily by *Ae. aegypti* [46]. Infections with these viruses rarely cause mortality, but they do cause significant morbidity (including

fever, rash, and arthralgia) and place a significant burden on public health in affected areas [47–49].

SINV has been isolated from wildlife in Eurasia, Africa, and Oceania [50–51], and there have been periodic cases and epidemics in several areas including Finland, Sweden, Russia, China, Australia, and South Africa [52–57]. Multiple mosquito genera can transmit SINV but *Culex* and *Culiseta* are considered the primary vectors [47,51,58–59]. ONNV is endemic in Africa, where there have been epidemics involving millions of people and where anti-ONNV antibodies are detected at high rates in local human populations [60–64]. ONNV is thought to be transmitted mainly by *Anopheles*, but other mosquito species are also susceptible to infection [65–66]. MAYV is endemic in South and Central America and has caused several small-scale outbreaks of febrile illness with prolonged, disabling arthralgia since it was first identified in 1954 [48]. The virus is common in populations of wild primates and is thought to be spread to humans primarily by *Haemagogus janthinomys* [67], though many mosquito species including *Ae. aegypti* can also become infected and transmit MAYV [49,68–70].

We assessed the ability of transient infections of *wAlbB* and *wMel* strains of *Wolbachia* to affect infection, dissemination, and transmission of SINV, ONNV, and MAYV in *Ae. aegypti*. We found striking variation in the effects of *Wolbachia* on these viruses, highlighting the need for more research into this bacterium and how it may influence the full diversity of medically relevant arboviruses found in nature.

Materials and methods

Mosquitoes, *Wolbachia*, and intrathoracic injections

We used two *Ae. aegypti* colonies. The Rockefeller strain was kindly provided by Dr. George Dimopoulos, Johns Hopkins University, while the Liverpool strain was obtained from BEI resources. Rockefeller mosquitoes were used to test ONNV and SINV, while Liverpool animals were used to test MAYV. All mosquitoes were reared and maintained using standard methods at 27°C ± 1°C, 12:12 hr light:dark cycle at 80% relative humidity in 30 × 30 × 30 cm cages (MegaView Science). Larvae were fed Tropical Flakes (Tetramin, Product No. 77101) and adults were provided *ad libitum* access to 10% sucrose. Mosquitoes were fed commercially available expired anonymous human blood (Biological Specialty Corporation) for both virus feeds and colony maintenance.

The *Wolbachia* strains *wAlbB* and *wMel* (derived from *Ae. albopictus* and *D. melanogaster*, respectively) were purified from infected *Anopheles gambiae* Sua5B cells and resuspended in Schneider's Insect Media (Sigma Aldrich) using published protocols [71]. A cell lysate negative control was prepared by putting *Wolbachia*-negative Sua5B cells through the *Wolbachia* purification process. *Wolbachia* viability and density from cell cultures were assessed by using the LIVE DEAD BacLight Bacterial Viability Kit (Invitrogen) and a hemocytometer.

Two- to five-day-old adult female *Ae. aegypti* were anesthetized with ice and injected in the thorax as previously described [39] with approximately 0.1 μl of *Wolbachia* (10¹⁰ bacteria/mL) or cell lysate control. Mosquitoes were given access to 10% sucrose *ad libitum* and maintained for up to 22 days post-injection (i.e., up to 27 days of age). *Wolbachia* infection rates in somatically-infected mosquitoes were ~100% and *Wolbachia* titers did not vary across injection groups (ANOVA, F = 1.005, P = 0.39 [S1 Fig]).

Generation of virus stocks

SINV (p5'dsMRE16ic) and ONNV (p5'dsONNic/foy) plasmids were kindly provided by Dr. Brian Foy (Colorado State University, Ft. Collins, CO) on filter paper [72–73]. We obtained the MAYV strain BeAr505411 from BEI Resources. For SINV and ONNV, infectious virus

stocks were propagated from the plasmid DNA. Specifically, a piece of the filter paper was cut and eluted in 0.1 ml TE buffer for approximately 1 hr. Competent *E. coli* cells (New England Biolabs, #C2987H) were transformed with the eluted plasmid DNA according to the manufacturer's instructions and grown on LB broth selection plates. Colonies were then picked from plates and grown in LB broth overnight at 37°C in a shaking incubator. Plasmid DNA was isolated from the bacterial culture using the EZNA Plasmid Mini Kit (Omega, Cat # D6942-02) according to the manufacturer's instructions. Plasmids were linearized with the AscI enzyme (New England Biolabs, #R0558S) for SINV and NotI enzyme (New England Biolabs, Cat. #R0189S) for ONNV in 0.05-ml reactions, according to the manufacturer's instructions. *In vitro* transcription was performed by using a SP6 polymerase Megascript kit (Ambion, AM1334) for SINV and a T7 polymerase Megascript kit for ONNV (Ambion, AM1330) in 0.02-ml reactions according to the manufacturer's instructions. Cap analog m7G(5')ppp5'G (Ambion, #AM8048-8052) was used in the transcription reaction, and RNA was purified using a Total RNA kit (Omega, R6834-02; from step 7). Vero or C636 cells were transfected with purified RNA using Transmessenger Transfection Reagent (Qiagen, #301525) according to the manufacturer's instructions (ONNV and SINV), or directly infected with virus particles (MAYV). Cell supernatant was harvested after 24–72 h of incubation and stored in 1 mL aliquots at -70°C.

Alphavirus infections

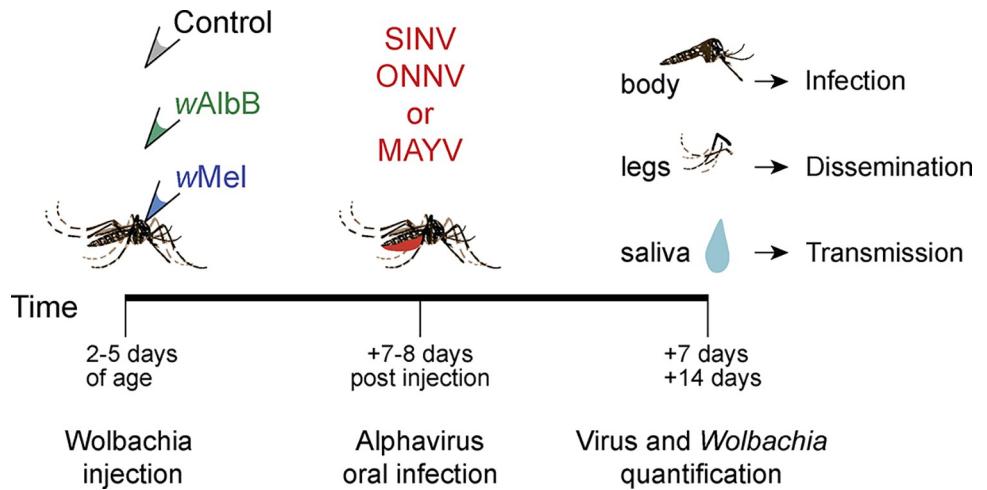
Seven (SINV and ONNV) or eight (MAYV) days after *Wolbachia* injections, adult mosquitoes were fed on infectious human blood using a glass membrane feeder jacketed with 37°C water. SINV and ONNV were quantified using plaque assays, while MAYV was quantified using focus-forming assays (see below for specific methods). Mosquitoes were sugar-starved overnight prior to blood feeding. Infectious blood meals were prepared by thawing frozen virus stocks to 37°C and adding it to the blood directly prior to feeding. Final blood meal virus titers were: ONNV – 10⁶ pfu/mL; SINV – 10⁵ pfu/mL; MAYV – 10⁷ ffu/mL. Mosquitoes were allowed to feed for one hour then anesthetized briefly on ice and examined for feeding status, and partially or non-blood fed females discarded. Fully engorged females were randomly divided into two groups and maintained in standard conditions as described above. Infected animals were analyzed at 7 and 14 days post-blood feeding. More specifically, mosquitoes were anesthetized with trimethylamine and legs from each individual were removed and placed separately into 2-ml microcentrifuge tubes containing 1 ml of mosquito diluent (20% heat-inactivated fetal bovine serum [FBS] in Dulbecco's phosphate-buffered saline, 50 µg ml⁻¹ penicillin streptomycin, and 2.5 µg ml⁻¹ fungizone). Saliva was collected from mosquito bodies by placing the proboscis of each mosquito into a capillary tube containing 1:1 of 50% sucrose:FBS [40]. After 30 minutes, the capillary tube contents were expelled in individual microcentrifuge tubes containing 0.1 ml of mosquito diluent on ice, while bodies were placed in individual microcentrifuge tubes containing 1 ml of mosquito diluent. A single zinc-plated, steel, 4.5 mm bead (Daisy) was placed into the microcentrifuge tubes containing mosquito bodies and legs. SINV and ONNV samples were homogenized in a mixer mill (Retsch) for 30 seconds at 24 cycles per second, then centrifuged for 1 minute at 10,000 rpm. MAYV samples were homogenized at 30 Hz for 2 min in a TissueLyser II (Qiagen) and centrifuged for 30 sec at 11,000 rpm. All samples were stored at -70°C until use.

Plaque assays

Mosquito samples were tested for SINV or ONNV infectious particles by plaque assay on Vero cells according to previously published protocols [74]. Briefly, 100 µL of each undiluted sample

was inoculated onto Vero cell culture monolayers. After inoculated plates were incubated in a cell culture incubator at 37°C and 5% CO₂ for 1 hr, an agar overlay was added (1:1 1x Dulbecco's modified eagle medium, 10% FBS, 1x penicillin streptomycin, 1x fungizone:1.2% agarose). Plates were incubated at 37°C for 2 days and then a second overlay (first overlay plus 1.5% final concentration of neutral red) was added. Twenty-four hours after application of the second overlay, samples were scored as positive or negative, and plaques counted. If plaques were too numerous to count, the assays were repeated with 10-fold serial dilutions of the sample.

Focus forming unit (FFU) assays


Infectious MAYV particles were detected and quantified via FFU assays in Vero cells as previously described [68]. Cells (1x10⁴/well) were grown in 96-well plates at 37°C with 5% CO₂ in complete media (Dulbecco's modified-essential media [DMEM] with 100 units/mL penicillin/streptomycin and 10% FBS). After one day of incubation, cells were briefly washed with DMEM (without FBS) and incubated for 1 h at 37°C with 30 uL of the serially diluted (10⁻¹ to 10⁻⁴) mosquito lysate or saliva. After 1 h, the sample was removed, and cells were briefly washed with DMEM to remove any unadhered viral particles. Wells were next filled with 100 uL of overlay medium (1% methylcellulose in complete medium), and plates were incubated. After 24 h (body and leg samples) or 48 h (saliva), cells were fixed with 4% paraformaldehyde (Sigma). Fixed cells were blocked and permeabilized for 30 min in blocking solution (3% bovine serum albumin and 0.05% Tween-20 in PBS) then washed with cold PBS. Viral antigens were next labeled with an anti-alphavirus antibody (CHK-48, BEI Resources) diluted 1:500 in blocking solution. Cells were washed with cold PBS four times, then incubated with Alexa-488 tagged secondary antibody (goat anti-mouse IgG, Invitrogen) at a dilution of 1:500. Fluorescent foci were then counted by eye (in a well with a dilution that produced <100 total foci) using an Olympus BX41 microscope with a UPlan FI 4x objective and FITC filter.

Measurements

Virus infection rate was defined as the proportion of mosquitoes with virus-positive bodies. The dissemination rate was defined as the proportion of infected mosquitoes with virus-positive legs. The transmission rate was calculated as the proportion of animals with disseminated (leg -positive) infections that also had virus-positive saliva, while transmission efficiency was the proportion of total mosquitoes with virus-positive saliva (Fig 1).

Quantitative real-time PCR of *Wolbachia* density

We extracted DNA from a 250-μl aliquot of each mosquito body homogenate with the EZNA Tissue DNA kit (Omega, cD3396-02), and DNA was used as a template for qPCR with the PerfeCta SYBR FastMix kit (Quanta Biosciences) on a Rotor-Gene Q (Qiagen) or a 7500 PCR system (Applied Biosystems). The qPCRs were performed in 10-μl reactions, and we used the following standardized program for amplification: 95°C for 5 min; 40 cycles of 95°C for 10 sec, 60°C for 15 sec, and 72°C for 10 sec. DNA was amplified with primers specific to each *Wolbachia* strain (*w*AlbB: Alb-GF; GGT-TTT-GCT-TAT-CAA-GCA-AAA-G and Alb-GR; GCG-CTG-TAA-AGA-ACG-TTG-ATC [75]; *w*Mel: WD_0550F; CAG-GAG-TTG-CTG-TGG-GTA-TAT-TAG-C and WD_0550R; TGC-AGG-TAA-TGC-AGT-AGC-GTA-AA [76]) and was normalized to host gene S7 (AeS7F; GGG-ACA-AAT-CGG-CCA-GGC-TAT-C and AeS7R; TCG-TGG-ACG-CTT-CTG-CTT-GTT-G [77]) by using qGene [39, 78].

Fig 1. Schematic of study design and timeline. Adult *Aedes aegypti* females were somatically infected with *Wolbachia* (wAlbB or wMel) or a control solution via injection 2–5 days post-eclosion. Seven or eight days later, injected animals consumed a blood meal spiked with infectious alphavirus (ONNV, SINV, or MAYV). At 7 and 14 days post-blood feeding, viral titers were measured in three tissues. *Wolbachia* infection density was additionally quantified in SINV- and ONNV-exposed animals.

<https://doi.org/10.1371/journal.pntd.0012633.g001>

Statistical analyses

The infection, dissemination, and transmission frequencies for each *Wolbachia* strain and virus combination were compared with controls using pairwise 2x2 Fisher's exact tests. Non-parametric Mann–Whitney U tests were used to compare viral titers when comparing two groups, and the Kruskal–Wallis test with Dunn's correction for multiple comparisons was used to compare experiments with more than two groups. *Wolbachia* titers were analyzed using ANOVA. Statistical tests were performed in GraphPad Prism version 7 for Windows (GraphPad Software, San Diego, CA).

Results

Ae. aegypti vector competence pilot experiment for alphaviruses SINV and ONNV

Prior to conducting experiments with *Wolbachia*, we first asked whether *Wolbachia*-free *Ae. aegypti* could be infected with ONNV and SINV. We found *Ae. aegypti* was susceptible to infection (17–20% across two replicates, n = 60 total animals) and dissemination (45%, 5 of 11 infected animals) with ONNV, but not transmission (0%). They were susceptible to infection (100% of 60 animals), dissemination (97–100%, at days 7 and 14, respectively), and transmission (23–38%, at days 7 and 14, respectively) with SINV. We did not test MAYV as our previous work found *Ae. aegypti* to be a competent vector of MAYV; At 7 days post infection with BeAr 505411 strain of MAYV, the infection, dissemination and transmission rates were 86.2%, 60% and 6.7% respectively [68], and other work also found *Ae. aegypti* to be susceptible to infection with MAYV [49].

Wolbachia and SINV co-infections

We asked whether somatic *Wolbachia* infections can influence alphavirus infections in *Ae. aegypti*. Infection rates with SINV were moderate across all treatment groups at both time

Table 1. Effects of *Wolbachia* on alphavirus infection, dissemination, and transmission rates in *Aedes aegypti*.

Group	Control (N)	Control Rate	wAlbB (N)	wAlbB Rate	wAlbB P value	wMel (N)	wMel Rate	wMel P value
SINV Body 7 days	61	0.426	123	0.642	0.007	92	0.685	0.0024
SINV Body 14 days	34	0.559	81	0.556	NS	83	0.687	NS
SINV Saliva 7 days	61	0.016	123	0.049	NS	92	0.033	NS
SINV Saliva 14 days	34	0.059	81	0.037	NS	83	0.108	NS
ONNV Body 7 days	30	0.067	90	0.111	NS	30	0.067	NS
ONNV Body 14 days	26	0	104	0.029	NS	38	0	NS
ONNV Saliva 7 days	30	0	60	0.017	NS	30	0	NS
ONNV Saliva 14 days	26	0	66	0	NS	38	0	NS
MAYV Body 7 days	55	0.909	40	0.8	NS	40	0.2	< 0.00001
MAYV Body 14 days	57	0.842	35	0.743	NS	40	0.275	< 0.00001
MAYV Legs 7 days	55	0.709	40	0.35	0.0008	40	0.025	< 0.00001
MAYV Legs 14 days	57	0.754	35	0.457	0.0067	40	0.175	< 0.00001
MAYV Saliva 7 days	52	0.115	40	0.05	NS	40	0	0.0339
MAYV Saliva 14 days	57	0.193	35	0	0.0057	40	0.025	0.0134

<https://doi.org/10.1371/journal.pntd.0012633.t001>

points (43–69%, Table 1). Both *wAlbB*- and *wMel*-injected mosquitoes showed significant enhancement of SINV infection rates compared to control mosquitoes at day 7 (Table 1, $P = 0.007$ and $P = 0.002$, respectively) but not at day 14 ($P > 0.05$ for both). Neither *Wolbachia* strain affected SINV transmission rates (Table 1). *wAlbB* mosquitoes had significantly greater body titers compared to control mosquitoes at day 7 (Fig 2, $P = 0.004$), with a similar but non-significant trend for *wMel* mosquitoes (Fig 2). There were no other significant differences in the body or saliva titers between *Wolbachia* and control mosquitoes (Fig 2A and 2B).

Wolbachia and ONNV co-infection

Infection rates with ONNV were low (0–11%) in all treatment groups (Table 1). Neither *Wolbachia* strain had a significant effect on ONNV infection or transmission rates, nor any effects on viral titer (Fig 3, NS for all comparisons).

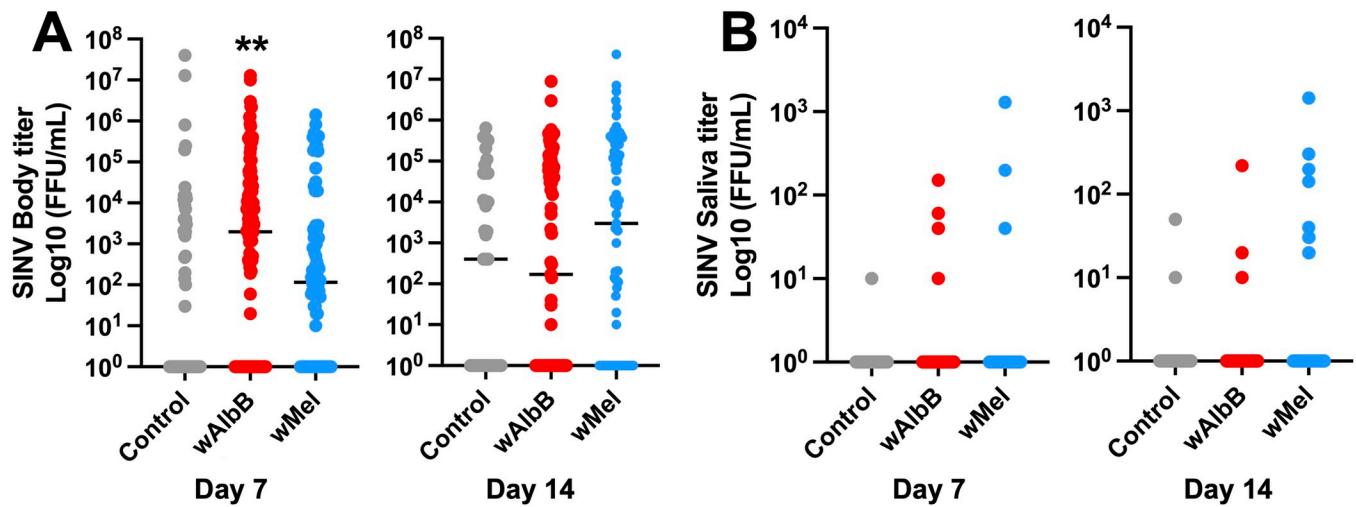
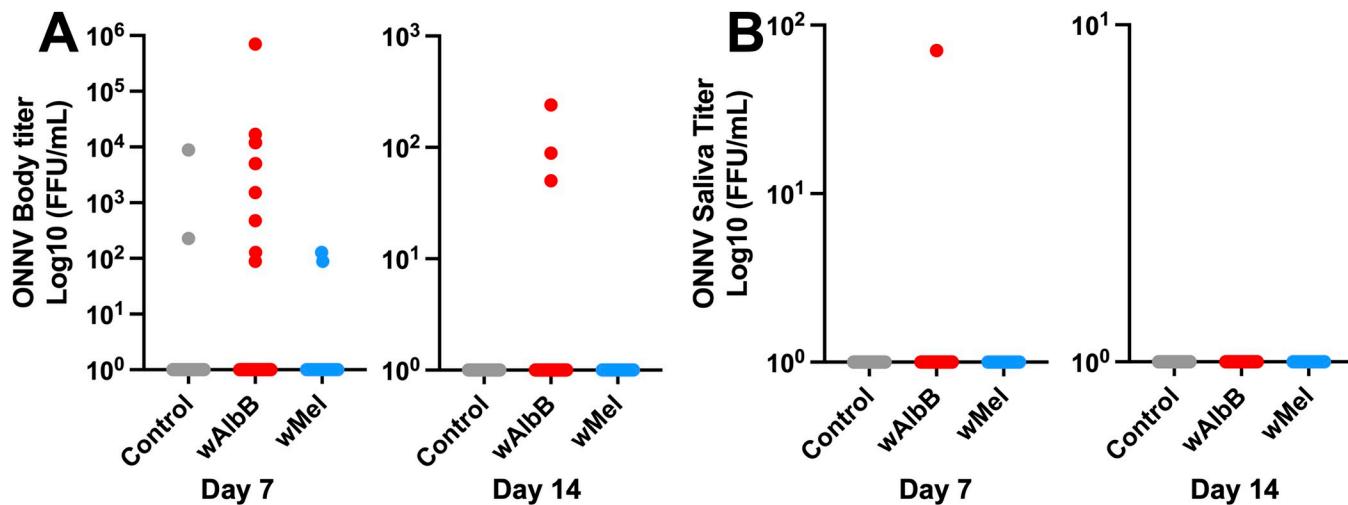
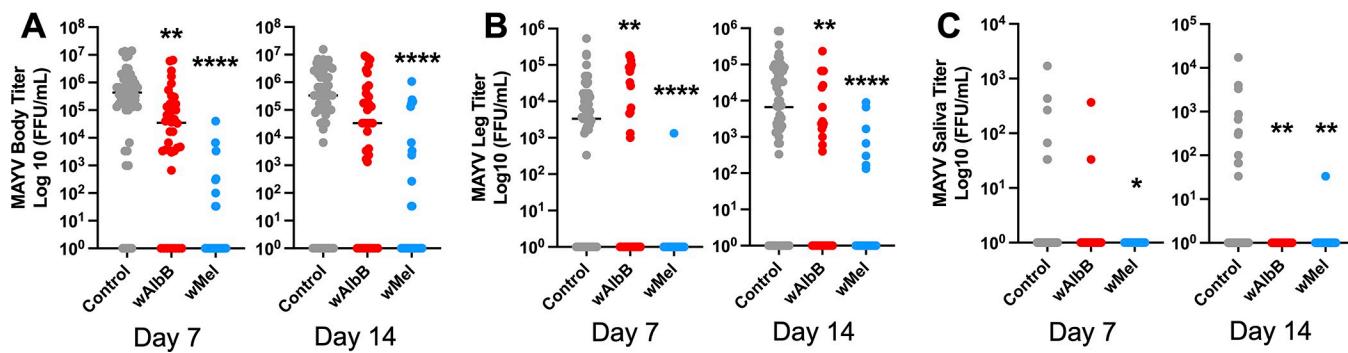



Fig 2. Effects of *Wolbachia* infection on SINV vector competence in *Aedes aegypti*. (A) SINV body titers at 7 and 14 days post-infected blood meal. (B) SINV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with Dunn's correction. ** $P < 0.01$.

<https://doi.org/10.1371/journal.pntd.0012633.g002>

Fig 3. Effects of Wolbachia infection on ONNV vector competence in *Aedes aegypti*. (A) ONNV body titers at 7 and 14 days post-infected blood meal. (B) ONNV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with Dunn's correction. There were no significant differences between groups.


<https://doi.org/10.1371/journal.pntd.0012633.g003>

Wolbachia and MAYV co-infection

The effects of *Wolbachia* on MAYV infections were *Wolbachia* strain-specific, with greater response to *wMel* infection compared to *wAlbB*. Control and *wAlbB*-injected mosquitoes were both infected with MAYV at high rates (91% and 80% at day 7, respectively, 84% and 74% at day 14) and did not differ statistically at either time point (Table 1). In contrast, *wMel* injected mosquitoes were infected with MAYV only rarely (20% and 28% infection rate at days 7 and 14, Table 1, $P < 0.00001$ for both time points). MAYV infections were less likely to disseminate in both groups of *Wolbachia* injected mosquitoes (Table 1, $P = 0.0008$ and $P = 0.0067$ for *wAlbB* at days 7 and 14, and $P < 0.00001$ for *wMel* at both timepoints). Transmission was also reduced in most *Wolbachia* injected animals at 7 days post injection for *wMel* ($P = 0.034$) and for both *wAlbB* ($P = 0.0057$) and *wMel* ($P = 0.0134$) at 14 days post injection (Table 1). Both *Wolbachia* strains reduced MAYV infection intensity: *wMel* had a strong suppressive effect at both time points ($P < 0.00001$, Fig 4A) while the effects of *wAlbB* were significant at day 7 ($P = 0.0023$), but while reduced were not significant at day 14 (Fig 4A). Both strains suppressed viral titer in legs—a proxy for dissemination—at both time points (Fig 4B) (*wAlbB*: day 7— $P = 0.008$, day 14— $P = 0.0042$; *wMel* $P < 0.0001$ for both timepoints). *wAlbB* reduced saliva titers only at day 14 ($P = 0.0035$) while *wMel* reduced saliva titers at both timepoints (day 7: $P = 0.0435$; day 14: $P = 0.0082$) (Fig 4C).

Discussion

While some mosquito-borne illnesses have declined in recent years (e.g., malaria [79]), *Ae. aegypti*—the primary vector of dengue, yellow fever, chikungunya, and zika viruses—stands out as an increasing threat to global human health [80]. The incidence of dengue, a virus spread primarily by *Ae. aegypti*, has grown 30-fold over the past 50 years and 390 million people may be infected each year [81–82]. *Ae. aegypti* also sparked a new epidemic (Zika virus) by spreading this previously neglected pathogen to new areas of the world [83]. One of the most promising new tools for curbing mosquito-borne disease—and dengue virus in particular—is *Wolbachia*, a bacterium that can block mosquitoes from transmitting pathogens [15]. However, much remains unknown about the bacterium, including its mechanism(s) of action [13,37,84–85]) and how it influences the many diverse viruses *Ae. aegypti* can carry (but see

Fig 4. Effects of *Wolbachia* infection on MAYV vector competence in *Aedes aegypti*. (A) MAYV body titers at 7 and 14 days post-infected blood meal. (B) MAYV leg titers at 7 and 14 days post-infected blood meal. (C) MAYV saliva titers at 7 and 14 days post-infected blood meal. A-D: Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with Dunn's correction. * $P < 0.05$, ** $P < 0.01$, **** $P < 0.0001$.

<https://doi.org/10.1371/journal.pntd.0012633.g004>

[86–89]). Filling these gaps in our understanding will better inform control programs and help us anticipate situations where *Wolbachia* could potentially exacerbate mosquito-borne transmission of some pathogens even while it suppresses others.

Here we report variable effects of *Wolbachia* on different alphaviruses in *Ae. aegypti*. We found that two divergent *Wolbachia* strains enhanced SINV infection rates and titers seven days post infection, though this effect disappeared by day 14. One possibility is that *Wolbachia* decreases the extrinsic incubation period (the time between when a mosquito acquires a virus through a bloodmeal and when it is able to transmit) of this virus, though other mechanisms are possible. In contrast, we did not find significant effects of *Wolbachia* on ONNV infections (though care should be taken in interpreting these data as ONNV infection rates were low in general), and we found *Wolbachia* reduced vector competence for MAYV. This effect varied from strong pathogen blocking (*wMel*) to smaller effects on dissemination and transmission (*wAlbB*), depending on the *Wolbachia* strain used. Our findings agree with earlier work that reported strong suppression of MAYV by a stable *wMel* infection in *Ae. aegypti* [49]. In sum, across three different alphaviruses we found three different effects of *Wolbachia*: enhancement, no effect, and strain-dependent pathogen blocking. These disparities highlight that the effects of *Wolbachia* on viruses are extremely variable. With our limited current knowledge, we cannot predict how *Wolbachia* may alter the composition and transmission of *Ae. aegypti*'s large and growing virome [90–91], which includes numerous human pathogens.

We report that *Wolbachia*-mediated effects can be strain-specific. Most notably, the pathogen blocking effect on MAYV [49] depended strongly on the *Wolbachia* strain used: *wMel* robustly suppressed MAYV infections at both time points while *wAlbB* did not affect infection rate. Our findings comport with previous reports that *Wolbachia* can have strain-specific effects on both pathogen susceptibility phenotypes and immune priming [89, 92–93]. For example, one study in *Ae. aegypti* found the *Wolbachia* strain *wMel* did not have any effects on yellow fever virus, but the *wMelPop* strain significantly reduced yellow fever virus in mosquito bodies and heads [89]. We do not yet know the mechanism underlying these strain-specific differences. However, we do know that *Wolbachia* strains show substantial genetic variation [6], which may provide one path for uncovering the molecular basis of these differential effects.

Neither *Wolbachia* strain had a significant effect on ONNV vector competence or viral body titers. Though we did see a trend toward possible enhancement of these viral measures, low infection rates affected statistical power. Overall, *Ae. aegypti* in general was a poor vector for ONNV, consistent with reports that *Anopheles* mosquitoes are the main vectors of ONNV [65–66]. However, some studies have suggested that *Ae. aegypti* vector competence for ONNV

may be virus strain-specific, and that this species can be a good vector in some circumstances [66]. Future studies should continue to test *Ae. aegypti* competence for this neglected alphavirus as well as whether *Wolbachia* may enhance ONNV transmission.

Though we do not yet understand why *Wolbachia* has variable effects on diverse viruses including WNV, Rift Valley Fever virus, SINV, ONNV, and MAYV, previous work hints at potential mechanisms. First, viruses from different families may interact within the host and with *Wolbachia* strains in diverse ways, e.g., via distinct immune responses [94]. Another possibility is the nature of the *Wolbachia* infections: this work used transient *Wolbachia* infections rather than stable, maternally inherited *Wolbachia* infections. However, several pieces of evidence suggest a broad similarity between transient and stable infections. Both transient and stable infections can show widespread tissue tropism [21,39,95], and transient and stable *Wolbachia* infections also have similar pathogen-blocking effects on WNV and DENV in *Ae. aegypti* [96]. Transient wMel infections also strongly blocked MAYV infections in the present study, replicating previous findings using stable infections [49]. Thus, the variation we describe may instead arise from previously unexplored biotic or abiotic factors that influence interactions between *Wolbachia* and these pathogens.

Our results illustrate the importance of further research into the effects of *Wolbachia* on arboviruses and the underlying mechanisms of those effects. *Wolbachia* has been deployed widely in the field, yet numerous studies have shown there is substantial variation in the bacterium's effects on vector competence. Factors such as environmental conditions, the *Wolbachia* strain used, the targeted pathogen, the mosquito species, and even rearing conditions appear to influence outcomes (e.g., [97–100]), yet the exact mechanism(s) driving this variation remain unclear. A better understanding of when and how *Wolbachia* influences viral infections in mosquitoes is needed in order to predict the long-range and knock-on effects this bacterium may have on the spread of human pathogens.

There are several limitations to our study. Although transient somatic *Wolbachia* infections have similar effects on both DENV [96] and MAYV [49] in *Ae. aegypti*, it remains to be seen whether (and how) stable *Wolbachia* infections in *Ae. aegypti* affect the alphaviruses studied here. Future work could explore whether *Wolbachia* infection techniques differentially impact pathogens. We also only examined a single viral genotype for each virus and did not compare multiple mosquito genotypes. Finally, we used different mosquito strains for SINV and ONNV experiments compared to MAYV experiments; mosquito genotype can affect *Wolbachia* blocking phenotypes [101–102].

Supporting information

S1 Fig. *Wolbachia* (wAlbB and wMel) titers (*Wolbachia* genomes/host genomes) in somatically infected *Aedes aegypti* 7 and 14 days post-injection. Groups are not statistically different (ANOVA, $P = 0.39$).

(JPG)

S1 Table. Raw data for this study. For viral titers, a “1” was added to zero values purely for log-scale plotting.

(XLSX)

Acknowledgments

We thank Dr. George Dimopoulos of Johns Hopkins University for kindly sharing the Rockefeller strain of *Ae. aegypti* mosquitoes. We thank Dr. Brian Foy of Colorado State University for kindly sharing SINV (p5'dsMRE16ic) and ONNV (p5'dsONN1c/foy) plasmids.

Author Contributions

Conceptualization: Brittany L. Dodson, Jason L. Rasgon.

Data curation: Brittany L. Dodson.

Formal analysis: Brittany L. Dodson, Hillery C. Metz.

Funding acquisition: Jason L. Rasgon.

Investigation: Brittany L. Dodson.

Methodology: Brittany L. Dodson, Sujit Pujhari, Marco Brustolin.

Project administration: Jason L. Rasgon.

Supervision: Jason L. Rasgon.

Validation: Brittany L. Dodson.

Writing – original draft: Brittany L. Dodson, Hillery C. Metz, Jason L. Rasgon.

Writing – review & editing: Brittany L. Dodson, Hillery C. Metz, Jason L. Rasgon.

References

1. World Health Organization. A global brief on vector-borne diseases. 2014. Geneva. Retrieved from www.who.int
2. Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. *Lancet*. 2012; 380: 1946–1955. [https://doi.org/10.1016/S0140-6736\(12\)61151-9](https://doi.org/10.1016/S0140-6736(12)61151-9) PMID: 23200503
3. Tabachnick WJ. Challenges in predicting climate and environmental effects on vector-borne disease episeystems in a changing world. *J Exp Biol*. 2010; 213: 946–954. <https://doi.org/10.1242/jeb.037564> PMID: 20190119
4. Weaver SC, Reisen WK. Present and future arboviral threats. *Antiviral Res*. 2010; 85: 328–345. <https://doi.org/10.1016/j.antiviral.2009.10.008> PMID: 19857523
5. Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. *Philos Trans R Soc Lond B Biol Sci*. 2015; 370: 20140135. <https://doi.org/10.1098/rstb.2014.0135> PMID: 25688023
6. Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. *Curr Opin Insect Sci*. 2019; 34: 12–20. <https://doi.org/10.1016/j.cois.2019.02.005> PMID: 31247412
7. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. *Acta Trop*. 2014; 132 Suppl: S150–163. <https://doi.org/10.1016/j.actatropica.2013.11.004> PMID: 24252486
8. Caragata EP, Dutra HL, Sucupira PH, Ferreira AG, Moreira LA. Wolbachia as translational science: controlling mosquito-borne pathogens. *Trends in Parasitol*. 2021; 37: 1050–1067. <https://doi.org/10.1016/j.pt.2021.06.007> PMID: 34303627
9. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. *Nature*. 2011; 476: 454–457. <https://doi.org/10.1038/nature10356> PMID: 21866160
10. Werren JH. Biology of Wolbachia. *Annu Rev Entomol*. 1997; 42: 587–609. <https://doi.org/10.1146/annurev.ento.42.1.587> PMID: 15012323
11. Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. *PLoS one*. 2012; 7: e38544. <https://doi.org/10.1371/journal.pone.0038544> PMID: 22685581
12. Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian *Aedes aegypti* mosquitoes. *Cell Host Microbe*. 2016; 19: 771–774. <https://doi.org/10.1016/j.chom.2016.04.021> PMID: 27156023
13. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in *Aedes aegypti* limits infection with dengue, Chikungunya, and Plasmodium. *Cell*. 2009; 139: 1268–1278. <https://doi.org/10.1016/j.cell.2009.11.042> PMID: 20064373

14. Tan CH, Wong PJ, Li MI, Yang H, Ng C, O'Neill S. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia—introgressed Ae. aegypti strain, wMel-Sg. *PLoS Negl Trop Dis.* 2017; 11: e0005496. <https://doi.org/10.1371/journal.pntd.0005496> PMID: 28542240
15. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged *Aedes aegypti* populations. *Nature.* 2011; 476: 450–453. <https://doi.org/10.1038/nature10355> PMID: 21866159
16. Garcia G de A, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP, et al. Matching the genetics of released and local *Aedes aegypti* populations is critical to assure Wolbachia invasion. *PLoS Negl Trop Dis.* 2019; 13: e0007023. <https://doi.org/10.1371/journal.pntd.0007023> PMID: 30620733
17. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of *Aedes aegypti* for Dengue Control. *Curr Biol.* 2019; 29: 4241–4248.e5. <https://doi.org/10.1016/j.cub.2019.11.007> PMID: 31761702
18. Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, et al. Efficient production of male Wolbachia-infected *Aedes aegypti* mosquitoes enables large-scale suppression of wild populations. *Nat Biotechnol.* 2020; 38:482–492. <https://doi.org/10.1038/s41587-020-0471-x> PMID: 32265562
19. Tantowiyo W, Andari B, Arguni E, Budiwati N, Nurhayati I, Fitriana I, et al. Stable establishment of wMel Wolbachia in *Aedes aegypti* populations in Yogyakarta, Indonesia. *PLoS Negl Trop Dis.* 2020; 14: e0008157. <https://doi.org/10.1371/journal.pntd.0008157> PMID: 32302295
20. The World Mosquito Program's project sites around the world. (n.d.). Retrieved September 26, 2017, from <http://www.eliminatedengue.com/project>
21. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, et al. Limited dengue virus replication in field-collected *Aedes aegypti* mosquitoes infected with Wolbachia. *PLoS Negl Trop Dis.* 2014; 8: e2688. <https://doi.org/10.1371/journal.pntd.0002688> PMID: 24587459
22. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, et al. Stability of the wMel Wolbachia Infection following invasion into *Aedes aegypti* populations. *PLoS Negl Trop Dis.* 2014; 8: e3115. <https://doi.org/10.1371/journal.pntd.0003115> PMID: 25211492
23. Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of *Aedes aegypti*. *PLoS Biol.* 2017; 15: e2001894. <https://doi.org/10.1371/journal.pbio.2001894> PMID: 28557993
24. Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, et al. Establishment of wMel Wolbachia in *Aedes aegypti* mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. *Gates Open Res.* 2019; 3: 1547. <https://doi.org/10.12688/gatesopenres.13061.2> PMID: 31667465
25. Ross PA, Robinson KL, Yang Q, Callahan AG, Schmidt TL, Axford JK, et al. A decade of stability for wMel Wolbachia in natural *Aedes aegypti* populations. *PLoS Pathog.* 2022; 18: e1010256. <https://doi.org/10.1371/journal.ppat.1010256> PMID: 35196357
26. Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, et al. Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. *J Virol.* 2013; 87: 851–858. <https://doi.org/10.1128/JVI.01837-12> PMID: 23115298
27. Nguyen TH, Nguyen HL, Nguyen TY, Vu SN, Tran ND, Le TN, et al. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. *Parasit Vectors.* 2015; 28:8: 563. <https://doi.org/10.1186/s13071-015-1174-x> PMID: 26510523
28. Osborne SE, Leong YS, O'Neill SL, Johnson KN. Variation in antiviral protection mediated by different Wolbachia strains in *Drosophila simulans*. *PLoS Pathogens.* 2009; 5: e1000656. <https://doi.org/10.1371/journal.ppat.1000656> PMID: 19911047
29. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in *Drosophila melanogaster*. *PLoS Biol.* 2008; 6: e2. <https://doi.org/10.1371/journal.pbio.1000002> PMID: 19222304
30. Lau MJ, Ross PA, Hoffmann AA. Infertility and fecundity loss of Wolbachia-infected *Aedes aegypti* hatched from quiescent eggs is expected to alter invasion dynamics. *PLoS Negl Trop Dis.* 2021; 15: e0009179. <https://doi.org/10.1371/journal.pntd.0009179> PMID: 33591971
31. Ross PA, Wiwatanaratana butr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA. Wolbachia Infections in *Aedes aegypti* Differ Markedly in Their Response to Cyclical Heat Stress. *PLoS Pathog.* 2017; 13: e1006006. <https://doi.org/10.1371/journal.ppat.1006006> PMID: 28056065
32. Hancock PA, White VL, Callahan AG, Godfray CHJ, Hoffmann AA, Ritchie SA. Density-dependent population dynamics in *Aedes aegypti* slow the spread of Mel Wolbachia. *Journal of Applied Ecology.* 2016; 53(3): 785–793.

33. Lu P, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. *PLoS Negl Trop Dis.* 2012; 6: e1754. <https://doi.org/10.1371/journal.pntd.0001754> PMID: 22848774
34. Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, et al. Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Wolbachia Strains. *PLOS Pathogens.* 2014 Sep 18; 10(9):e1004369. <https://doi.org/10.1371/journal.ppat.1004369> PMID: 25233341
35. Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. *Sci Rep.* 2014 Feb 3; 4(1):3932. <https://doi.org/10.1038/srep03932> PMID: 24488176
36. Baton LA, Pacidônio EC, Goncalves DD, Moreira LA. w Flu: characterization and evaluation of a native Wolbachia from the mosquito *Aedes vexans* as a potential vector control agent. *PLoS One.* 2013; 8 (3):e59619. <https://doi.org/10.1371/journal.pone.0059619> PMID: 23555728
37. Hughes GL, Vega-Rodriguez J, Xue P, Rasgon JL. Wolbachia strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in *Anopheles gambiae* mosquitoes. *Appl Environ Microbiol.* 2012; 78:1491–5. <https://doi.org/10.1128/AEM.06751-11> PMID: 22210220
38. Zélé F, Nicot A, Berthomieu A, Weill M, Duron O, Rivero A, et al. Wolbachia increases susceptibility to Plasmodium infection in a natural system. *Proc R Soc Lond B Biol Sci.* 2014; 281: 20132837.
39. Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL. Wolbachia infection enhances West Nile virus infection in the mosquito *Culex tarsalis*. *PLoS Negl Trop Dis.* 2014; 8: e2965.
40. Dodson BL, Andrews ES, Turell MJ, Rasgon JL. Wolbachia effects on Rift Valley fever virus infection in *Culex tarsalis* mosquitoes. *PLoS Negl Trop Dis.* 2017; 11: e0006050. <https://doi.org/10.1371/journal.pntd.0006050> PMID: 29084217
41. Gloria-Soria A, Chioldo TG, Powell JR. Lack of evidence for natural Wolbachia infections in *Aedes aegypti* (Diptera: Culicidae). *J Med Entomol.* 2018; 55: 1354–1356. <https://doi.org/10.1093/jme/tjy084> PMID: 29901734
42. Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, et al. An elusive endosymbiont: Does Wolbachia occur naturally in *Aedes aegypti*? *Ecology and Evolution.* 2020; 10: 1581–1591. <https://doi.org/10.1002/eee.3.6012> PMID: 32076535
43. Dutra HLC, Caragata EP, Moreira LA. The re-emerging arboviral threat: Hidden enemies: The emergence of obscure arboviral diseases, and the potential use of Wolbachia in their control. *Bioessays.* 2017;39. <https://doi.org/10.1002/bies.201600175> PMID: 28026036
44. Halstead SB. Reappearance of chikungunya, formerly called dengue, in the Americas. *Emerg Infect Dis.* 2015; 21: 557–561. <https://doi.org/10.3201/eid2104.141723> PMID: 25816211
45. Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, et al. Evolutionary relationships and systematics of the alphaviruses. *J Virol.* 2001; 75: 10118–10131. <https://doi.org/10.1128/JVI.75.21.10118-10131.2001> PMID: 11581380
46. Lounibos LP, Kramer LD. Invasiveness of *Aedes aegypti* and *Aedes albopictus* and Vectorial Capacity for Chikungunya Virus. *J Infect Dis.* 2016; 214(suppl 5): S453–S458. <https://doi.org/10.1093/infdis/jiw285> PMID: 27920173
47. ECDC. “Facts about Sindbis Fever.” (2017). Retrieved from <https://ecdc.europa.eu/en/sindbis-fever/facts>
48. Lwande OW, Obanda V, Bucht G, Mosomtai G, Otieno V, Ahlm C, et al. Global emergence of Alphaviruses that cause arthritis in humans. *Infect Ecol Epidemiol.* 2015; 5: 29853. <https://doi.org/10.3402/iee.v5.29853> PMID: 26689654
49. Pereira TN, Rocha MN, Sucupira PHF, et al. Wolbachia significantly impacts the vector competence of *Aedes aegypti* for Mayaro virus. *Sci Rep.* 2018; 8:6889. <https://doi.org/10.1038/s41598-018-25236-8> PMID: 29720714
50. Taylor RM, Hurlbut HS, Work TH, Kingston JR, Frothingham TE. Sindbis Virus: A Newly Recognized Arthropod-Transmitted Virus. *Am J Trop Med Hyg.* 1955; 4: 844–862. <https://doi.org/10.4269/ajtmh.1955.4.844> PMID: 13259009
51. Hubálek Z. Mosquito-borne viruses in Europe. *Parasitol Res.* 2008; 103 Suppl 1: S29–S43. <https://doi.org/10.1007/s00436-008-1064-7> PMID: 19030884
52. Kurkela S, Manni T, Vaheri A, Vapalahti O. Causative agent of Pogosta disease isolated from blood and skin lesions. *Emerg Infect Dis.* 2004; 10: 889–894. <https://doi.org/10.3201/eid1005.030689> PMID: 15200824
53. Liu H, Gao X, Liang G. Newly recognized mosquito-associated viruses in mainland China, in the last two decades. *Virol J.* 2011; 8:68. <https://doi.org/10.1186/1743-422X-8-68> PMID: 21314994

54. Lvov DK, Neronov VM, Gromashevsky VL, Skvortsova TM, Berezina LK, Sidorova GA, et al. "Karshi" virus, a new flavivirus (Togaviridae) isolated from Ornithodoros papillipes (Birula, 1895) ticks in Uzbek S.S.R. Arch Virol. 1976; 50: 29–36.
55. Lvov DK, Vladimirtseva EA, Butenko AM, Karabatsos N, Trent DW, Calisher CH. Identity of Karelian fever and Ockelbo viruses determined by serum dilution-plaque reduction neutralization tests and oligonucleotide mapping. Am J Trop Med Hyg. 1988; 39: 607–610. <https://doi.org/10.4269/ajtmh.1988.39.607> PMID: 2849885
56. McIntosh BM, Jupp PG, dos Santos I, Meenehan GM. Epidemics of West Nile and Sindbis viruses in South Africa with *Culex* (*Culex*) univittatus Theobald as vector. South African Journal of Science. 1976; 72: 295–300.
57. Skoglund M, Espmark A. Ockelbo disease: epidemic arthritis-exanthema syndrome in Sweden caused by Sindbis-virus like agent. Lancet. 1982; 1: 795–796. [https://doi.org/10.1016/s0140-6736\(82\)91834-7](https://doi.org/10.1016/s0140-6736(82)91834-7) PMID: 6121242
58. Jöst H, Bialonski A, Storch V, Günther S, Becker N, Schmidt-Chanasit J. Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol. 2010; 48: 1900–1903. <https://doi.org/10.1128/JCM.00037-10> PMID: 20335414
59. Kramer LD, Chin P, Cane RP, Kauffman EB, Mackereth G. Vector competence of New Zealand mosquitoes for selected arboviruses. Am J Trop Med Hyg. 2011; 85(1):182–189. <https://doi.org/10.4269/ajtmh.2011.11-0078> PMID: 21734146
60. Haddow AJ, Davies CW, Walker AJ. O'nyong-nyong fever: An epidemic virus disease in East Africa 1. Introduction. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1960; 54: 517–522.
61. LaBeaud AD, Banda T, Brichard J, Muchiri EM, Mungai PL, Mutuku FM, et al. High rates of o'nyong nyong and Chikungunya virus transmission in coastal Kenya. PLoS Negl Trop Dis. 2015; 9: e0003436. <https://doi.org/10.1371/journal.pntd.0003436> PMID: 25658762
62. Lanciotti RS, Ludwig ML, Rwaguma EB, Lutwama JJ, Kram TM, Karabatsos N, et al. Emergence of epidemic O'nyong-nyong fever in Uganda after a 35-year absence: genetic characterization of the virus. Virology. 1998; 252: 258–268. <https://doi.org/10.1006/viro.1998.9437> PMID: 9875334
63. Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000; 81(Pt 2): 471–479. <https://doi.org/10.1099/0022-1317-81-2-471> PMID: 10644846
64. Tappe D, Kapaun A, Emmerich P, Campos R de M, Cadar D, Günther S, et al. O'nyong-nyong virus infection imported to Europe from Kenya by a traveler. Emerg Infect Dis. 2014; 20: 1766–1767. <https://doi.org/10.3201/eid2010.140823> PMID: 25271361
65. Corbet PS, Williams MC, Gillett JD. O'Nyong-Nyong fever: an epidemic virus disease in East Africa. IV. Vector studies at epidemic sites. Trans R Soc Trop Med Hyg. 1961; 55: 463–480. [https://doi.org/10.1016/0035-9203\(61\)90095-5](https://doi.org/10.1016/0035-9203(61)90095-5) PMID: 13881254
66. Vanlandingham DL, Hong C, Klingler K, Tsetsarkin K, McElroy KL, Powers AM, et al. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in *Anopheles gambiae* and *Aedes aegypti* mosquitoes. Am J Trop Med Hyg. 2005; 72: 616–621. PMID: 15891138
67. Mackay IM, Arden KE. Mayaro virus: a forest virus primed for a trip to the city? Microbes Infect. 2016; 18: 724–734. <https://doi.org/10.1016/j.micinf.2016.10.007> PMID: 27989728
68. Brustolin M, Pujhari S, Henderson CA, Rasgon JL. Anopheles mosquitoes may drive invasion and transmission of Mayaro virus across geographically diverse regions. PLoS Negl Trop Dis. 2018; 12: e0006895. <https://doi.org/10.1371/journal.pntd.0006895> PMID: 30403665
69. Long KC, Ziegler SA, Thangamani S, Haussler NL, Kochel TJ, Higgs S, et al. Experimental transmission of Mayaro virus by *Aedes aegypti*. Am J Trop Med Hyg. 2011; 85: 750–757. <https://doi.org/10.4269/ajtmh.2011.11-0359> PMID: 21976583
70. Wiggins K, Eastmond B, Alto BW. Transmission potential of Mayaro virus in Florida *Aedes aegypti* and *Aedes albopictus* mosquitoes. Med Vet Entomol. 2018; 32: 436–442. <https://doi.org/10.1111/mve.12322> PMID: 30006976
71. Rasgon JL, Gamston CE, Ren X. Survival of Wolbachia pipiensis in cell-free medium. Appl Environ Microbiol. 2006; 72: 6934–6937. <https://doi.org/10.1128/AEM.01673-06> PMID: 16950898
72. Brault AC, Foy BD, Myles KM, Kelly CLH, Higgs S, Weaver SC, et al. Infection patterns of o'nyong nyong virus in the malaria-transmitting mosquito, *Anopheles gambiae*. Insect Mol Biol. 2004; 13: 625–635. <https://doi.org/10.1111/j.0962-1075.2004.00521.x> PMID: 15606811
73. Foy BD, Myles KM, Pierro DJ, Sanchez-Vargas I, Uhlírová M, Jindra M, et al. Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol. 2004; 13: 89–100. <https://doi.org/10.1111/j.1365-2583.2004.00464.x> PMID: 14728670

74. Blow JA, Dohm DJ, Negley DL, Mores CN. Virus inactivation by nucleic acid extraction reagents. *J Virol Methods*. 2004; 119: 195–198. <https://doi.org/10.1016/j.jviromet.2004.03.015> PMID: 15158603
75. Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite *Plasmodium falciparum* in *Anopheles gambiae*. *PLoS Pathog*. 2011; 7: e1002043. <https://doi.org/10.1371/journal.ppat.1002043> PMID: 21625582
76. McMeniman CJ, Lane AM, Fong AWC, Voronin DA, Iturbe-Ormaetxe I, Yamaida R, et al. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. *Appl Environ Microbiol*. 2008; 74: 6963–6969. <https://doi.org/10.1128/AEM.01038-08> PMID: 18836024
77. Xi Z, Ramirez JL, Dimopoulos G. The *Aedes aegypti* toll pathway controls dengue virus infection. *PLoS Pathog*. 2008; 4: e1000098. <https://doi.org/10.1371/journal.ppat.1000098> PMID: 18604274
78. Simon P. Q-Gene: processing quantitative real-time RT-PCR data. *Bioinformatics*. 2003; 19: 1439–1440. <https://doi.org/10.1093/bioinformatics/btg157> PMID: 12874059
79. World Health Organization. (2021) World malaria report. Retrieved from www.who.int
80. Kraemer MU, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marcak LB, Shirude S. Past and future spread of the arbovirus vectors *Aedes aegypti* and *Aedes albopictus*. *Nat Microbiol*. 2019; 4: 854–863. <https://doi.org/10.1038/s41564-019-0376-y> PMID: 30833735
81. World Health Organization. (2019). Retrieved from: <https://www.who.int/news-room/questions-and-answers/item/dengue-and-severe-dengue>
82. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. *Nature*. 2013; 496: 504–507. <https://doi.org/10.1038/nature12060> PMID: 23563266
83. Hennessey M, Fischer M, Staples JE. Zika virus spreads to new areas—region of the Americas, May 2015–January 2016. *MMWR Morb Mortal Wkly Rep*. 2016; 65: 1–4.
84. Newton ILG, Clark ME, Kent BN, Bordenstein SR, Qu J, Richards S, et al. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts. *Genome Biol Evol*. 2016; 8: 1526–1542. <https://doi.org/10.1093/gbe/evw096> PMID: 27189996
85. Terradas G, McGraw EA. Wolbachia-mediated virus blocking in the mosquito vector *Aedes aegypti*. *Curr Opin Insect Sci*. 2017; 22: 37–44. <https://doi.org/10.1016/j.cois.2017.05.005> PMID: 28805637
86. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by *Aedes aegypti*. *Sci Rep*. 2016; 6: 28792. <https://doi.org/10.1038/srep28792> PMID: 27364935
87. Aliota MT, Walker EC, Uribe Yepes A, Velez ID, Christensen BM, Osorio JE. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in *Aedes aegypti*. *PLoS Negl Trop Dis*. 2016; 10: e0004677. <https://doi.org/10.1371/journal.pntd.0004677> PMID: 27124663
88. Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in *Aedes aegypti*. *PLoS Pathog*. 2010; 6: e1000833. <https://doi.org/10.1371/journal.ppat.1000833> PMID: 20368968
89. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector *Aedes aegypti*. *PLoS Negl Trop Dis*. 2012; 6: e1892. <https://doi.org/10.1371/journal.pntd.0001892> PMID: 23133693
90. Parry R, James ME, Asgari S. Uncovering the worldwide diversity and evolution of the virome of the mosquitoes *Aedes aegypti* and *Aedes albopictus*. *Microorganisms*. 2021; 9: 1653. <https://doi.org/10.3390/microorganisms9081653> PMID: 34442732
91. Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, et al. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007–2017). *Rev Med Virol*. 2019; 29: e2079. <https://doi.org/10.1002/rmv.2079> PMID: 31410931
92. Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL, Johnson KN. Antiviral protection and the importance of Wolbachia density and tissue tropism in *Drosophila simulans*. *Appl Environ Microbiol*. 2012; 78: 6922–6929. <https://doi.org/10.1128/AEM.01727-12> PMID: 22843518
93. Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito *Aedes aegypti*. *PLoS Negl Trop Dis*. 2013; 7: e2362. <https://doi.org/10.1371/journal.pntd.0002362> PMID: 23951381
94. Jupatanakul N, Sim S, Angleró-Rodríguez YI, Souza-Neto J, Das S, Poti KE, et al. Engineered *Aedes aegypti* JAK/STAT Pathway-Mediated Immunity to Dengue Virus. *PLoS Negl Trop Dis*. 2017; 11: e0005187. <https://doi.org/10.1371/journal.pntd.0005187> PMID: 28081143
95. Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O'Neill SL. Wolbachia infections are distributed throughout insect somatic and germ line tissues. *Insect Biochem Mol Biol*. 1999; 29: 153–160. [https://doi.org/10.1016/s0965-1748\(98\)00119-2](https://doi.org/10.1016/s0965-1748(98)00119-2) PMID: 10196738

96. Joubert DAO'Neill SL. Comparison of Stable and Transient Wolbachia Infection Models in *Aedes aegypti* to Block Dengue and West Nile Viruses. *PLoS Negl Trop Dis.* 2017; 11: e0005275. <https://doi.org/10.1371/journal.pntd.0005275> PMID: 28052065
97. Dutton TJ, Sinkins SP. Strain-specific quantification of Wolbachia density in *Aedes albopictus* and effects of larval rearing conditions. *Insect Mol Biol.* 2004; 13: 317–322. <https://doi.org/10.1111/j.0962-1075.2004.00490.x> PMID: 15157232
98. Mouton L, Henri H, Charif D, Boulétreau M, Vavre F. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. *Biol Lett.* 2007; 3: 210–213. <https://doi.org/10.1098/rsbl.2006.0590> PMID: 17251124
99. Ross PA, Endersby NM, Hoffmann AA. Costs of Three Wolbachia Infections on the Survival of *Aedes aegypti* Larvae under Starvation Conditions. *PLoS Negl Trop Dis.* 2016; 10: e0004320. <https://doi.org/10.1371/journal.pntd.0004320> PMID: 26745630
100. Wiwatwanaratanaabutr I, Kittayapong P. Effects of crowding and temperature on Wolbachia infection density among life cycle stages of *Aedes albopictus*. *J Invertebr Pathol.* 2009; 102:220–224. <https://doi.org/10.1016/j.jip.2009.08.009> PMID: 19686755
101. Liang X, Tan CH, Sun Q, Zhang M, Wong PSJ, Li MI, Mak KW, Martín-Park A, Contreras-Perera Y, Puerta-Guardo H, Manrique-Saide P, Ng LC, Xi Z. Wolbachia wAlbB remains stable in *Aedes aegypti* over 15 years but exhibits genetic background-dependent variation in virus blocking. *PNAS Nexus.* 2022; 1: pgac203. <https://doi.org/10.1093/pnasnexus/pgac203> PMID: 36714832
102. Urakova N, Joseph RE, Huntsinger A, Macias VM, Jones MJ, Sigle LT, et al. Alpha-mannosidase-2 modulates arbovirus infection in a pathogen- and Wolbachia-specific manner in *Aedes aegypti* mosquitoes. *Insect Mol Biol.* 2024; 33:362–371. <https://doi.org/10.1111/imb.12904> PMID: 38450861