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Abstract

Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by
Aedes aegyptimosquitoes. However, Wolbachia can have variable effects on mosquito-
borne viruses. This variation remains poorly characterized, yet the multimodal effects of
Wolbachia on diverse pathogens could have important implications for public health. Here,
we examine the effects of transient somatic infection with two strains of Wolbachia (wAIbB
and wMel) on the alphaviruses Sindbis virus (SINV), O’'nyong-nyong virus (ONNV), and
Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including
enhancement and suppression of viral infections, with some effects depending on Wolba-
chia strain. Both wAIbB- and wMel-infected mosquitoes showed enhancement of SINV
infection rates one week post-infection, with wAIbB-infected mosquitoes also having higher
viral titers than controls. Infection rates with ONNV were low across all treatments and no
significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infec-
tions were strikingly strain-specific; wiMel strongly blocked MAYYV infections and suppressed
viral titers, while wAIbB had more modest effects. The variable effects of Wolbachia on vec-
tor competence underscore the importance of further research into how this bacterium
impacts the virome of wild mosquitoes including the emergent human pathogens they
transmit.

Author summary

In recent years, wild populations of Aedes aegypti mosquitoes in over a dozen countries
have been deliberately infected with Wolbachia pipientis (“Wolbachia”); an intracellular
bacterium that, in some circumstances, helps to curb the spread of mosquito-brone patho-
gens including dengue virus. But how does Wolbachia affect the ability of mosquitoes to
become infected with and spread the many different viruses they encounter in nature?
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Here, we use transient somatic infections in Aedes aegypti to characterize the effects of
Wolbachia on three different alphaviruses that cause illness in humans: Sindbis virus,
O’nyong-nyong virus, and Mayaro virus. We find that transient Wolbachia infections
have variable effects on these different pathogens, ranging from significant suppression of
Mayaro virus to significant enhancement of Sindbis virus. Our research has important
implications for the design of vector control strategies, and suggests further research is
needed to understand how Wolbachia shapes the replication and transmission of diverse
viruses in mosquitoes.

Introduction

More than half of the world’s population is at risk for vector-borne diseases, with an estimated
one billion new infections and one million deaths every year [1]. Vector-borne diseases are an
increasing threat to human health due to global travel, insecticide resistance, and climate
change [2-5], and novel strategies to combat mosquitoes and the pathogens they transmit are
urgently needed. One of the most promising new tools is the bacterium Wolbachia pipientis (=
Wolbachia), which can suppress vector populations [6] and prevent replication of viruses in
mosquitoes, an effect called pathogen blocking [7-8].

Wolbachia is a genus of intracellular bacteria present in many arthropod species [9-11].
Because it can suppress the transmission of specific mosquito-borne viruses and parasites
when transferred to novel mosquito hosts, Wolbachia has been the focus of much recent
research (e.g., [12-15]). Wolbachia-infected mosquitoes have been released into the field in
multiple countries to curb the spread of dengue virus (DENV) by Ae. aegypti vectors [8,9,16—
20]. In some cases, Wolbachia-infected animals can replace native populations and retain a
pathogen-blocking phenotype for multiple years after release [8,9,21-25]. However, native
population replacement with Wolbachia-infected mosquitoes is not always successful [16,26-
30]. Moreover, the effects of Wolbachia on pathogens can be variable and may depend on fac-
tors such as the virus—mosquito- Wolbachia strain pairing, environmental conditions, popula-
tion dynamics, and Wolbachia density [8,13,31-35]. In several mosquito genera, Wolbachia
may enhance some pathogens by increasing both infection frequency and infection intensity,
including Plasmodium berghei, Plasmodium yoelii, Plasmodium gallinaceum, and West Nile
virus (WNV) [35-39]. Our previous work with Culex tarsalis demonstrated that a single strain
of Wolbachia can have different effects on different pathogens. Specifically, the Wolbachia
strain wAIbB enhanced WNV infection frequency but suppressed Rift Valley fever virus titers
[39-40]. These findings of enhancement stress the importance of better understanding the
multifaceted effects of Wolbachia on vectors and pathogens, as Wolbachia has the potential to
negatively impact mosquito-borne disease control efforts.

To better understand the range of outcomes Wolbachia can have on vector competence, we
investigated the effects of two Wolbachia strains (wAIbB and wMel) on alphavirus infections
in Aedes aegypti. We focused on Ae. aegypti, one of the most pernicious vectors of medically
relevant pathogens, and to date, the only species used for Wolbachia field releases. Wolbachia
is not naturally found in wild populations of Aedes aegypti [41-42]. We studied the alpha-
viruses Sindbis virus (SINV), O’'nyong-nyong virus (ONNV), and Mayaro virus (MAYV). All
three viruses are human pathogens and share important characteristics with Chikungunya
virus [43-45], an emergent human pathogen spread primarily by Ae. aegypti [46]. Infections
with these viruses rarely cause mortality, but they do cause significant morbidity (including
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fever, rash, and arthralgia) and place a significant burden on public health in affected areas
[47-49].

SINV has been isolated from wildlife in Eurasia, Africa, and Oceania [50-51], and there
have been periodic cases and epidemics in several areas including Finland, Sweden, Russia,
China, Australia, and South Africa [52-57]. Multiple mosquito genera can transmit SINV but
Culex and Culiseta are considered the primary vectors [47,51,58-59]. ONNYV is endemic in
Africa, where there have been epidemics involving millions of people and where anti-ONNV
antibodies are detected at high rates in local human populations [60-64]. ONNV is thought to
be transmitted mainly by Anopheles, but other mosquito species are also susceptible to infec-
tion [65-66]. MAYYV is endemic in South and Central America and has caused several small-
scale outbreaks of febrile illness with prolonged, disabling arthralgia since it was first identified
in 1954 [48]. The virus is common in populations of wild primates and is thought to be spread
to humans primarily by Haemagogus janthinomys [67], though many mosquito species includ-
ing Ae. aegypti can also become infected and transmit MAYV [49,68-70].

We assessed the ability of transient infections of wAlbB and wMel strains of Wolbachia to
affect infection, dissemination, and transmission of SINV, ONNV, and MAYV in Ae. aegypti.
We found striking variation in the effects of Wolbachia on these viruses, highlighting the need
for more research into this bacterium and how it may influence the full diversity of medically
relevant arboviruses found in nature.

Materials and methods
Mosquitoes, Wolbachia, and intrathoracic injections

We used two Ae. aegypti colonies. The Rockefeller strain was kindly provided by Dr. George
Dimopoulos, Johns Hopkins University, while the Liverpool strain was obtained from BEI
resources. Rockefeller mosquitoes were used to test ONNV and SINV, while Liverpool animals
were used to test MAYV. All mosquitoes were reared and maintained using standard methods
at 27°C £ 1°C, 12:12 hr light:dark cycle at 80% relative humidity in 30 x 30 x 30 cm cages
(MegaView Science). Larvae were fed Tropical Flakes (Tetramin, Product No. 77101) and
adults were provided ad libitum access to 10% sucrose. Mosquitoes were fed commercially
available expired anonymous human blood (Biological Specialty Corporation) for both virus
feeds and colony maintenance.

The Wolbachia strains wAlbB and wMel (derived from Ae. albopictus and D. melanogaster,
respectively) were purified from infected Anopheles gambiae Sua5B cells and resuspended in
Schneider’s Insect Media (Sigma Aldrich) using published protocols [71]. A cell lysate negative
control was prepared by putting Wolbachia-negative Sua5B cells through the Wolbachia puri-
fication process. Wolbachia viability and density from cell cultures were assessed by using the
LIVE DEAD BacLight Bacterial Viability Kit (Invitrogen) and a hemocytometer.

Two- to five-day-old adult female Ae. aegypti were anesthetized with ice and injected in the
thorax as previously described [39] with approximately 0.1 ul of Wolbachia (10'° bacteria/mL)
or cell lysate control. Mosquitoes were given access to 10% sucrose ad libitum and maintained
for up to 22 days post-injection (i.e., up to 27 days of age). Wolbachia infection rates in somati-
cally-infected mosquitoes were ~100% and Wolbachia titers did not vary across injection
groups (ANOVA, F = 1.005, P = 0.39 [S1 Fig]).

Generation of virus stocks

SINV (p5'dsMRE16ic) and ONNV (p5'dsONNic/foy) plasmids were kindly provided by Dr.
Brian Foy (Colorado State University, Ft. Collins, CO) on filter paper [72-73]. We obtained
the MAYYV strain BeAr505411 from BEI Resources. For SINV and ONNYV, infectious virus
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stocks were propagated from the plasmid DNA. Specifically, a piece of the filter paper was cut
and eluted in 0.1 ml TE buffer for approximately 1 hr. Competent E. coli cells (New England
Biolabs, #C2987H) were transformed with the eluted plasmid DNA according to the manufac-
turer’s instructions and grown on LB broth selection plates. Colonies were then picked from
plates and grown in LB broth overnight at 37°C in a shaking incubator. Plasmid DNA was iso-
lated from the bacterial culture using the EZNA Plasmid Mini Kit (Omega, Cat # D6942-02)
according to the manufacturer’s instructions. Plasmids were linearized with the Ascl enzyme
(New England Biolabs, #R0558S) for SINV and Notl enzyme (New England Biolabs, Cat.
#R0189S) for ONNV in 0.05-ml reactions, according to the manufacturer’s instructions. In
vitro transcription was performed by using a SP6 polymerase Megascript kit (Ambion,
AM1334) for SINV and a T7 polymerase Megascript kit for ONNV (Ambion, AM1330) in
0.02-ml reactions according to the manufacturer’s instructions. Cap analog m7G(5")ppp5'G
(Ambion, #AM8048-8052) was used in the transcription reaction, and RNA was purified using
a Total RNA kit (Omega, R6834-02; from step 7). Vero or C636 cells were transfected with
purified RNA using Transmessenger Transfection Reagent (Qiagen, #301525) according to the
manufacturer’s instructions (ONNV and SINV), or directly infected with virus particles
(MAYV). Cell supernatant was harvested after 24-72 h of incubation and stored in 1 mL ali-
quots at =70°C.

Alphavirus infections

Seven (SINV and ONNV) or eight (MAYV) days after Wolbachia injections, adult mosquitoes
were fed on infectious human blood using a glass membrane feeder jacketed with 37°C water.
SINV and ONNV were quantified using plaque assays, while MAYV was quantified using
focus-forming assays (see below for specific methods). Mosquitoes were sugar-starved over-
night prior to blood feeding. Infectious blood meals were prepared by thawing frozen virus
stocks to 37°C and adding it to the blood directly prior to feeding. Final blood meal virus titers
were: ONNV- 10° pfu/mL; SINV- 10 pfu/mL; MAYV- 10 ffu/mL. Mosquitoes were allowed
to feed for one hour then anesthetized briefly on ice and examined for feeding status, and par-
tially or non-blood fed females discarded. Fully engorged females were randomly divided into
two groups and maintained in standard conditions as described above. Infected animals were
analyzed at 7 and 14 days post-blood feeding. More specifically, mosquitoes were anesthetized
with trimethylamine and legs from each individual were removed and placed separately into
2-ml microcentrifuge tubes containing 1 ml of mosquito diluent (20% heat-inactivated fetal
bovine serum [FBS] in Dulbecco’s phosphate-buffered saline, 50 ug ml™ penicillin streptomy-
cin, and 2.5 ug ml™ fungizone). Saliva was collected from mosquito bodies by placing the pro-
boscis of each mosquito into a capillary tube containing 1:1 of 50% sucrose:FBS [40]. After 30
minutes, the capillary tube contents were expelled in individual microcentrifuge tubes contain-
ing 0.1 ml of mosquito diluent on ice, while bodies were placed in individual microcentrifuge
tubes containing 1 ml of mosquito diluent. A single zinc-plated, steel, 4.5 mm bead (Daisy)
was placed into the microcentrifuge tubes containing mosquito bodies and legs. SINV and
ONNYV samples were homogenized in a mixer mill (Retsch) for 30 seconds at 24 cycles per sec-
ond, then centrifuged for 1 minute at 10,000 rpm. MAYV samples were homogenized at 30 Hz
for 2 min in a TissueLyser II (Qiagen) and centrifuged for 30 sec at 11,000 rpm. All samples
were stored at —70°C until use.

Plaque assays

Mosquito samples were tested for SINV or ONNV infectious particles by plaque assay on Vero
cells according to previously published protocols [74]. Briefly, 100 uL of each undiluted sample
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was inoculated onto Vero cell culture monolayers. After inoculated plates were incubated in a
cell culture incubator at 37°C and 5% CO, for 1 hr, an agar overlay was added (1:1 1x Dulbec-
co’s modified eagle medium, 10% FBS, 1x penicillin streptomycin, 1x fungizone:1.2% agarose).
Plates were incubated at 37°C for 2 days and then a second overlay (first overlay plus 1.5%
final concentration of neutral red) was added. Twenty-four hours after application of the sec-
ond overlay, samples were scored as positive or negative, and plaques counted. If plaques were
too numerous to count, the assays were repeated with 10-fold serial dilutions of the sample.

Focus forming unit (FFU) assays

Infectious MAY'V particles were detected and quantified via FFU assays in Vero cells as pre-
viously described [68]. Cells (1x10*/well) were grown in 96-well plates at 37°C with 5% CO,
in complete media (Dulbecco’s modified-essential media [DMEM] with 100 units/mL peni-
cillin/streptomycin and 10% FBS). After one day of incubation, cells were briefly washed
with DMEM (without FBS) and incubated for 1 h at 37°C with 30 uL of the serially diluted
(107" to 10™*) mosquito lysate or saliva. After 1 h, the sample was removed, and cells were
briefly washed with DMEM to remove any unadhered viral particles. Wells were next filled
with 100 uL of overlay medium (1% methylcellulose in complete medium), and plates were
incubated. After 24 h (body and leg samples) or 48 h (saliva), cells were fixed with 4% para-
formaldehyde (Sigma). Fixed cells were blocked and permeabilized for 30 min in blocking
solution (3% bovine serum albumin and 0.05% Tween-20 in PBS) then washed with cold
PBS. Viral antigens were next labeled with an anti-alphavirus antibody (CHK-48, BEI
Resources) diluted 1:500 in blocking solution. Cells were washed with cold PBS four times,
then incubated with Alexa-488 tagged secondary antibody (goat anti-mouse IgG, Invitro-
gen) at a dilution of 1:500. Fluorescent foci were then counted by eye (in a well with a dilu-
tion that produced <100 total foci) using an Olympus BX41 microscope with a UPlan FI 4x
objective and FITC filter.

Measurements

Virus infection rate was defined as the proportion of mosquitoes with virus-positive bodies.
The dissemination rate was defined as the proportion of infected mosquitoes with virus-posi-
tive legs. The transmission rate was calculated as the proportion of animals with disseminated
(leg -positive) infections that also had virus-positive saliva, while transmission efficiency was
the proportion of total mosquitoes with virus-positive saliva (Fig 1).

Quantitative real-time PCR of Wolbachia density

We extracted DNA from a 250-pl aliquot of each mosquito body homogenate with the EZNA
Tissue DNA kit (Omega, cD3396-02), and DNA was used as a template for qPCR with the Per-
feCta SYBR FastMix kit (Quanta Biosciences) on a Rotor-Gene Q (Qiagen) or a 7500 PCR sys-
tem (Applied Biosystems). The qPCRs were performed in 10-pl reactions, and we used the
following standardized program for amplification: 95°C for 5 min; 40 cycles of 95°C for 10 sec,
60°C for 15 sec, and 72°C for 10 sec. DNA was amplified with primers specific to each
Wolbachia strain (wAlbB: Alb-GF; GGT-TTT-GCT-TAT-CAA-GCA-AAA-G and Alb-GR;
GCG-CTG-TAA-AGA-ACG-TTG-ATC [75]; wMel: WD_0550F; CAG-GAG-TTG-CTG-
TGG-GTA-TAT-TAG-C and WD_0550R; TGC-AGG-TAA-TGC-AGT-AGC-GTA-AA [76])
and was normalized to host gene S7 (AeS7F; GGG-ACA-AAT-CGG-CCA-GGC-TAT-C and
AeS7R; TCG-TGG-ACG-CTT-CTG-CTT-GTT-G [77]) by using qGene [39, 78].
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Fig 1. Schematic of study design and timeline. Adult Aedes aegypti females were somatically infected with Wolbachia
(wAIbB or wMel) or a control solution via injection 2-5 days post-eclosion. Seven or eight days later, injected animals
consumed a blood meal spiked with infectious alphavirus (ONNYV, SINV, or MAYV). At 7 and 14 days post-blood
feeding, viral titers were measured in three tissues. Wolbachia infection density was additionally quantified in SINV-
and ONNV-exposed animals.

https://doi.org/10.1371/journal.pntd.0012633.g001

Statistical analyses

The infection, dissemination, and transmission frequencies for each Wolbachia strain and
virus combination were compared with controls using pairwise 2x2 Fisher’s exact tests. Non-
parametric Mann-Whitney U tests were used to compare viral titers when comparing two
groups, and the Kruskal-Wallis test with Dunn’s correction for multiple comparisons was
used to compare experiments with more than two groups. Wolbachia titers were analyzed
using ANOVA. Statistical tests were performed in GraphPad Prism version 7 for Windows
(GraphPad Software, San Diego, CA).

Results

Ae. aegypti vector competence pilot experiment for alphaviruses SINV and
ONNV

Prior to conducting experiments with Wolbachia, we first asked whether Wolbachia-free Ae.
aegypti could be infected with ONNV and SINV. We found Ae. aegypti was susceptible to
infection (17-20% across two replicates, n = 60 total animals) and dissemination (45%, 5 of 11
infected animals) with ONNV, but not transmission (0%). They were susceptible to infection
(100% of 60 animals), dissemination (97-100%, at days 7 and 14, respectively), and transmis-
sion (23-38%, at days 7 and 14, respectively) with SINV. We did not test MAY'V as our previ-
ous work found Ae. aegypti to be a competent vector of MAYV; At 7 days post infection with
BeAr 505411 strain of MAYV, the infection, dissemination and transmission rates were 86.2%,
60% and 6.7% respectively [68], and other work also found Ae. aegypti to be susceptible to
infection with MAYV [49].

Wolbachia and SINV co-infections

We asked whether somatic Wolbachia infections can influence alphavirus infections in Ae.
aegypti. Infection rates with SINV were moderate across all treatment groups at both time
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Table 1. Effects of Wolbachia on alphavirus infection, dissemination, and transmission rates in Aedes aegypti.

Group Control (N) Control Rate wAIbB (N) wAIbB Rate wAIbB P value wMel (N) wMel Rate wMel P value
SINV Body 7 days 61 0.426 123 0.642 0.007 92 0.685 0.0024
SINV Body 14 days 34 0.559 81 0.556 NS 83 0.687 NS
SINV Saliva 7 days 61 0.016 123 0.049 NS 92 0.033 NS
SINV Saliva 14 days 34 0.059 81 0.037 NS 83 0.108 NS
ONNYV Body 7 days 30 0.067 90 0.111 NS 30 0.067 NS
ONNYV Body 14 days 26 0 104 0.029 NS 38 0 NS
ONNYV Saliva 7 days 30 0 60 0.017 NS 30 0 NS
ONNYV Saliva 14 days 26 0 66 0 NS 38 0 NS
MAYV Body 7 days 55 0.909 40 0.8 NS 40 0.2 < 0.00001
MAYV Body 14 days 57 0.842 35 0.743 NS 40 0.275 < 0.00001
MAYYV Legs 7 days 55 0.709 40 0.35 0.0008 40 0.025 < 0.00001
MAYV Legs 14 days 57 0.754 35 0.457 0.0067 40 0.175 < 0.00001
MAYYV Saliva 7 days 52 0.115 40 0.05 NS 40 0 0.0339
MAYYV Saliva 14 days 57 0.193 35 0 0.0057 40 0.025 0.0134

https://doi.org/10.1371/journal.pntd.0012633.t001

points (43-69%, Table 1). Both wAIbB- and wMel-injected mosquitoes showed significant
enhancement of SINV infection rates compared to control mosquitoes at day 7 (Table 1,

P =10.007 and P = 0.002, respectively) but not at day 14 (P>0.05 for both). Neither Wolbachia
strain affected SINV transmission rates (Table 1). wAIbB mosquitoes had significantly greater
body titers compared to control mosquitoes at day 7 (Fig 2, P = 0.004), with a similar but non-
significant trend for wMel mosquitoes (Fig 2). There were no other significant differences in
the body or saliva titers between Wolbachia and control mosquitoes (Fig 2A and 2B).

Wolbachia and ONNYV co-infection

Infection rates with ONNV were low (0-11%) in all treatment groups (Table 1). Neither Wol-
bachia strain had a significant effect on ONNV infection or transmission rates, nor any effects
on viral titer (Fig 3, NS for all comparisons).
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Fig 2. Effects of Wolbachia infection on SINV vector competence in Aedes aegypti. (A) SINV body titers at 7 and 14 days post-infected blood meal. (B)
SINV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with Dunn’s
correction. ** P < 0.01.

https://doi.org/10.1371/journal.pntd.0012633.g002
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Fig 3. Effects of Wolbachia infection on ONNYV vector competence in Aedes aegypti. (A) ONNV body titers at 7 and 14 days post-infected blood meal. (B)
ONNV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with
Dunn’s correction. There were no significant differences between groups.

https://doi.org/10.1371/journal.pntd.0012633.g003

Wolbachia and MAYV co-infection

The effects of Wolbachia on MAYV infections were Wolbachia strain-specific, with greater
response to wMel infection compared to wAlbB. Control and wAIbB-injected mosquitoes were
both infected with MAYV at high rates (91% and 80% at day 7, respectively, 84% and 74% at day
14) and did not differ statistically at either time point (Table 1). In contrast, wMel injected mosqui-
toes were infected with MAYV only rarely (20% and 28% infection rate at days 7 and 14, Table 1,
P<0.00001 for both time points). MAYV infections were less likely to disseminate in both groups
of Wolbachia injected mosquitoes (Table 1, P = 0.0008 and P = 0.0067 for wAIbB at days 7 and 14,
and P<0.00001 for wMel at both timepoints). Transmission was also reduced in most Wolbachia
injected animals at 7 days post injection for wMel (P = 0.034) and for both wAlbB (P = 0.0057)
and wMel (P = 0.0134) at 14 days post injection (Table 1). Both Wolbachia strains reduced MAYV
infection intensity: wMel had a strong suppressive effect at both time points (P<0.00001, Fig 4A)
while the effects of wAIbB were significant at day 7 (P = 0.0023), but while reduced were not signif-
icant at day 14 (Fig 4A). Both strains suppressed viral titer in legs—a proxy for dissemination—at
both time points (Fig 4B) (wAlbB: day 7—P = 0.008, day 14—P = 0.0042; wMel P<0.0001 for both
timepoints). wAIbB reduced saliva titers only at day 14 (P = 0.0035) while wMel reduced saliva
titers at both timepoints (day 7: P = 0.0435; day 14: P = 0.0082) (Fig 4C).

Discussion

While some mosquito-borne illnesses have declined in recent years (e.g., malaria [79]), Ae.
aegypti—the primary vector of dengue, yellow fever, chikungunya, and zika viruses—stands
out as an increasing threat to global human health [80]. The incidence of dengue, a virus
spread primarily by Ae. aegypti, has grown 30-fold over the past 50 years and 390 million peo-
ple may be infected each year [81-82]. Ae. aegypti also sparked a new epidemic (Zika virus) by
spreading this previously neglected pathogen to new areas of the world [83]. One of the most
promising new tools for curbing mosquito-borne disease—and dengue virus in particular—is
Wolbachia, a bacterium that can block mosquitoes from transmitting pathogens [15]. How-
ever, much remains unknown about the bacterium, including its mechanism(s) of action
[13,37,84-85]) and how it influences the many diverse viruses Ae. aegypti can carry (but see
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Fig 4. Effects of Wolbachia infection on MAYV vector competence in Aedes aegypti. (A) MAYV body titers at 7 and 14 days post-infected blood meal. (B)
MAYV leg titers at 7 and 14 days post-infected blood meal. (C) MAYV saliva titers at 7 and 14 days post-infected blood meal. A-D: Horizontal lines mark
group medians. Groups were compared by Kruskal-Wallis tests with Dunn’s correction. * P < 0.05, ** P < 0.01, **** P < 0.0001.

https://doi.org/10.1371/journal.pntd.0012633.g004

[86-89]). Filling these gaps in our understanding will better inform control programs and help
us anticipate situations where Wolbachia could potentially exacerbate mosquito-borne trans-
mission of some pathogens even while it suppresses others.

Here we report variable effects of Wolbachia on different alphaviruses in Ae. aegypti. We
found that two divergent Wolbachia strains enhanced SINV infection rates and titers seven
days post infection, though this effect disappeared by day 14. One possibility is that Wolbachia
decreases the extrinsic incubation period (the time between when a mosquito acquires a virus
through a bloodmeal and when it is able to transmit) of this virus, though other mechanisms
are possible. In contrast, we did not find significant effects of Wolbachia on ONNV infections
(though care should be taken in interpreting these data as ONNYV infection rates were low in
general), and we found Wolbachia reduced vector competence for MAYV. This effect varied
from strong pathogen blocking (wMel) to smaller effects on dissemination and transmission
(wAlbB), depending on the Wolbachia strain used. Our findings agree with earlier work that
reported strong suppression of MAYV by a stable wMel infection in Ae. aegypti [49]. In sum,
across three different alphaviruses we found three different effects of Wolbachia: enhancement,
no effect, and strain-dependent pathogen blocking. These disparities highlight that the effects
of Wolbachia on viruses are extremely variable. With our limited current knowledge, we can-
not predict how Wolbachia may alter the composition and transmission of Ae. aegypti’s large
and growing virome [90-91], which includes numerous human pathogens.

We report that Wolbachia-mediated effects can be strain-specific. Most notably, the patho-
gen blocking effect on MAYV [49] depended strongly on the Wolbachia strain used: wMel
robustly suppressed MAYV infections at both time points while wAIbB did not affect infection
rate. Our findings comport with previous reports that Wolbachia can have strain-specific effects
on both pathogen susceptibility phenotypes and immune priming [89, 92-93]. For example,
one study in Ae. aegypti found the Wolbachia strain wMel did not have any effects on yellow
tever virus, but the wMelPop strain significantly reduced yellow fever virus in mosquito bodies
and heads [89]. We do not yet know the mechanism underlying these strain-specific differences.
However, we do know that Wolbachia strains show substantial genetic variation [6], which may
provide one path for uncovering the molecular basis of these differential effects.

Neither Wolbachia strain had a significant effect on ONNV vector competence or viral
body titers. Though we did see a trend toward possible enhancement of these viral measures,
low infection rates affected statistical power. Overall, Ae. aegypti in general was a poor vector
for ONNV, consistent with reports that Anopheles mosquitoes are the main vectors of ONNV

[65-66]. However, some studies have suggested that Ae. aegypti vector competence for ONNV
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may be virus strain-specific, and that this species can be a good vector in some circumstances
[66]. Future studies should continue to test Ae. aegypti competence for this neglected alpha-
virus as well as whether Wolbachia may enhance ONNV transmission.

Though we do not yet understand why Wolbachia has variable effects on diverse viruses
including WNV, Rift Valley Fever virus, SINV, ONNV, and MAYV, previous work hints at
potential mechanisms. First, viruses from different families may interact within the host and
with Wolbachia strains in diverse ways, e.g., via distinct immune responses [94]. Another pos-
sibility is the nature of the Wolbachia infections: this work used transient Wolbachia infections
rather than stable, maternally inherited Wolbachia infections. However, several pieces of evi-
dence suggest a broad similarity between transient and stable infections. Both transient and
stable infections can show widespread tissue tropism [21,39,95], and transient and stable Wol-
bachia infections also have similar pathogen-blocking effects on WNV and DENV in Ae.
aegypti [96]. Transient wMel infections also strongly blocked MAYV infections in the present
study, replicating previous findings using stable infections [49]. Thus, the variation we
describe may instead arise from previously unexplored biotic or abiotic factors that influence
interactions between Wolbachia and these pathogens.

Our results illustrate the importance of further research into the effects of Wolbachia on
arboviruses and the underlying mechanisms of those effects. Wolbachia has been deployed
widely in the field, yet numerous studies have shown there is substantial variation in the bac-
terium’s effects on vector competence. Factors such as environmental conditions, the Wolba-
chia strain used, the targeted pathogen, the mosquito species, and even rearing conditions
appear to influence outcomes (e.g., [97-100]), yet the exact mechanism(s) driving this varia-
tion remain unclear. A better understanding of when and how Wolbachia influences viral
infections in mosquitoes is needed in order to predict the long-range and knock-on effects this
bacterium may have on the spread of human pathogens.

There are several limitations to our study. Although transient somatic Wolbachia infections
have similar effects on both DENV [96] and MAYV [49] in Ae. aegypti, it remains to be seen
whether (and how) stable Wolbachia infections in Ae. aegypti affect the alphaviruses studied
here. Future work could explore whether Wolbachia infection techniques differentially impact
pathogens. We also only examined a single viral genotype for each virus and did not compare
multiple mosquito genotypes. Finally, we used different mosquito strains for SINV and
ONNV experiments compared to MAYV experiments; mosquito genotype can affect Wolba-
chia blocking phenotypes [101-102].

Supporting information

S1 Fig. Wolbachia (wAlbB and wMel) titers (Wolbachia genomes/host genomes) in somati-
cally infected Aedes aegypti 7 and 14 days post-injection. Groups are not statistically differ-
ent (ANOVA, P=10.39).
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S1 Table. Raw data for this study. For viral titers, a “1” was added to zero values purely for
log-scale plotting.
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