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Abstract

Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by

Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-

borne viruses. This variation remains poorly characterized, yet the multimodal effects of

Wolbachia on diverse pathogens could have important implications for public health. Here,

we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB

and wMel) on the alphaviruses Sindbis virus (SINV), O’nyong-nyong virus (ONNV), and

Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including

enhancement and suppression of viral infections, with some effects depending on Wolba-

chia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV

infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher

viral titers than controls. Infection rates with ONNV were low across all treatments and no

significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infec-

tions were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed

viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vec-

tor competence underscore the importance of further research into how this bacterium

impacts the virome of wild mosquitoes including the emergent human pathogens they

transmit.

Author summary

In recent years, wild populations of Aedes aegypti mosquitoes in over a dozen countries

have been deliberately infected with Wolbachia pipientis (“Wolbachia”); an intracellular

bacterium that, in some circumstances, helps to curb the spread of mosquito-brone patho-

gens including dengue virus. But how does Wolbachia affect the ability of mosquitoes to

become infected with and spread the many different viruses they encounter in nature?
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Here, we use transient somatic infections in Aedes aegypti to characterize the effects of

Wolbachia on three different alphaviruses that cause illness in humans: Sindbis virus,

O’nyong-nyong virus, and Mayaro virus. We find that transient Wolbachia infections

have variable effects on these different pathogens, ranging from significant suppression of

Mayaro virus to significant enhancement of Sindbis virus. Our research has important

implications for the design of vector control strategies, and suggests further research is

needed to understand how Wolbachia shapes the replication and transmission of diverse

viruses in mosquitoes.

Introduction

More than half of the world’s population is at risk for vector-borne diseases, with an estimated

one billion new infections and one million deaths every year [1]. Vector-borne diseases are an

increasing threat to human health due to global travel, insecticide resistance, and climate

change [2–5], and novel strategies to combat mosquitoes and the pathogens they transmit are

urgently needed. One of the most promising new tools is the bacterium Wolbachia pipientis (=

Wolbachia), which can suppress vector populations [6] and prevent replication of viruses in

mosquitoes, an effect called pathogen blocking [7–8].

Wolbachia is a genus of intracellular bacteria present in many arthropod species [9–11].

Because it can suppress the transmission of specific mosquito-borne viruses and parasites

when transferred to novel mosquito hosts, Wolbachia has been the focus of much recent

research (e.g., [12–15]). Wolbachia-infected mosquitoes have been released into the field in

multiple countries to curb the spread of dengue virus (DENV) by Ae. aegypti vectors [8,9,16–

20]. In some cases, Wolbachia-infected animals can replace native populations and retain a

pathogen-blocking phenotype for multiple years after release [8,9,21–25]. However, native

population replacement with Wolbachia-infected mosquitoes is not always successful [16,26–

30]. Moreover, the effects of Wolbachia on pathogens can be variable and may depend on fac-

tors such as the virus–mosquito–Wolbachia strain pairing, environmental conditions, popula-

tion dynamics, and Wolbachia density [8,13,31–35]. In several mosquito genera, Wolbachia
may enhance some pathogens by increasing both infection frequency and infection intensity,

including Plasmodium berghei, Plasmodium yoelii, Plasmodium gallinaceum, and West Nile

virus (WNV) [35–39]. Our previous work with Culex tarsalis demonstrated that a single strain

of Wolbachia can have different effects on different pathogens. Specifically, the Wolbachia
strain wAlbB enhanced WNV infection frequency but suppressed Rift Valley fever virus titers

[39–40]. These findings of enhancement stress the importance of better understanding the

multifaceted effects of Wolbachia on vectors and pathogens, as Wolbachia has the potential to

negatively impact mosquito-borne disease control efforts.

To better understand the range of outcomes Wolbachia can have on vector competence, we

investigated the effects of two Wolbachia strains (wAlbB and wMel) on alphavirus infections

in Aedes aegypti. We focused on Ae. aegypti, one of the most pernicious vectors of medically

relevant pathogens, and to date, the only species used for Wolbachia field releases. Wolbachia
is not naturally found in wild populations of Aedes aegypti [41–42]. We studied the alpha-

viruses Sindbis virus (SINV), O’nyong-nyong virus (ONNV), and Mayaro virus (MAYV). All

three viruses are human pathogens and share important characteristics with Chikungunya

virus [43–45], an emergent human pathogen spread primarily by Ae. aegypti [46]. Infections

with these viruses rarely cause mortality, but they do cause significant morbidity (including
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fever, rash, and arthralgia) and place a significant burden on public health in affected areas

[47–49].

SINV has been isolated from wildlife in Eurasia, Africa, and Oceania [50–51], and there

have been periodic cases and epidemics in several areas including Finland, Sweden, Russia,

China, Australia, and South Africa [52–57]. Multiple mosquito genera can transmit SINV but

Culex and Culiseta are considered the primary vectors [47,51,58–59]. ONNV is endemic in

Africa, where there have been epidemics involving millions of people and where anti-ONNV

antibodies are detected at high rates in local human populations [60–64]. ONNV is thought to

be transmitted mainly by Anopheles, but other mosquito species are also susceptible to infec-

tion [65–66]. MAYV is endemic in South and Central America and has caused several small-

scale outbreaks of febrile illness with prolonged, disabling arthralgia since it was first identified

in 1954 [48]. The virus is common in populations of wild primates and is thought to be spread

to humans primarily by Haemagogus janthinomys [67], though many mosquito species includ-

ing Ae. aegypti can also become infected and transmit MAYV [49,68–70].

We assessed the ability of transient infections of wAlbB and wMel strains of Wolbachia to

affect infection, dissemination, and transmission of SINV, ONNV, and MAYV in Ae. aegypti.
We found striking variation in the effects of Wolbachia on these viruses, highlighting the need

for more research into this bacterium and how it may influence the full diversity of medically

relevant arboviruses found in nature.

Materials and methods

Mosquitoes, Wolbachia, and intrathoracic injections

We used two Ae. aegypti colonies. The Rockefeller strain was kindly provided by Dr. George

Dimopoulos, Johns Hopkins University, while the Liverpool strain was obtained from BEI

resources. Rockefeller mosquitoes were used to test ONNV and SINV, while Liverpool animals

were used to test MAYV. All mosquitoes were reared and maintained using standard methods

at 27˚C ± 1˚C, 12:12 hr light:dark cycle at 80% relative humidity in 30 × 30 × 30 cm cages

(MegaView Science). Larvae were fed Tropical Flakes (Tetramin, Product No. 77101) and

adults were provided ad libitum access to 10% sucrose. Mosquitoes were fed commercially

available expired anonymous human blood (Biological Specialty Corporation) for both virus

feeds and colony maintenance.

The Wolbachia strains wAlbB and wMel (derived from Ae. albopictus and D. melanogaster,
respectively) were purified from infected Anopheles gambiae Sua5B cells and resuspended in

Schneider’s Insect Media (Sigma Aldrich) using published protocols [71]. A cell lysate negative

control was prepared by putting Wolbachia-negative Sua5B cells through the Wolbachia puri-

fication process. Wolbachia viability and density from cell cultures were assessed by using the

LIVE DEAD BacLight Bacterial Viability Kit (Invitrogen) and a hemocytometer.

Two- to five-day-old adult female Ae. aegypti were anesthetized with ice and injected in the

thorax as previously described [39] with approximately 0.1 μl of Wolbachia (1010 bacteria/mL)

or cell lysate control. Mosquitoes were given access to 10% sucrose ad libitum and maintained

for up to 22 days post-injection (i.e., up to 27 days of age). Wolbachia infection rates in somati-

cally-infected mosquitoes were ~100% and Wolbachia titers did not vary across injection

groups (ANOVA, F = 1.005, P = 0.39 [S1 Fig]).

Generation of virus stocks

SINV (p50dsMRE16ic) and ONNV (p50dsONNic/foy) plasmids were kindly provided by Dr.

Brian Foy (Colorado State University, Ft. Collins, CO) on filter paper [72–73]. We obtained

the MAYV strain BeAr505411 from BEI Resources. For SINV and ONNV, infectious virus
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stocks were propagated from the plasmid DNA. Specifically, a piece of the filter paper was cut

and eluted in 0.1 ml TE buffer for approximately 1 hr. Competent E. coli cells (New England

Biolabs, #C2987H) were transformed with the eluted plasmid DNA according to the manufac-

turer’s instructions and grown on LB broth selection plates. Colonies were then picked from

plates and grown in LB broth overnight at 37˚C in a shaking incubator. Plasmid DNA was iso-

lated from the bacterial culture using the EZNA Plasmid Mini Kit (Omega, Cat # D6942-02)

according to the manufacturer’s instructions. Plasmids were linearized with the AscI enzyme

(New England Biolabs, #R0558S) for SINV and NotI enzyme (New England Biolabs, Cat.

#R0189S) for ONNV in 0.05-ml reactions, according to the manufacturer’s instructions. In
vitro transcription was performed by using a SP6 polymerase Megascript kit (Ambion,

AM1334) for SINV and a T7 polymerase Megascript kit for ONNV (Ambion, AM1330) in

0.02-ml reactions according to the manufacturer’s instructions. Cap analog m7G(50)ppp50G

(Ambion, #AM8048-8052) was used in the transcription reaction, and RNA was purified using

a Total RNA kit (Omega, R6834-02; from step 7). Vero or C636 cells were transfected with

purified RNA using Transmessenger Transfection Reagent (Qiagen, #301525) according to the

manufacturer’s instructions (ONNV and SINV), or directly infected with virus particles

(MAYV). Cell supernatant was harvested after 24–72 h of incubation and stored in 1 mL ali-

quots at −70˚C.

Alphavirus infections

Seven (SINV and ONNV) or eight (MAYV) days after Wolbachia injections, adult mosquitoes

were fed on infectious human blood using a glass membrane feeder jacketed with 37˚C water.

SINV and ONNV were quantified using plaque assays, while MAYV was quantified using

focus-forming assays (see below for specific methods). Mosquitoes were sugar-starved over-

night prior to blood feeding. Infectious blood meals were prepared by thawing frozen virus

stocks to 37˚C and adding it to the blood directly prior to feeding. Final blood meal virus titers

were: ONNV– 106 pfu/mL; SINV– 105 pfu/mL; MAYV– 107 ffu/mL. Mosquitoes were allowed

to feed for one hour then anesthetized briefly on ice and examined for feeding status, and par-

tially or non-blood fed females discarded. Fully engorged females were randomly divided into

two groups and maintained in standard conditions as described above. Infected animals were

analyzed at 7 and 14 days post-blood feeding. More specifically, mosquitoes were anesthetized

with trimethylamine and legs from each individual were removed and placed separately into

2-ml microcentrifuge tubes containing 1 ml of mosquito diluent (20% heat-inactivated fetal

bovine serum [FBS] in Dulbecco’s phosphate-buffered saline, 50 μg ml-1 penicillin streptomy-

cin, and 2.5 μg ml-1 fungizone). Saliva was collected from mosquito bodies by placing the pro-

boscis of each mosquito into a capillary tube containing 1:1 of 50% sucrose:FBS [40]. After 30

minutes, the capillary tube contents were expelled in individual microcentrifuge tubes contain-

ing 0.1 ml of mosquito diluent on ice, while bodies were placed in individual microcentrifuge

tubes containing 1 ml of mosquito diluent. A single zinc-plated, steel, 4.5 mm bead (Daisy)

was placed into the microcentrifuge tubes containing mosquito bodies and legs. SINV and

ONNV samples were homogenized in a mixer mill (Retsch) for 30 seconds at 24 cycles per sec-

ond, then centrifuged for 1 minute at 10,000 rpm. MAYV samples were homogenized at 30 Hz

for 2 min in a TissueLyser II (Qiagen) and centrifuged for 30 sec at 11,000 rpm. All samples

were stored at −70˚C until use.

Plaque assays

Mosquito samples were tested for SINV or ONNV infectious particles by plaque assay on Vero

cells according to previously published protocols [74]. Briefly, 100 mL of each undiluted sample
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was inoculated onto Vero cell culture monolayers. After inoculated plates were incubated in a

cell culture incubator at 37˚C and 5% CO2 for 1 hr, an agar overlay was added (1:1 1x Dulbec-

co’s modified eagle medium, 10% FBS, 1x penicillin streptomycin, 1x fungizone:1.2% agarose).

Plates were incubated at 37˚C for 2 days and then a second overlay (first overlay plus 1.5%

final concentration of neutral red) was added. Twenty-four hours after application of the sec-

ond overlay, samples were scored as positive or negative, and plaques counted. If plaques were

too numerous to count, the assays were repeated with 10-fold serial dilutions of the sample.

Focus forming unit (FFU) assays

Infectious MAYV particles were detected and quantified via FFU assays in Vero cells as pre-

viously described [68]. Cells (1x104/well) were grown in 96-well plates at 37˚C with 5% CO2

in complete media (Dulbecco’s modified-essential media [DMEM] with 100 units/mL peni-

cillin/streptomycin and 10% FBS). After one day of incubation, cells were briefly washed

with DMEM (without FBS) and incubated for 1 h at 37˚C with 30 uL of the serially diluted

(10−1 to 10−4) mosquito lysate or saliva. After 1 h, the sample was removed, and cells were

briefly washed with DMEM to remove any unadhered viral particles. Wells were next filled

with 100 uL of overlay medium (1% methylcellulose in complete medium), and plates were

incubated. After 24 h (body and leg samples) or 48 h (saliva), cells were fixed with 4% para-

formaldehyde (Sigma). Fixed cells were blocked and permeabilized for 30 min in blocking

solution (3% bovine serum albumin and 0.05% Tween-20 in PBS) then washed with cold

PBS. Viral antigens were next labeled with an anti-alphavirus antibody (CHK-48, BEI

Resources) diluted 1:500 in blocking solution. Cells were washed with cold PBS four times,

then incubated with Alexa-488 tagged secondary antibody (goat anti-mouse IgG, Invitro-

gen) at a dilution of 1:500. Fluorescent foci were then counted by eye (in a well with a dilu-

tion that produced <100 total foci) using an Olympus BX41 microscope with a UPlan FI 4x

objective and FITC filter.

Measurements

Virus infection rate was defined as the proportion of mosquitoes with virus-positive bodies.

The dissemination rate was defined as the proportion of infected mosquitoes with virus-posi-

tive legs. The transmission rate was calculated as the proportion of animals with disseminated

(leg -positive) infections that also had virus-positive saliva, while transmission efficiency was

the proportion of total mosquitoes with virus-positive saliva (Fig 1).

Quantitative real-time PCR of Wolbachia density

We extracted DNA from a 250-μl aliquot of each mosquito body homogenate with the EZNA

Tissue DNA kit (Omega, cD3396-02), and DNA was used as a template for qPCR with the Per-

feCta SYBR FastMix kit (Quanta Biosciences) on a Rotor-Gene Q (Qiagen) or a 7500 PCR sys-

tem (Applied Biosystems). The qPCRs were performed in 10-μl reactions, and we used the

following standardized program for amplification: 95˚C for 5 min; 40 cycles of 95˚C for 10 sec,

60˚C for 15 sec, and 72˚C for 10 sec. DNA was amplified with primers specific to each

Wolbachia strain (wAlbB: Alb-GF; GGT-TTT-GCT-TAT-CAA-GCA-AAA-G and Alb-GR;

GCG-CTG-TAA-AGA-ACG-TTG-ATC [75]; wMel: WD_0550F; CAG-GAG-TTG-CTG-

TGG-GTA-TAT-TAG-C and WD_0550R; TGC-AGG-TAA-TGC-AGT-AGC-GTA-AA [76])

and was normalized to host gene S7 (AeS7F; GGG-ACA-AAT-CGG-CCA-GGC-TAT-C and

AeS7R; TCG-TGG-ACG-CTT-CTG-CTT-GTT-G [77]) by using qGene [39, 78].
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Statistical analyses

The infection, dissemination, and transmission frequencies for each Wolbachia strain and

virus combination were compared with controls using pairwise 2x2 Fisher’s exact tests. Non-

parametric Mann–Whitney U tests were used to compare viral titers when comparing two

groups, and the Kruskal–Wallis test with Dunn’s correction for multiple comparisons was

used to compare experiments with more than two groups. Wolbachia titers were analyzed

using ANOVA. Statistical tests were performed in GraphPad Prism version 7 for Windows

(GraphPad Software, San Diego, CA).

Results

Ae. aegypti vector competence pilot experiment for alphaviruses SINV and

ONNV

Prior to conducting experiments with Wolbachia, we first asked whether Wolbachia-free Ae.
aegypti could be infected with ONNV and SINV. We found Ae. aegypti was susceptible to

infection (17–20% across two replicates, n = 60 total animals) and dissemination (45%, 5 of 11

infected animals) with ONNV, but not transmission (0%). They were susceptible to infection

(100% of 60 animals), dissemination (97–100%, at days 7 and 14, respectively), and transmis-

sion (23–38%, at days 7 and 14, respectively) with SINV. We did not test MAYV as our previ-

ous work found Ae. aegypti to be a competent vector of MAYV; At 7 days post infection with

BeAr 505411 strain of MAYV, the infection, dissemination and transmission rates were 86.2%,

60% and 6.7% respectively [68], and other work also found Ae. aegypti to be susceptible to

infection with MAYV [49].

Wolbachia and SINV co-infections

We asked whether somatic Wolbachia infections can influence alphavirus infections in Ae.
aegypti. Infection rates with SINV were moderate across all treatment groups at both time

Fig 1. Schematic of study design and timeline. Adult Aedes aegypti females were somatically infected with Wolbachia
(wAlbB or wMel) or a control solution via injection 2–5 days post-eclosion. Seven or eight days later, injected animals

consumed a blood meal spiked with infectious alphavirus (ONNV, SINV, or MAYV). At 7 and 14 days post-blood

feeding, viral titers were measured in three tissues. Wolbachia infection density was additionally quantified in SINV-

and ONNV-exposed animals.

https://doi.org/10.1371/journal.pntd.0012633.g001
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points (43–69%, Table 1). Both wAlbB- and wMel-injected mosquitoes showed significant

enhancement of SINV infection rates compared to control mosquitoes at day 7 (Table 1,

P = 0.007 and P = 0.002, respectively) but not at day 14 (P>0.05 for both). Neither Wolbachia
strain affected SINV transmission rates (Table 1). wAlbB mosquitoes had significantly greater

body titers compared to control mosquitoes at day 7 (Fig 2, P = 0.004), with a similar but non-

significant trend for wMel mosquitoes (Fig 2). There were no other significant differences in

the body or saliva titers between Wolbachia and control mosquitoes (Fig 2A and 2B).

Wolbachia and ONNV co-infection

Infection rates with ONNV were low (0–11%) in all treatment groups (Table 1). Neither Wol-
bachia strain had a significant effect on ONNV infection or transmission rates, nor any effects

on viral titer (Fig 3, NS for all comparisons).

Table 1. Effects of Wolbachia on alphavirus infection, dissemination, and transmission rates in Aedes aegypti.

Group Control (N) Control Rate wAlbB (N) wAlbB Rate wAlbB P value wMel (N) wMel Rate wMel P value

SINV Body 7 days 61 0.426 123 0.642 0.007 92 0.685 0.0024

SINV Body 14 days 34 0.559 81 0.556 NS 83 0.687 NS

SINV Saliva 7 days 61 0.016 123 0.049 NS 92 0.033 NS

SINV Saliva 14 days 34 0.059 81 0.037 NS 83 0.108 NS

ONNV Body 7 days 30 0.067 90 0.111 NS 30 0.067 NS

ONNV Body 14 days 26 0 104 0.029 NS 38 0 NS

ONNV Saliva 7 days 30 0 60 0.017 NS 30 0 NS

ONNV Saliva 14 days 26 0 66 0 NS 38 0 NS

MAYV Body 7 days 55 0.909 40 0.8 NS 40 0.2 < 0.00001

MAYV Body 14 days 57 0.842 35 0.743 NS 40 0.275 < 0.00001

MAYV Legs 7 days 55 0.709 40 0.35 0.0008 40 0.025 < 0.00001

MAYV Legs 14 days 57 0.754 35 0.457 0.0067 40 0.175 < 0.00001

MAYV Saliva 7 days 52 0.115 40 0.05 NS 40 0 0.0339

MAYV Saliva 14 days 57 0.193 35 0 0.0057 40 0.025 0.0134

https://doi.org/10.1371/journal.pntd.0012633.t001

Fig 2. Effects of Wolbachia infection on SINV vector competence in Aedes aegypti. (A) SINV body titers at 7 and 14 days post-infected blood meal. (B)

SINV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with Dunn’s

correction. ** P< 0.01.

https://doi.org/10.1371/journal.pntd.0012633.g002

PLOS NEGLECTED TROPICAL DISEASES Wolbachia and alphavirus infection in Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012633 November 4, 2024 7 / 16

https://doi.org/10.1371/journal.pntd.0012633.t001
https://doi.org/10.1371/journal.pntd.0012633.g002
https://doi.org/10.1371/journal.pntd.0012633


Wolbachia and MAYV co-infection

The effects of Wolbachia on MAYV infections were Wolbachia strain-specific, with greater

response to wMel infection compared to wAlbB. Control and wAlbB-injected mosquitoes were

both infected with MAYV at high rates (91% and 80% at day 7, respectively, 84% and 74% at day

14) and did not differ statistically at either time point (Table 1). In contrast, wMel injected mosqui-

toes were infected with MAYV only rarely (20% and 28% infection rate at days 7 and 14, Table 1,

P<0.00001 for both time points). MAYV infections were less likely to disseminate in both groups

of Wolbachia injected mosquitoes (Table 1, P = 0.0008 and P = 0.0067 for wAlbB at days 7 and 14,

and P<0.00001 for wMel at both timepoints). Transmission was also reduced in most Wolbachia
injected animals at 7 days post injection for wMel (P = 0.034) and for both wAlbB (P = 0.0057)

and wMel (P = 0.0134) at 14 days post injection (Table 1). Both Wolbachia strains reduced MAYV

infection intensity: wMel had a strong suppressive effect at both time points (P<0.00001, Fig 4A)

while the effects of wAlbB were significant at day 7 (P = 0.0023), but while reduced were not signif-

icant at day 14 (Fig 4A). Both strains suppressed viral titer in legs—a proxy for dissemination—at

both time points (Fig 4B) (wAlbB: day 7—P = 0.008, day 14—P = 0.0042; wMel P<0.0001 for both

timepoints). wAlbB reduced saliva titers only at day 14 (P = 0.0035) while wMel reduced saliva

titers at both timepoints (day 7: P = 0.0435; day 14: P = 0.0082) (Fig 4C).

Discussion

While some mosquito-borne illnesses have declined in recent years (e.g., malaria [79]), Ae.
aegypti—the primary vector of dengue, yellow fever, chikungunya, and zika viruses—stands

out as an increasing threat to global human health [80]. The incidence of dengue, a virus

spread primarily by Ae. aegypti, has grown 30-fold over the past 50 years and 390 million peo-

ple may be infected each year [81–82]. Ae. aegypti also sparked a new epidemic (Zika virus) by

spreading this previously neglected pathogen to new areas of the world [83]. One of the most

promising new tools for curbing mosquito-borne disease—and dengue virus in particular—is

Wolbachia, a bacterium that can block mosquitoes from transmitting pathogens [15]. How-

ever, much remains unknown about the bacterium, including its mechanism(s) of action

[13,37,84–85]) and how it influences the many diverse viruses Ae. aegypti can carry (but see

Fig 3. Effects of Wolbachia infection on ONNV vector competence in Aedes aegypti. (A) ONNV body titers at 7 and 14 days post-infected blood meal. (B)

ONNV saliva titers at 7 and 14 days post-infected blood meal. Horizontal lines mark group medians. Groups were compared by Kruskal-Wallis tests with

Dunn’s correction. There were no significant differences between groups.

https://doi.org/10.1371/journal.pntd.0012633.g003
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[86–89]). Filling these gaps in our understanding will better inform control programs and help

us anticipate situations where Wolbachia could potentially exacerbate mosquito-borne trans-

mission of some pathogens even while it suppresses others.

Here we report variable effects of Wolbachia on different alphaviruses in Ae. aegypti. We

found that two divergent Wolbachia strains enhanced SINV infection rates and titers seven

days post infection, though this effect disappeared by day 14. One possibility is that Wolbachia
decreases the extrinsic incubation period (the time between when a mosquito acquires a virus

through a bloodmeal and when it is able to transmit) of this virus, though other mechanisms

are possible. In contrast, we did not find significant effects of Wolbachia on ONNV infections

(though care should be taken in interpreting these data as ONNV infection rates were low in

general), and we found Wolbachia reduced vector competence for MAYV. This effect varied

from strong pathogen blocking (wMel) to smaller effects on dissemination and transmission

(wAlbB), depending on the Wolbachia strain used. Our findings agree with earlier work that

reported strong suppression of MAYV by a stable wMel infection in Ae. aegypti [49]. In sum,

across three different alphaviruses we found three different effects of Wolbachia: enhancement,

no effect, and strain-dependent pathogen blocking. These disparities highlight that the effects

of Wolbachia on viruses are extremely variable. With our limited current knowledge, we can-

not predict how Wolbachia may alter the composition and transmission of Ae. aegypti’s large

and growing virome [90–91], which includes numerous human pathogens.

We report that Wolbachia-mediated effects can be strain-specific. Most notably, the patho-

gen blocking effect on MAYV [49] depended strongly on the Wolbachia strain used: wMel

robustly suppressed MAYV infections at both time points while wAlbB did not affect infection

rate. Our findings comport with previous reports that Wolbachia can have strain-specific effects

on both pathogen susceptibility phenotypes and immune priming [89, 92–93]. For example,

one study in Ae. aegypti found the Wolbachia strain wMel did not have any effects on yellow

fever virus, but the wMelPop strain significantly reduced yellow fever virus in mosquito bodies

and heads [89]. We do not yet know the mechanism underlying these strain-specific differences.

However, we do know that Wolbachia strains show substantial genetic variation [6], which may

provide one path for uncovering the molecular basis of these differential effects.

Neither Wolbachia strain had a significant effect on ONNV vector competence or viral

body titers. Though we did see a trend toward possible enhancement of these viral measures,

low infection rates affected statistical power. Overall, Ae. aegypti in general was a poor vector

for ONNV, consistent with reports that Anopheles mosquitoes are the main vectors of ONNV

[65–66]. However, some studies have suggested that Ae. aegypti vector competence for ONNV

Fig 4. Effects of Wolbachia infection on MAYV vector competence in Aedes aegypti. (A) MAYV body titers at 7 and 14 days post-infected blood meal. (B)

MAYV leg titers at 7 and 14 days post-infected blood meal. (C) MAYV saliva titers at 7 and 14 days post-infected blood meal. A-D: Horizontal lines mark

group medians. Groups were compared by Kruskal-Wallis tests with Dunn’s correction. * P< 0.05, ** P< 0.01, **** P< 0.0001.

https://doi.org/10.1371/journal.pntd.0012633.g004
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may be virus strain-specific, and that this species can be a good vector in some circumstances

[66]. Future studies should continue to test Ae. aegypti competence for this neglected alpha-

virus as well as whether Wolbachia may enhance ONNV transmission.

Though we do not yet understand why Wolbachia has variable effects on diverse viruses

including WNV, Rift Valley Fever virus, SINV, ONNV, and MAYV, previous work hints at

potential mechanisms. First, viruses from different families may interact within the host and

with Wolbachia strains in diverse ways, e.g., via distinct immune responses [94]. Another pos-

sibility is the nature of the Wolbachia infections: this work used transient Wolbachia infections

rather than stable, maternally inherited Wolbachia infections. However, several pieces of evi-

dence suggest a broad similarity between transient and stable infections. Both transient and

stable infections can show widespread tissue tropism [21,39,95], and transient and stable Wol-
bachia infections also have similar pathogen-blocking effects on WNV and DENV in Ae.
aegypti [96]. Transient wMel infections also strongly blocked MAYV infections in the present

study, replicating previous findings using stable infections [49]. Thus, the variation we

describe may instead arise from previously unexplored biotic or abiotic factors that influence

interactions between Wolbachia and these pathogens.

Our results illustrate the importance of further research into the effects of Wolbachia on

arboviruses and the underlying mechanisms of those effects. Wolbachia has been deployed

widely in the field, yet numerous studies have shown there is substantial variation in the bac-

terium’s effects on vector competence. Factors such as environmental conditions, the Wolba-
chia strain used, the targeted pathogen, the mosquito species, and even rearing conditions

appear to influence outcomes (e.g., [97–100]), yet the exact mechanism(s) driving this varia-

tion remain unclear. A better understanding of when and how Wolbachia influences viral

infections in mosquitoes is needed in order to predict the long-range and knock-on effects this

bacterium may have on the spread of human pathogens.

There are several limitations to our study. Although transient somatic Wolbachia infections

have similar effects on both DENV [96] and MAYV [49] in Ae. aegypti, it remains to be seen

whether (and how) stable Wolbachia infections in Ae. aegypti affect the alphaviruses studied

here. Future work could explore whether Wolbachia infection techniques differentially impact

pathogens. We also only examined a single viral genotype for each virus and did not compare

multiple mosquito genotypes. Finally, we used different mosquito strains for SINV and

ONNV experiments compared to MAYV experiments; mosquito genotype can affect Wolba-
chia blocking phenotypes [101–102].
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