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Abstract

Schistosomiasis, also known as bilharzia or snail fever, is a tropical parasitic disease resulting

from flatworms of the Schistosoma genus. This often overlooked disease has significant

impacts in affected regions, causing enduring morbidity, hindering child development, reducing

productivity, and creating economic burdens. Praziquantel (PZQ) is currently the only treatment

option for schistosomiasis. Given the potential rise of drug resistance and the limited treatment

choices available, there is a need to develop more effective inhibitors for this neglected tropical

disease (NTD). In view of this, quantitative structure-activity relationship studies (QSAR), molec-

ular docking, molecular dynamics simulations, drug-likeness, and ADMET predictions were

applied to 31 inhibitors of Schistosoma mansoni Dihydroorotate dehydrogenase (SmDHODH).

The designed QSAR model demonstrated robust statistical parameters including an R2 of

0.911, R2
adj of 0.890, Q2cv of 0.686, R2

pred of 0.807, and cR2p of 0.825, confirming its robust-

ness. Compound 26, identified as the most active derivative, emerged as a lead candidate for

new potential inhibitors through ligand-based drug design. Subsequently, 12 novel compounds

(26A-26L) were designed with enhanced inhibition activity and binding affinity. Molecular dock-

ing studies revealed strong and stable interactions, including hydrogen bonding and hydropho-

bic interactions, between the designed compounds and the target receptor. Molecular dynamics

simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations val-

idated the stability of the two best-designed molecules (26A and 26L). Furthermore, drug-like-

ness and ADMET prediction analyses affirmed the potential of these designed compounds,

suggesting their promise as innovative agents for treating schistosomiasis.
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Author summary

In an innovative effort to combat schistosomiasis, we have employed a computational

drug innovation approach to design a potential treatment options. Schistosomiasis, a par-

asitic disease affecting millions worldwide, has been a persistent global health challenge.

The study, nestled within the broader realm of life sciences, sought to identify a more

effective drug using computational methods that analyze highly effective derivatives tar-

geting SmDHODH. This pioneering approach not only accelerates the drug discovery

process but also offers a promising avenue for developing targeted treatments. By harness-

ing computational power, we systematically explored chemical databases to pinpoint com-

pounds with the potential to combat schistosomiasis. The findings hold significant

implications for both scientists and non-scientists, as they represent a step forward in

addressing a major public health concern. For scientists, this work exemplifies the integra-

tion of in silico techniques in drug development, while non-scientists can appreciate the

tangible impact on improving global health and the well-being of communities affected by

schistosomiasis. This research underscores the power of interdisciplinary efforts in

advancing our ability to tackle complex health challenges.

1. Introduction

Schistosomiasis, a neglected tropical disease (NTD), is transmitted through freshwater snails

and is prevalent in sub-tropical Africa, the Middle East, Asia, and Latin America. The disease

is endemic in low-income rural communities lacking access to clean water, adequate hygiene,

and sufficient healthcare facilities. Sub-Saharan Africa bears the majority of cases, accounting

for up to 90%, with an estimated 280,000 annual deaths [1]. The primary species in sub-Saha-

ran Africa are Schistosoma haematobium, causing urogenital schistosomiasis, and S. mansoni,
responsible for intestinal schistosomiasis [2,3]. Schistosomiasis control programs primarily

employ community-based preventive chemotherapy, focusing on mass drug administration

(MDA) using the only available drug, Praziquantel (PZQ), a broad-spectrum anthelminthic, to

reduce morbidity [2]. However, treatment compliance faces challenges due to limited drug

options, the potential for the development of drug resistance due to repeated and widespread

usage, and PZQ’s restricted efficacy against juvenile worms [4–6]. This impacts patient adher-

ence to the medication regimen and increases the risk of reinfection. Therefore, there is a

pressing need to develop additional treatment options for schistosomiasis to address its

dynamic nature, optimize treatment outcomes, and ensure the long-term success of control-

ling and eliminating this endemic disease.

Dihydroorotate dehydrogenase (DHODH) is a flavoenzyme responsible for the stereospe-

cific oxidation of (S)-dihydroorotate (DHO) to orotate, constituting the fourth and sole redox

step in the de novo pyrimidine nucleotide biosynthetic pathway [7]. Inhibiting the enzyme

DHODH in S. mansoni, the parasite causing schistosomiasis, offers a promising avenue for

therapy. By inhibiting DHODH, the synthesis of pyrimidine nucleotides, essential for DNA

and RNA synthesis, is disrupted in the parasite, leading to a depletion of pyrimidine nucleo-

tides crucial for the survival and replication of S. mansoni [8]. This deprivation impedes the

growth and proliferation of S. mansoni, thereby reducing the parasite burden within the host.

DHODH inhibitors exhibit selective toxicity towards the parasite while sparing host cells, min-

imizing potential adverse effects on the host. Additionally, inhibitors of DHODH can poten-

tially synergize with existing antischistosomal drugs, enhancing their efficacy and reducing the
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likelihood of drug resistance development [9]. Recent investigations by Renan M. de Mori and

colleagues have revealed the structural characteristics of Schistosoma mansoni DHODH

(SmDHODH) and its human enzyme (HsDHODH), showing notable differences in their con-

formation [10]. Particularly distinctive in SmDHODH, unlike all other class 2 DHODH struc-

tures reported thus far, is the presence of a protuberant domain connecting β6 and βE

structural elements [10]. In the realm of drug development, the primary objective is to pin-

point small molecules capable of selectively inhibiting SmDHODH activity in parasites while

sparing the human host [11]. Such inhibitors hold the potential to function as antiparasitic

drugs, offering a promising avenue for treating infections caused by Schistosoma mansoni.
Consequently, utilizing the specified characteristics of SmDHODH will enable selective inhibi-

tion, presenting an effective strategy for combating schistosomiasis and enhancing the efficacy

of current antischistosomal drugs.

Due to the time and cost demands associated with traditional drug design methods, in silico
drug design has become a widely adopted approach for developing effective treatments [12–

14]. Numerous drug design studies now center on Ligand and/or Structure-Based Drug

Design [15,16]. In this study, we examined a dataset from ChEMBL and employed ligand

based drug design to design derivatives with enhanced activity, high drug scores, and

improved binding capabilities to target SmDHODH [17]. This involved the application of vari-

ous techniques, including Quantitative Structure-Activity Relationship (QSAR), molecular

docking, molecular dynamics simulations, drug score computations, and evaluations of phar-

macokinetics properties. The development of robust QSAR models enables cost-effective vir-

tual screening of extensive chemical databases, identifying potentially active compounds that

meet the criteria for promising drug candidates. The primary aim of this study is to pinpoint

and characterize derivatives with the potential to function as inhibitors of SmDHODH, con-

tributing to the control or elimination of schistosomiasis.

2. Materials and methods

2.1. Materials

The materials used for this research are Toshiba laptop system with processor properties of i5-

5200U CPU @ 2.20GHz 2.20 GHz, 8 GB (RAM) on Microsoft Windows 10 Pro Operating Sys-

tem, ChemDraw Ultra 12, Spartan 14V 1.1.2 developed by Wavefunction Inc., PaDel descrip-

tor software, Materials Studio 8.0, Molegro Visual Docker, Discovery Studio Visualizer V.

16.1.0, Osiris property explorer and Desmond program developed by DE Shaw Research.

pkCSM and SwissADME online tools were also employed for ADMET and pharmacokinetics

predictions of the designed analogs.

2.2. Dataset collection, preparation, optimization and activity linearity

A set of thirty-two potential inhibitors for SmDHODH, sourced from the ChEMBL database

with ChEMBL ID: CHEMBL4523950, underwent screening to eliminate duplicates and inac-

tive molecules [18–20]. This refinement process resulted in thirty-one compounds selected for

further studies. Utilizing the SMILE code provided in the ChEMBL file, 2D structures were

generated using ChemDraw software (S1 Table). These 2D structures were then converted

into 3D formats employing Spartan 14 software, and their geometric energy was minimized

using molecular mechanics force fields (MMFF) [21]. To enhance accuracy, the minimized

compounds underwent further geometry optimization through Density Functional Theory

(DFT) calculations, specifically utilizing the B3LYP/6-31G* basis set, to achieve a more reliable

conformer [22]. The optimized conformers were subsequently saved in sdf and pdb formats

for the determination of molecular descriptors and subsequent molecular docking studies
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[16,23]. The inhibitory capacities of the compounds, initially presented as IC50 in nanomolar

(nM) units, were converted into a logarithmic scale (pIC50 = -log IC50 × 10−9) to achieve

improved data linearity [24]. The 2D structures, biological activities, predicted activities, resid-

uals and respective leverages of the molecules are provided in S1 Table.

2.3. Descriptor determination and dataset partitioning

The PaDEL descriptor toolkit was employed to compute essential molecular descriptors influ-

encing the anti-schistosomiasis activities of the derivatives. The 3D structures, saved in sdf file

format, were imported into the PaDEL software to generate these descriptors [25]. Subse-

quently, the generated descriptors underwent preprocessing to eliminate highly correlated

ones, utilizing version 1.2 of the pretreatment software. After the preprocessing step, the data-

set underwent division into modeling and validation sets using the Kennard-Stone algorithm

[26]. The modeling set consisted of 22 compounds (70% of the dataset), while the remaining 9

compounds, (30%), were reserved for the external validation test set.

2.4. QSAR model construction and validation

A model with the aim of predicting reported experimental data and facilitating the design of

new anti-schistosomiasis compounds was constructed using the genetic function approxima-

tion approach [27]. This method randomly selects combined descriptors (independent vari-

ables) and utilizes biological activities as dependent variables to create models capable of

effectively predicting the activities of the dataset. Material Studio software version 8.0 was

employed using Multiple-linear regression to formulate the multi-variant equation, and to

evaluate the internal validation of the developed model [28]. Afterwards, an external assess-

ment was carried out, and the obtained values were compared and validated against the widely

accepted threshold values to ensure the effectiveness and resilience of the constructed model.

2.4.1. Leverages computation (Applicability domain plot). The dataset compounds

underwent leverage (hi) value calculation (Eq 1) to establish the applicability domain (AD) of

the developed model through the utilization of William’s plot [29]. This plot offers a graphical

representation wherein each compound’s leverage value is plotted against its corresponding

standardized residual. The diagonal of the hat matrix element denotes the leverage values cal-

culated for both the modeling and validation sets. The standardized residual represents the val-

idated residual estimated from the disparity between predicted and reported experimental

activities for both the modeling and validation sets [30]. The threshold for the leverage value is

determined through the application of Eq 2.

hi ¼ MiðM
TMÞ� 1

� MT
i ð1Þ

h∗ ¼
3ðQþ 1Þ

q
ð2Þ

where hi is the leverage calculation method, Mi is the modeling set matrix of i, MT is the

modeling set transpose matrix, M represents the n × k matrix for the validation sets, and MT
i is

the transpose matrix Mih*.h* is the warning leverage value, Q is no. of descriptors used to gen-

erate the model and q is the modeling set no. of entities.

2.4.2. Y-scrambling test. The Y-randomization test is commonly employed to assess the

stability of the selected QSAR model by randomly reshuffling the dependent variable (bioactiv-

ity) while maintaining the selected descriptors constant [31]. Consequently, the newly gener-

ated random models are expected to exhibit low values for the squared regression coefficient

(Rr
2) and cross-validation coefficient (Qr

2) after multiple iterations, thus validating the
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robustness of the original model. Additionally, the coefficient of determination for Y-random-

ization (cR2p) should exceed 0.5 for a valid model [32].

2.5. Ligand-based drug design

Utilizing the selected QSAR model, an in-silico screening method was employed to create

potential anti-schistosomiasis compounds with improved effectiveness. The lead candidate for

drug design was chosen based on the compound exhibiting the highest pIC50, low residual

value, and favorable pharmacokinetics profile [33]. This selected lead served as the basis for

designing new entities, aiming to improve the predicted biological activity and the binding

score against the target protein.

2.6. Protein preparations and molecular docking studies

The SmDHODH receptor with PDB ID 6UY4 was sourced from the Protein Data Bank

(https://www.rcsb.org/). Protein preparations and molecular docking investigations were con-

ducted using Molegro Virtual Docker (MVD) software. The acquired protein was loaded into

MVD, where co-crystallized ligands were eliminated, and any identified warnings were recti-

fied [22,23,34]. Following this, a surface was generated, and 5 cavities were identified as poten-

tial binding sites. Subsequently, the designed compounds (optimized), were introduced into

MVD for the docking study. The selected binding cavity exhibited a volume of 162.816 Å, a

surface of 491.241 Å, XYZ coordinates of 17.09; 30.69; 65.73, and a radius of 15 Å. MolDock

(Grid) scoring function with a default grid resolution of 0.3 Å, was applied. The docking simu-

lation was independently run 10 times, each with a maximum of 1500 iterations and a popula-

tion size of 50. Following the completion of the docking procedure, MolDock score, Rerank

score, and hydrogen bond energies were generated to assess the ligand-receptor binding

strengths. The docked complexes were then saved in PDB format, and their interactions were

visualized and interpreted using Discovery Studio software.

2.7. Molecular dynamics simulations

Molecular dynamics simulations were conducted on the SmDHODH protein in both its

unbound (apo) state and when bound to potential anti-Schistosomiasis agents [35]. The simu-

lations employed the CHARMM36 force field and the Gromacs version 2020 software package

[36,37]. To create the simulation environment, the protein-ligand complexes were situated in

a rectangular box with a buffer distance of 10 in each direction [38]. The box was then solvated

with transferable intermolecular potential with a three-points (TIP3P) water molecules, and

Na+ and Cl- ions were added to mimic a cellular environment [39]. Each system underwent

thermal equilibration at a constant temperature of 310 Kelvin through 5000 iterations (equiva-

lent to 10 picoseconds) under the NPT ensemble [40,41]. The Lincs approach was utilized to

constrain hydrogen, resulting in a time step of 2 fs [42,43]. Van der Waals forces were investi-

gated using a switching technique with a range of 12–14 and a cutoff value of 14. Long-range

electrostatic interactions were computed using the particle mesh Ewald (PME) technique with

a maximum grid spacing of 1.2. PME calculations were performed at each iteration without a

multiple-time stepping approach, and the barostat’s system size changes were set to a target of

1 bar [43]. Numerical integration employed a time interval of 2 femtoseconds. Following the

completion of the simulations, output data were analyzed using VMD software, Bio3D, and

QTGRACE [44–46].

2.7.1. Binding free energy calculation using MM-PBSA. The assessment of binding free

energy plays a crucial role in evaluating the stability of ligand-protein complexes [47]. In this

study, the MM-PBSA method was employed to compute the binding energy within the
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SmDHODH-ligand complexes. This approach takes into account both bonded and non-

bonded interactions, including van der Waals and electrostatic forces. The estimation of bind-

ing free energy (ΔG) was carried out using Eq (3) through the utilization of the MMPBSA.py

script from the AMBER package [48].

DG ¼ ðGcomplexÞ � ðGproteinÞ � ðGligandÞ ð3Þ

Where, Gcomplex is the average free energy of the complex; Gprotein is the average free energy

of the receptor in its unbound state; G-ligand is the average free energy of the ligand in its

unbound state [49].

2.8. Drug score evaluation

The assessment of drug scores involves the incorporation of various factors, including drug-

likeness, cLogP, logS, molecular weight, and considerations of toxicity, within a scoring algo-

rithm [50]. This approach aims to provide a quantitative appraisal of the overall potential of

the proposed anti-schistosomiasis drug candidates. Osiris Property Explorer was employed to

conduct this evaluation [51].

2.9. Drug-likeness and ADMET predictions

Following the effective docking of the newly proposed compounds into the binding site of the

target receptor, an assessment was conducted to evaluate their suitability as potential drug can-

didates [52,53]. The designed derivatives underwent scrutiny for drug-like characteristics and

ADMET properties. This evaluation was carried out using the pkCSM (https://biosig.lab.uq.

edu.au/pkcsm/) and Swiss-ADME (http://www.swissadme.ch/) web tools [54,55].

3. Results and discussion

3.1. QSAR model construction and validation

The dataset, consisting of 31 derivatives against SmDHODH, was effectively divided into a

training set (containing 22 compounds) and a test set (comprising 9 compounds) using the

Kennard and Stone algorithm (S1 Table). The training set was utilized to develop a genetic

functional algorithm employing the multi-linear regression (MLR) technique as the model

equation. The analysis of this genetic functional algorithm explored the physicochemical and

structural influences of the compounds under investigation and their corresponding anti-

schistosomiasis activities [56]. The proposed Quantitative Structure-Activity Relationship

(QSAR) model (shown below) was internally validated, yielding a squared correlation coeffi-

cient (R2) of 0.911, an adjusted squared correlation coefficient (R2adj) of 0.890, and a leave-

one-out cross-validation squared correlation coefficient (Q2cv) of 0.868 (Table 1). The R2

value of 0.911 indicates that the model captures 91.1% of the variation in the biological activity

of the compounds in the training set [57]. The robustness and fitness of the constructed mod-

els were also confirmed by an R2
adj of 0.890 as reported in Table 1, and a Q2cv of 0.868 strongly

suggests that the proposed model avoids overfitting [58,59]. The standard error of the model

was evaluated to measure its precision in predicting the dependent variable. A lower standard

error, like the observed value of 0.402, suggests the model’s predictions closely match the

actual values. This metric assesses prediction accuracy and reliability, where lower values sig-

nify more precise predictions, while higher values imply increased variability and potential

limitations in accuracy. Externally, the proposed model underwent cross-validation, yielding a

significant predictive squared correlation coefficient (R2
pred) of 0.807, meeting the threshold

requirements for accepting any proposed QSAR model (Table 1) [58,59]. Importantly, the
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findings of the proposed QSAR model align strongly with the results of Ibrahim et al and

numerous other research studies [60–62].

Proposed QSAR model
PIC50 = 6.335 *MATS3s + 0.141 * VR2_Dzp + 9.798 * SpMin3_Bhm—8.047 *

SpMin4_Bhs—2.347

The developed model incorporated geometrical and topological descriptors, specifically

MATS3s, VR2_Dzp, SpMin3_Bhm, and SpMin4_Bhs. These descriptors played a significant

role in providing relevant information and contributions [63], as outlined in S2 Table. Nota-

bly, SpMin3_Bhm and SpMin4_Bhs descriptors utilize eigenvalues from the Burden matrix,

with SpMin4_Bhs specifically emphasizing the fourth smallest eigenvalue weighted by ioniza-

tion states. This correlation illustrates the combined influence of atomic masses and ionization

states on molecular structure, demonstrating their intertwined roles in defining molecular

characteristics and biological activities of the molecules. Pearson correlation statistics were

employed for descriptor validation in the proposed model (Table 2). The Pearson correlation

analysis conducted revealed values < ±0.9 for all the descriptors which confirms the absence

of multicollinearity between any pair of descriptors [50,64]. Additionally, statistical analyses

were conducted to assess the model’s reliability and robustness. The mean effect (ME) values

of each descriptor were determined, representing the average impact of a descriptor on the

predicted compound’s activities [65]. A positive ME for MATS3s, VR2_Dzp, and

SpMin3_Bhm indicated a positive influence on the compound’s activity. Thus, adding func-

tional groups that increase the effect of these descriptors would directly enhance the com-

pound’s biological activity [66]. Conversely, a negative ME for SpMin4_Bhs suggested a

negative influence on the compound’s activities. Furthermore, the one-way analysis of vari-

ance (ANOVA), was employed to evaluate the significant correlation between anti-

Table 1. The MLR model’s statistical parameters in comparison with Golbraikh and Tropsha values.

Validation factors Golbraikh / Tropsha’s Threshold Model values Validation

Friedman LOF Low value 0.724 Passed

R-squared (R2) > 0.600 0.911 Passed

Adjusted R-squared (R2
adj) > 0.600 0.890 Passed

Cross validated R-squared (Q2cv) > 0.600 0.868 Passed

Significance-of-regression F-value A high value 43.595 Passed

Critical SOR F-value (95%) � 2.090 3.014 Passed

Standard error Low value 0.402 Passed

External R-squared (R2
ext) 0.600 0.807 Passed

Average of determination coefficient for Y-randomized data (R2
r) < R2 0.179 Passed

Average of leave one out cross-validated determination coefficient for Y-randomized data (Q2
r) < Q2cv -0.490 Passed

Coefficient for Y-randomization (cR2p) > 0.500 0.825 Passed

Predictive squared correlation coefficient (R2
pred) > 0.600 0.807 Passed

https://doi.org/10.1371/journal.pntd.0012453.t001

Table 2. Pearson’s correlation coefficient and statistical parameters of developed model.

Pearson’s correlation coefficient Statistical validation parameters

MATS3s VR2_Dzp SpMin3_Bhm SpMin4_Bhs ME P-value Regression coefficients
MATS3s 1 0.222 0.706 0.608 0.025 0.000 6.335

VR2_Dzp 0.222 1 0.252 0.357 0.154 0.000 0.141

SpMin3_Bhm 0.706 0.252 1 0.942 1.859 8.73E-07 9.798

SpMin4_Bhs 0.608 0.357 0.942 1 -1.039 7.02E-08 -8.047

https://doi.org/10.1371/journal.pntd.0012453.t002
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schistosomiasis activities and the descriptors at a 95% confidence level. The reported probabil-

ity values in Table 2 were all below 0.05 (p< .05) for each descriptor [59]. This indicates the

rejection of the null hypothesis, which implies no correlation between anti-schistosomiasis

activities and the descriptors in the proposed model [67]. Therefore, the alternative hypothesis

suggesting a significant correlation between anti-schistosomiasis activities and the descriptors

is accepted. The regression coefficients of each descriptor in the developed model were also

examined (Table 2). These coefficients reflect the strength and direction of the relationship

between the descriptors and the dependent variable (activity being predicted). Notably, the

regression coefficients of MATS3s, VR2_Dzp, and SpMin3_Bhm were positive, implying that

an increase in these descriptors is associated with an increase in the predicted anti-schistoso-

miasis activity. Conversely, the negative regression coefficient of SpMin4_Bhs suggests that a

decrease in this descriptor increases the predicted anti-schistosomiasis activity. Notably, the

alignment between the mean effect (ME) and regression coefficient adds further confirmation

to the reliability of the proposed QSAR model [68].

To reinforce the model’s credibility, a Y-Scrambling test was implemented through 50 ran-

dom trials, involving the random reshuffling of biological activities (dependent) within the

training set compounds while keeping the descriptors (independent) unchanged (Fig 1) [31].

The anticipation was that by disrupting the relationship between the descriptors and activity,

any correlation observed in the original data would also be disrupted. The Y-scrambling ran-

dom models yielded an R2
r value of 0.179, Q2

r of -0.490, and a cR2p of 0.825 (Table 1 and Fig

1). The performance metrics from the Y-scrambling test were compared with those of the orig-

inal model. The original model demonstrates a superior performance compared to the scram-

bled models. This outcome confirms that the relationships identified in the original model are

not a result of random chance correlation [31]. Conversely, the cR2p value of 0.825 (exceeding

0.5) underscores that the selected model is not a product of chance correlation, further empha-

sizing its credibility [28].

Fig 1. Y-randomization plot of the develop QSAR model.

https://doi.org/10.1371/journal.pntd.0012453.g001
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Fig 2 depicts an activity plot showcasing the predicted pIC50 values for both the modeling

and validation datasets compared to experimental activity values for inhibiting the

SmDHODH enzyme. The primary objective of the activity plot is to distinguish patterns and

trends, facilitating an understanding of the structure-activity relationship and aiding in the

design of novel compounds with enhanced anti-schistosomiasis activity [5]. In an optimal sce-

nario, a proficient QSAR model would reveal a linear relationship between the predicted and

observed biological activities. This indicates the model’s ability to precisely capture the struc-

ture-activity relationship, ensuring a consistent correlation between the activities [69]. Nota-

bly, the plot (Fig 2) demonstrates a strong alignment between the R2 values observed in the

developed QSAR and those portrayed in activity plot. The striking similarity between these

values and the observed linear relationship, marked by limited scattering and deviations,

strongly implies the efficiency of the established model, signifying its robust predictive capac-

ity. Additionally, as reported by Khalifa S. Aminu and colleagues, an R2 value close to 1 under-

scores the reliability of the selected equation in forecasting the biological activities of novel

compounds [34].

Furthermore, an assessment of the model’s applicability domain was conducted using Wil-

liams’s plot, illustrated in Fig 3. The applicability domain (AD) represents the chemical space

where a QSAR model is acknowledged as valid and dependable. In this study, all compounds

seemed to fall within the specified standardized residual measure of ±3, signifying the absence

of outliers [70,71]. However, compounds 1, 15, and 20 are identified as influential due to lever-

age values surpassing the warning threshold of 0.682. These compounds likely possess distinc-

tive structural features that significantly influence the relationships between molecular

descriptors and their biological activities [13,71]. Nevertheless, consistent with findings from

various studies, an AD plot containing a majority of dataset compounds within the domain is

considered valid and reliable [29,72].

Fig 2. An activity graph of dataset compounds.

https://doi.org/10.1371/journal.pntd.0012453.g002
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3.2 Ligand-based drug design

Compound 26 is part of the naphthoquinone family, a group of organic compounds character-

ized by a quinone structure. These compounds are noted for their diverse biological activities,

making them promising candidates for various medical applications [73]. Despite reports of

toxicity issues linked to this class of compounds [74], several naphthoquinone compounds are

already in clinical use, such as the chemotherapeutic anthraquinones as well as mitomycins

[75]. Consequently, compound 26 was selected as the principal lead candidate for drug design,

with specific positions identified for modifications, as shown in the adopted template (Fig 4).

Descriptors such as MATS3s, VR2_Dzp, SpMin3_Bhm, and SpMin4_Bhs were used to guide

the selection of substituents for inclusion because of their notable positive and negative mean

effect values. Notably, twelve of the newly developed compounds outperformed the lead mole-

cule (26) in terms of anti-schistosomiasis activity. This shows that changes based on these

characteristics resulted in increased compound activity, potentially presenting these com-

pounds as prospective options for treating schistosomiasis targeting the SmDHODH enzyme.

Fig 3. An applicability domain plots of dataset compounds.

https://doi.org/10.1371/journal.pntd.0012453.g003

Fig 4. Structure of the lead compound 26 and the adopted template for ligand-based drug design.

https://doi.org/10.1371/journal.pntd.0012453.g004
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In the ligand-based design of inhibitors targeting the SmDHODH enzyme, it was observed

that incorporating substituents with electron-donating groups (EDG) such as amino (-NH2),

methoxy (-OCH3), and hydroxyl (-OH) positively influenced the MATS3s and SpMin3_Bhm

molecular descriptors [76]. This positive effect is attributed to the increased electron density

contributed by these groups. Conversely, electron-withdrawing groups like nitro (-NO2) and

halogens (-Cl, -Br) were noted to potentially decrease electron density, adversely impacting

SpMin4_Bhs, and showed promise in enhancing the biological activities of the proposed deriv-

atives [76,77]. The inclusion of these groups resulted in a notable increase in the efficacy of the

designed compounds, a phenomenon supported by recent investigations validating the effec-

tiveness of similar substituents [72,78–80]. Structural modifications were carried out on the

template structure by substituting the aforementioned groups (-Cl, -Br, -NH2, -OH, -NO2, and

-OCH3) at different positions (Fig 4). Notably, the introduction of -Cl, -Br, -NH2, and -OH

functional groups at R1 (ortho position) elevated the predicted activities from 7.652 for the

lead compound to a range of 7.686–9.149 for the newly designed compounds. Substitutions at

positions R2 (meta position) on the aromatic ring had a moderate effect in increasing the bio-

logical activities of potential anti-schistosomiasis agents, likely due to the moderate influence

of meta-substituents on the resonance structures of the derivative [77]. This effect is evident

among the newly designed entities, displaying an activity range of 7.688–7.772 (Table 3).

Markedly, compound 26L, exhibiting the highest activity, featured two methoxy groups substi-

tuted at positions R2 and R3. The introduction of -OCH3 groups in meta and para positions on

a benzene ring influenced the electron density of the ring through inductive and resonance

effects, making it more nucleophilic and potentially impacting reactivity [81]. Overall, all

twelve of the newly designed derivatives demonstrated improved inhibitory effects, highlight-

ing the potential of the selected functional groups to enhance the biological activities of the

newly designed derivatives.

Moreover, an assessment using drug score was conducted to appraise the potential effec-

tiveness and desirability of a drug candidate. Notably, nearly all of the newly designed com-

pounds exhibited commendable drug score values surpassing both the lead compound (26)

and the standard drug PZQ, which held a drug score of 0.391 (S1 Fig). The drug scores, falling

within the range of 0.12 to 0.77 (Table 3), imply a moderate to relatively high level of efficacy.

Side views illustrating the physicochemical characteristics (cLogP, solubility, drug-likeness,

and drug score) of the top two designed molecules, 26A and 26L, as well as the reference

Table 3. Newly designed SmDHODH inhibitors with their respective predicted biological activities and drug score.

S/N R1 R2 R3 R4 R5 Predicted pIC50 Drug score

26 -H -H -H -H 2-methlpropene 7.652 0.276

26A -Cl -H -H -H 2-methlpropene 9.149 0.625

26B -H -Cl -H -H 2-methlpropene 7.688 0.452

26C -Br -H -H -H 2-methlpropene 8.642 0.431

26D -H -Br -H -H 2-methlpropene 7.772 0.353

26E -H -H -H -Br 2-methlpropene 7.653 0.431

26F -NH2 -H -H -H 2-methlpropene 8.755 0.433

26G -OH -H -H -H 2-methlpropene 7.686 0.718

26H -H -H -NO2 -H 2-methlpropene 8.401 0.402

26I -H -H -H -NO2 2-methlpropene 8.020 0.403

26J -H -H -OCH3 -H 2-methlpropene 7.810 0.510

26K -H -H -H -H -Cl 7.810 0.126

26L -H -OCH3 -OCH3 -H 2-methlpropene 10.459 0.771

https://doi.org/10.1371/journal.pntd.0012453.t003
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(PZQ), are depicted in S1, S2, and S3 Figs. The predictions obtained from the OSIRIS Property

Explorer are represented and color-coded, with properties posing a significant risk of unin-

tended consequences, such as mutagenicity or poor intestinal absorption, highlighted in red

[82]. The green color denotes drug-adherent behavior, while the red color suggests non-adher-

ent conduct. Notably, the figures reveal that the designed compounds exhibited no toxicity

risk alerts, displayed in green colors, indicating drug-adherent behavior superior to the stan-

dard drug PZQ.

Furthermore, the leverages of the newly designed compounds were computed, utilizing

them to construct and analyze the leverage plot presented in Fig 5. This plot serves to prioritize

compounds by highlighting the chemical features that have the greatest impact on the desired

biological activity, aiding decision-making in the drug development process. Remarkably,

eleven out of the twelve designed compounds are situated within the specified AD domain,

suggesting their potential as candidates for drug design targeting Schistosomiasis. However,

despite observing an increase in biological activity in compound 26K, its leverage value

exceeds the calculated threshold leverage value of 0.682. This discrepancy may indicate that

the introduction of substituted chlorine (-Cl) at position-R5 has led to an undesirable effect on

the chemical properties of compound 26K.

3.3 Molecular Docking Simulations

The active site of the SmDHODH receptor identified by PDB ID 6UY4 contains key amino

acids, including Ser53, Phe92, His50, Ile128, Val358, Arg130, Ala49, Gly46, and Phe357 [10].

These amino acids formed hydrogen bonding and hydrophobic interactions with the

SmDHODH inhibitors. Fig 6A illustrates the superimposition docked complex of SmDHODH

with the co-crystalized ligand (QLA401), Fig 6B shows a 3D visualization of the superimposed

ligand while 6C highlights the key amino acid residues interaction with the QLA401 ligand.

Fig 5. Leverage plot of newly designed compounds against their predicted activities.

https://doi.org/10.1371/journal.pntd.0012453.g005
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Validating the precision of the docking algorithm is crucial to ensure the accurate binding of

ligand molecules to the receptor’s active site in a specific conformation. This involves careful

selection of the grid box’s size and central coordinates. To verify the reliability of the docking

approach, the co-crystallized ligand was re-docked, resulting in an RMSD value of 0.140 Å
(Fig 6B). This value falls within the accepted standard of an RMSD value below 2.0 Å [23], con-

firming the accuracy of the docking algorithm. The MVD docking procedure successfully and

precisely repositioned the co-crystallized ligand into the SmDHODH binding site, providing

evidence for the effectiveness of the docking algorithm.

Docking compound 26 into the SmDHODH optimal binding site revealed notable scores:

A MolDock score of -102.332 kcal mol-1, a Rerank score of -86.094 kcal mol-1, and a hydrogen

bond energy of -6.768 kcal mol-1 (Table 4). The substantial binding energy emphasizes the

strength of the interaction between the ligand and the receptor and a high Rerank score under-

scores the stability of the formed docked complex. The importance of hydrogen bond energy

in establishing overall stability within the ligand-receptor complex is significant [83]. The

observed high hydrogen bond energy of -6.768 kcal mol-1 indicates a robust interaction

between the ligand and the receptor. It is worth noting that Zakari Ya’u Ibrahim and col-

leagues have previously highlighted that higher values of docking score energies increase the

likelihood of the ligand being tightly bound to the receptor’s active site [84].

Fig 6. Superimposed co-crystallized ligand within selected binding cavity of SmDHODH with XYZ coordinated

at 17.09;30.69;65.73. (A)-superimposed co-crystalized ligand in complex with 6UY4, (B)- Visualization of

superimposed co-crystallized ligand, (C)- Depiction of active residues interacting with the co-crystallized ligand.

https://doi.org/10.1371/journal.pntd.0012453.g006

Table 4. Binding score energies of newly designed SmDHODH inhibitors with their respective RMSD values.

S/N Moldock Score / kcal mol-1 Rerank Score / kcal mol-1 H-Bond / kcal mol-1 RMSD / Å
26 -102.332 -86.039 -6.768 0.140

26A -107.552 -91.894 -9.493 1.462

26B -103.352 -87.652 -6.487 0.043

26C -102.451 -84.290 -6.746 1.830

26D -108.986 -90.292 -6.483 1.228

26E -110.105 -95.246 -5.117 6.613

26F -104.235 -93.436 -3.315 0.012

26G -104.529 -94.948 -5.002 0.156

26H -111.548 -48.464 -11.785 1.248

26I -101.322 -77.057 -8.285 0.921

26J -111.764 -93.909 -9.412 0.249

26K -93.543 -80.658 -10.081 0.011

26L -113.825 -82.678 -8.502 0.514

PZQ -107.604 -35.633 -0.587 0.004

https://doi.org/10.1371/journal.pntd.0012453.t004
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Fig 7 depicts the interactions of the lead candidate (26) with the active amino acid residues

within the binding site of the target protein. Three conventional hydrogen bonding interac-

tions involving the carbonyl oxygen of the cyclohex-2-ene-1,4-dione scaffold with His50 and

Arg130, at distances of 1.902 Å, 2.117 Å, and 1.728 Å, were observered. Furthermore, numer-

ous hydrophobic interactions were identified, specifically with Ala49, Leu36, Arg40, Val358,

Ile128, and Val137. It is noteworthy that one unfavorable donor-donor interaction occurred

between the ligand’s hydroxy moiety and Ser53 possibly due to steric factor. However, nearly

all the active amino acid residues of SmDHODH were present within the binding site of the

lead compound 26.

The outcomes of the molecular docking investigations on the ligand-based designed com-

pounds revealed compelling findings. Introducing substituents at the specified positions in the

adopted template led to enhanced binding energy scores (Table 4). Notably, the ligand (com-

pound 26L) with the highest predicted activity at 10.459 also exhibited the top MolDock score

of -113.825 kcal mol-1 (Table 4). Compound 26L stood out as the most effective designed

derivative, as it displayed the highest predicted biological activity while maintaining remark-

able stability, as indicated by the MolDock score, Rerank score, and hydrogen bond energies.

Compound 26L established numerous interactions with the active amino acid residues within

the SmDHODH binding site. Specifically, it participated in four conventional hydrogen bond-

ing interactions involving the carbonyl oxygen of the cyclohex-2-ene-1,4-dione scaffold with

His50, Ser50, and Arg130, at distances of 1.876 Å, 2.356 Å, 2.407 Å, and 2.571 Å, respectively.

Additionally, seven hydrophobic interactions were observed between 26L and His50, Ala39,

Ala49, Val43, Val49, and Val358 (Fig 8A).

The binding interactions of the designed compound (26A) with the second-highest pre-

dicted activity involved interactions with the target receptor through five conventional hydro-

gen bonding interactions. These interactions included the carbonyl oxygen of the cyclohex-

2-ene-1,4-dione scaffold, hydroxy oxygen, and hydrogen of the hydroxy moiety, engaging with

His50, Arg130, and Gly46 at distances of 1.835 Å, 2.126 Å, 2.708 Å, 2.444 Å, and 1.553 Å,

respectively. Additionally, a carbon-hydrogen bond interaction occurred between the benzene

moiety electron and Ser53 at a distance of 3.048 Å. Other hydrophobic interactions involving

Val358, Val137, Leu36, Tyr354, and Ala49 were also observed (Fig 8B). The molecular interac-

tions of the remaining ten designed derivatives are depicted in S4 and S5 Figs.

3.4 Molecular dynamics evaluation

To gain a deeper insight into the dynamic behavior and stability of protein-ligand complexes,

we examined the results of MD simulations for both the apo form, the lead compound (26)-

Fig 7. (A)-SmDHODH-26 complex full ribbon view; (B)-3-D representation and (C)-2-D view of the active amino

acid residues interactions.

https://doi.org/10.1371/journal.pntd.0012453.g007
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protein complex and the two best-designed ligand complexes over a 100 ns simulation time

[35]. The Root-mean-square deviation (RMSD) serves as a measure for gauging the extent of

divergence of a group of atoms from the accurate reference structure of a protein, ligand, or

ligand-protein complex. Elevated RMSD values can be indicative of a significant level of insta-

bility, stemming from alterations in the conformation of the investigated molecule. For the

protein systems 26, 26A, and 26L, the average RMSD values were determined to be 2.759 Å,

2.533 Å, and 2.492 Å, respectively, while the apo protein exhibited an average value of 2.658 Å
(Fig 9A). Observably, the RMSD of the apo protein remained relatively constant with minimal

fluctuations until approximately 50 to 60 ns, where an increased RMSD was observed. Follow-

ing this, there was a gradual decrease in the RMSD value, with a noticeable peak at 85 ns, and

minimal fluctuations until the end of the simulation period. Noticeably, 26L-SmDHODH

complex system showed a sharp rise within the first 5 nanoseconds, followed by a period of

remarkable stability with negligible variations until the 50th nanosecond. At 50 nanoseconds,

the RMSD value experienced a 2-angstrom rise but remained constant from that point until

the final 5 nanoseconds of the simulation. In contrast, the 26 complex system exhibited a dis-

tinct deviation pattern significantly differing from that of 26L. The RMSD value of the 26 com-

plex system was notably greater than that of both the apo protein and the 26L complex system.

Moreover, the RMSD exhibited a substantial escalation from the start of the simulation, reach-

ing its peak value at 10 ns. Following this period, the RMSD showed a substantial and continu-

ous increase until reaching 60 nanoseconds, contrasting the behavior observed in the 26L

complex system (Fig 9A). Nevertheless, after 60 nanoseconds, particularly during the final 20

nanoseconds of the simulation, the system achieved a state of stability. Additionally, the 26A

Fig 8. Molecular docking interactions of the top 2 designed compounds with SmDHODH. (A) SmDHODH-26L

interactions and (B) SmDHODH-26A binding interactions.

https://doi.org/10.1371/journal.pntd.0012453.g008
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complex system displayed the lowest average RMSD value compared to the apo protein and

the 26L and 26 complex systems. Unlike other systems, it maintained a high level of stability

within the time range of 20 ns to around 90 ns. In line with the aforementioned observations,

it can be concluded that these systems exhibit varying degrees of stability. The 26A complex

system, with its lower RMSD value and stability after 20 ns, and the 26L system, remaining

more stable throughout the simulation, including an RMSD value close to that of the apo pro-

tein, support this conclusion (Fig 9A).

Moreover, the root-mean-square deviation (RMSF) values are graphically represented to

comprehend the fluctuation at the residue level between the Apo form and ligand complexes

(Fig 9B). The RMSF value serves as a metric to discern the rigidity and flexibility of different

regions within the protein structure. This method of assessing structural variability in ligand-

protein complexes underscores the significance of specific protein residues in these structural

changes. Calculating the deviation values for each amino acid position over a 100 ns timescale

provides insights into the residues contributing to fluctuations, as illustrated in the RMSF plot

presented in Fig 9B [35]. For instance, amino acid positions 170 to 190 in the apo-protein

exhibit a deviation of approximately 5 Å, whereas no substantial deviation is observed for the

remaining amino acids. This 5 Å difference in the position of amino acids 170–190 could

potentially account for the observed variance in (RMSD) of the apo-protein at 50 nanoseconds.

Upon comparing the RMSF values of the apo protein with those of the complex systems, it is

evident that 26 shows more deviations compared to the other complexes. In the complex sys-

tems, amino acid positions 290 to 297 display deviations ranging from approximately 1 Å to 5

Å. The RMSD of the 26 complex system experiences a notable increase after 50 nanoseconds

due to positional variations in amino acids. Additionally, examining the ligand-protein RMSF

plot for each ligand in complex systems, as depicted in Fig 9B, reveals that the RMSF value at

Fig 9. Molecular dynamics simulation analysis of studied complexes (A) RMSD plot, (B) RMSF plot, (C) Radius of

gyration plot and (D) No. of Hydrogen bond contacts.

https://doi.org/10.1371/journal.pntd.0012453.g009
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the C-terminal residues is notably high. This is attributed to the highly reactive and free-mov-

ing nature of these tail or end regions of the protein structure.

Additionally, throughout the entire 100 ns simulation period, the parameter known as the

radius of gyration (Rg) was employed to assess the compactness of the protein-ligand com-

plexes [35]. An increase in Rg values indicates a decrease in the compactness of the protein

structure, signifying heightened flexibility and reduced stability [35]. When comparing the

SmDHODH-ligand complex systems, it is evident that the 26L system displays a smaller radius

of gyration in comparison to the 26A and 26-protein complexes (Fig 9C). Interestingly, after

50 ns in the simulation, the Rg value of the 26L system started to decrease and remained con-

stant until the conclusion of the simulation. In contrast, within the 26A system, the Rg value

showed a gradual decline after 15 ns, leading to an augmentation in structural compactness.

Consequently, despite both systems demonstrating notably elevated Rg values in comparison

to the apo protein, the sustained stability observed throughout the simulation period indicates

that the ligand remained securely bound in the active site of the SmDHODH protein.

In addition to examining the RMSD, RMSF, and Rg, we also evaluated the persistence of

hydrogen bonds (H-bonds) within protein-ligand complexes throughout the simulation. To

comprehend the intermolecular connections, it is essential to conduct a geometric analysis of

hydrogen bonding, as these bonds play a critical role in maintaining the structural integrity of

biomolecules [35,85]. Moreover, in the context of MD modeling, the formation of hydrogen

bonds is pivotal for preserving the stability of complexes. Notably, throughout the entire MD

simulation, the number of hydrogen bonds in the ligand-bound states exhibited continual fluc-

tuations, as illustrated in Fig 9D. Specifically, during the molecular dynamics (MD) simulation,

the 26A ligand formed two hydrogen bonds with the SmDHODH protein, while the total

number of hydrogen bonds in the 26 and 26L complexes was one. The graph clearly indicates

that the 26A complex consistently had a higher number of hydrogen bonds throughout the

simulation period.

3.4.1 Principal component analysis (PCA). Principal Component Analysis (PCA) serves

as a valuable method for extracting essential information from Molecular Dynamics (MD) tra-

jectories by discerning global slow motions from local fast motions. In this study, PCA was

employed to simulate the significant dynamics of both complex systems and the apoprotein,

aiming to explore the nature of interactions among statistically significant conformations dis-

covered along the trajectory [45,85]. The fundamental distinctions within the complexes were

elucidated by organizing the primary components into eigenvectors based on their variability.

PCA scatter plots of the Apo form, 26, 26A, and 26L systems were generated by projecting

simulated trajectories of the protein systems into the two-dimensional subspace spanned by

the first three eigenvectors (PC1, PC2, and PC3) (Fig 10). This approach facilitated the investi-

gation of conformational changes in the systems. Fig 10 presents principal component analyses

(PCA) revealing that the SmDHODH apo, 26, 26A, and 26L systems contributed 23.09%,

59.37%, 53.35%, and 41.65% of the total variations, respectively. The 26 complex exhibited the

highest PC1 value (59.37%), indicating a more substantial number of conformational changes.

In contrast, the 26L complex showed a lower PC1 value (41.65%), suggesting a comparatively

smaller alteration in conformation. Moreover, the principal component 1 (PC1) value of the

Apo structure (23.09%) is notably lower than that of the 26 complex when compared to the

complex systems. This implies that the binding of the 26 ligand results in a less strong interac-

tion, leading to a substantial conformational shift in the Apo form.

3.4.2 Dynamic cross-correlation matrix (DCCM) analysis. To investigate the effect of

ligand derivatives on the conformational motions of the SmDHODH protein, DCCM analyses

were undertaken on all C atoms in the Apo, the 26 complex, 26A, and the 26L complex sys-

tems using 100 ns simulated trajectories (Fig 11A, 11B, 11C and 11D). The DCCM exhibited a
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Fig 10. Principal component analysis of (A) Apo SmDHODH (B) SmDHODH-26 (C) SmDHODH-26A, and (D)

SmDHODH-26L. Every point corresponds to the protein’s conformation on the X and Y axes. The color blue denotes

the initial time step, whilst the color white means the middle time step, and the color red indicates the final time step.

https://doi.org/10.1371/journal.pntd.0012453.g010

Fig 11. Ca-residue cross-correlation matrix for (A) Apo SmDHODH, (B) SmDHODH-26 (C) SmDHODH-26A and

(D) SmDHODH-26L complexes.

https://doi.org/10.1371/journal.pntd.0012453.g011
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comprehensive correlation, encompassing a range of values from − 1.0 to 1.0, with the former

indicating a light yellow hue and the latter indicating dark blue hue. It was determined that dif-

ferent shades of color correspond to varying degrees of correlation between residues, with the

deeper the color indicating a larger degree of association. The observed correlation coefficient,

ranging from − 1 to 1, indicated that residues exhibited either a positive or negative relation-

ship in their movements. A positive correlation indicated that residues moved in the same

direction, while a negative correlation indicated that residues moved in opposite directions

[35]. After examining the DCCM diagrams of the four systems, it was noted that the coordi-

nated movements displayed by each system were noticeably different. In contrast to the 26A

complex system, in the entire 26L complex, positively correlated collective movements

remained relatively stable, while negatively correlated movements increased significantly.

Compared to the 26 complex system, the 26A complex system experienced a decrease in both

positively and negatively correlated movements.

3.4.3 The binding free energy estimation. The MM/PBSA approach is a notable method

employed for calculating the binding free energy of protein–ligand complexes. Utilizing the

MM-PBSA method, the binding free energy of the compounds was determined based on

molecular dynamics (MD) trajectories [14,35]. The binding energy (ΔGbind) value was com-

puted, taking into account various protein-ligand interactions, including van der Waals energy

(ΔEvdW), electrostatic energy (ΔEele), and EPB (electrostatic contribution to solvation-free

energy via Poisson-Boltzmann) energy (Fig 12). Analysis of the binding free energy for the

studied complexes indicated that the 26A-SmDHODH complex exhibited the highest free

energy of -17.37 kJ/mol, compared to 26 and 26L complexes with energies of -13.92 kJ/mol

and -14.85 kJ/mol, respectively. This suggests a robust interaction between the ligand-26A and

the active site of the target protein, possibly attributed to the increased hydrogen bonding

interactions observed in the earlier analysis shown in Fig 10.

Fig 12. MMPBSA free binding energy plot of studied complexes.

https://doi.org/10.1371/journal.pntd.0012453.g012
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3.5 Drug-likeness and ADMET predictions

The effectiveness of the proposed compounds was assessed through various analyses, including

QSAR, molecular docking, and molecular dynamics simulations. These studies demonstrated

that the designed compounds exhibited potencies towards inhibiting the target enzyme. There-

fore, drug-likeness and ADMET/pharmacokinetic analyses were performed, with the lead

compound 26 serving as the reference molecule. To evaluate the likelihood of oral bioavailabil-

ity and permeability, the designed molecules were scrutinized based on Lipinski’s Rule of Five

(Table 5) [86]. Adherence to these criteria suggests a higher probability of success as orally

active drugs in humans. Notably, all twelve designed compounds met Lipinski’s criteria, signi-

fying their potential oral bioavailability. Synthetic accessibility, measured on a scale from 1 to

10, was also examined. Results indicated scores between 2.67 to 3.18 for all designed molecules,

falling below the average threshold (Table 5). This suggests that the molecules can be easily

synthesized [21]. Additionally, the human absorbance score (HIA), a critical factor for drug

effectiveness, exceeded 85% for all the generated compounds, indicating good absorbance lev-

els. Assessment of blood-brain barrier (BBB) permeation revealed that the designed entities

demonstrated potential to cross the BBB (Table 5). Moreover, the Boiled-egg plot presented in

Fig 13, evaluates the absorption in the gastrointestinal tract and passive diffusion across the

BBB. The result predicted showed that all designed compounds fell within the yellow/white

regions [87]. This further supports their favorable properties for absorption and penetration

across the blood-brain barrier.

Cytochrome P450 (CYP) 450 plays a crucial role in the metabolism of drugs, primarily

involving the major liver enzyme system in oxidative metabolism (phase I), as noted by Musta-

pha Abdullahi and co-workers [28]. Out of the 17 reported CYP families in humans, only four

(CYP1, CYP2, CYP3, and CYP4) are associated with drug metabolism. Notably, CYP1A2,

CYP2C19, CYP2C9, CYP2D6, and CYP3A4 contribute to the biochemical transformation of

over 90% of drugs undergoing phase I oxidative metabolism [88]. Moreover, the majority of

Table 5. Drug likeness and ADMET parameters of designed compounds.

S/N Drug likeness Parameters ADMET Parameters

Lipinski’s parameters CYP Inhibitors

MW

(<500)

MLOGP

(<5)

HBD

(<5)

HBA

(<10)

Lipinski’s

violation

S/A HIA BBB

permeant

1A2 2C19 2C9 2D6 3A4 AMES

Toxicity

T-Clearance

26 242.27 1.32 1 3 No 2.92 95.110 0.196 Yes Yes No No No No 0.175

26A 276.71 1.83 1 3 No 2.97 93.449 -0.364 Yes Yes Yes No No No 0.204

26B 276.71 1.83 1 3 No 2.87 94.361 0.180 Yes Yes Yes No No No -0.051

26C 321.17 1.96 1 3 No 3.07 93.382 -0.366 Yes Yes Yes No No No 0.112

26D 321.17 1.96 1 3 No 3.00 94.294 0.178 Yes Yes Yes No No No -0.073

26E 321.17 1.96 1 3 No 3.10 94.062 0.165 Yes Yes Yes No No No 0.044

26F 257.28 0.73 2 3 No 2.98 94.082 -0.050 Yes Yes No No No No 0.127

26G 258.27 0.73 2 4 No 2.98 93.593 -0.038 No Yes No No No No 0.081

26H 287.27 0.3 1 5 No 3.07 85.644 -0.450 No Yes No No No No 0.081

26I 287.27 0.3 1 5 No 3.16 85.653 -0.427 Yes Yes No No No No 0.016

26J 272.3 0.98 1 4 No 3.08 95.443 0.270 Yes Yes No No No No 0.196

26K 236.65 0.88 1 3 No 2.67 94.770 0.031 Yes No No No No No 0.300

26L 302.32 0.67 1 5 No 3.17 95.607 -0.319 No No No No No No 0.206

Key: MW: molecular weight / gmol-1, HBD: hydrogen bond donor, HBA: hydrogen bond acceptor, S/A: synthetic accessibility, T/clearance: total clearance / log ml/min/

kg.

https://doi.org/10.1371/journal.pntd.0012453.t005
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drug metabolism is carried out by two isozymes, namely CYP3A4 and CYP2D6 [89]. The find-

ings indicate that all the designed molecules were anticipated to act as non-inhibitors of

CYP2C9 and CYP3A4 which implies that they are unlikely to significantly disrupt the meta-

bolic activity of these enzymes (Table 5). This is crucial for avoiding potential drug interactions

and maintaining the normal metabolism of drugs, ensuring their efficacy. Considering the

importance of toxicity assessment in drug selection, it is notable that all the designed molecules

were predicted to be non-AMES toxic. This underscores a critical aspect of drug development,

as non-toxic compounds are generally safer and more suitable for further exploration and

potential therapeutic applications. The drug’s clearance level indicates how the rate of drug

elimination relates to its concentration in the body. The obtained result indicates a low clear-

ance value, suggesting that the proposed compounds remain in the body for a more extended

period due to a slower elimination rate. This slower clearance is advantageous, as it implies

that the compounds stay in the bloodstream for a prolonged duration, potentially facilitating a

more sustained therapeutic effect. In conclusion, these findings suggest that the designed com-

pounds have promising characteristics, making them likely to be effectively absorbed, distrib-

uted in the body, and potentially enhancing their therapeutic potential for treatment of

schistosomiasis.

4. Conclusion

In summary, this in-silico investigation introduces twelve novel compounds (26A-26L) as

potential inhibitors of the SmDHODH protein. The estimated pIC50 and molecular docking

scores (MolDock) for these compounds surpass those of the lead compound and the standard

drug Praziquantel. The capability of compounds 26, 26A and 26L to securely bind to the

receptor-binding site was confirmed through a 100 ns molecular dynamics simulation.

Fig 13. Boiled egg plot displaying the therapeutic potential of proposed compounds.

https://doi.org/10.1371/journal.pntd.0012453.g013
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Furthermore, the designed compounds were predicted to possess drug-like characteristics,

meeting Lipinski’s rule criteria without exceeding two filtering thresholds, and exhibiting

excellent drug scores compared to both the design template and PZQ. Analysis via the lever-

ages plot also affirmed that eleven out of the twelve proposed compounds fall within the speci-

fied applicability domain. Consequently, based on these findings, the study recommends

further synthesis and experimental validation of these inhibitors as potential SmDHODH

inhibitors for Schistosomiasis therapy.
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