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Abstract

Background

Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are

involved in the transmission and maintenance of infectious diseases. Furthermore, despite

their importance, diseases transmitted by rodents have been neglected. To date, there have

been limited epidemiological studies on rodents, and information regarding their involve-

ment in infectious diseases in the Republic of Korea (ROK) is still scarce.

Methodology/Principal findings

We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents

including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight prov-

inces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood

samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burg-

dorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with

thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected

with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%)

with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infec-

tions with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%),

respectively. A. phagocytophilum was detected in all regions, showing a widespread occur-

rence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and

16.7% for B. taylorii.

Conclusions/Significance

To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in

rodents in the ROK. This study also provides the first description of various rodent-borne

pathogens through an extensive epidemiological survey in the ROK. These results suggest

that rodents harbor various pathogens that pose a potential threat to public health in the

ROK. Our findings provide useful information on the occurrence and distribution of zoonotic
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pathogens disseminated among rodents and emphasize the urgent need for rapid diagno-

sis, prevention, and control strategies for these zoonotic diseases.

Author summary

Rodents live almost everywhere in the world, adapt to extremely diverse habitats, and

transmit various infectious diseases to humans and other animals. All six pathogens were

detected in rodents. Our findings demonstrated that 66.7% (104/156) of rodents were

infected with at least one pathogen. We also observed differences in the pathogens

detected in rodents by province. These results provide evidence that rodents play an

important role in the transmission of SFTSV. Although we did not screen for all rodent-

borne diseases, these data provide information about emerging rodent-borne diseases dis-

seminated in the ROK and emphasize the risk of occurrence of rodent-borne diseases.

Introduction

Rodents are globally abundant and well-known reservoirs and vectors of infectious diseases

that affect both livestock and humans [1, 2]. The current global change context (e.g., land-use

change, urbanization, and temperature increase) is particularly suitable for the expansion of

several rodent species beyond their natural distribution areas [3,4]. Rodents are widespread in

rural and urban areas and cause numerous human infections in regions where humans are in

close contact with them. Rodents are reservoir hosts for at least 60 zoonotic diseases and play a

vital role in disease transmission by spreading disease directly through contact or bites or indi-

rectly through arthropods or food contamination [5–7]. Despite their potential threat to public

health, there has not been much focus on diseases transmitted by rodents [8,9]. Moreover, the

control of rodents is difficult due to their behavioral plasticity, life history traits, and high

breeding potential [3].

Anaplasma phagocytophilum is a tick-transmitted, obligatory intracellular zoonotic bacte-

rium that infects the neutrophils of various hosts, including humans, dogs, cats, horses, domes-

tic, and wild animals [10–13]. The clinical signs of A. phagocytophilum infection range from

asymptomatic to serious symptoms of veterinary and public health importance. The occur-

rence of A. phagocytophilum infection is increasing along with climate change worldwide. A

broad variety of animal species are known to harbor A. phagocytophilum, and humans are inci-

dental dead-end hosts [14]. Vertebrate hosts are crucial for the maintenance and circulation of

this pathogen in enzootic foci. In particular, small rodents and wild ruminants have been sug-

gested as primary reservoirs [15–19]. In the United States, the white-footed mouse (Peromys-
cus leucopus) is considered a well-established reservoir species [20,21]. In the Republic of

Korea (ROK), A. phagocytophilum has also been detected in small mammals such as rodents

and shrews (Crocidura lasiura) [22,23].

Bartonella spp. are facultative intracellular bacteria that cause persistent infections in the

erythrocytes and endothelial cells of mammalian hosts [24]. The clinical manifestations caused

by these species are characterized by fever, endocarditis, myocarditis, neuroretinitis, lymph-

adenopathy, and a range of vascular pathologies [24–28]. More than 30 Bartonella spp. and

three subspecies are currently recognized [29], and at least 20 species are associated with

rodents, indicating that rodents serve as potential reservoirs for zoonotic Bartonella spp. [30–

32]. Among the rodent-adapted Bartonella spp., B. elizabethae, B. grahamii, B. rochalimae, B.

tribocorum, B. vinsonii, and B. washoensis have been found to cause human infections [32,33].

In general, Bartonella spp. have been considered to be transmitted by arthropods [24,31].
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Although Bartonella infections are widely distributed in rodents in different geographic

regions [34–41], there is very little information on the distribution and prevalence of these spe-

cies in rodents in the ROK [22,42,43].

Lyme borreliosis (LB) is one of the most common vector-borne diseases in North America

and Eurasia and is caused by a spirochete belonging to the Borrelia burgdorferi sensu lato (s.l.)

group [44]. Among this group, B. burgdorferi sensu stricto (s.s.), B. afzelii, and B. garinii are

the major causative agents of LB in humans and exhibit different geographical distributions

[45,46]. These species are transmitted between vertebrate hosts and tick vectors [47]. B. burg-
dorferi s.s. occurs in North America and Europe and has various reservoir hosts (e.g., rodents

and birds), whereas B. afzelii and B. garinii occur in Eurasia and can only use specific verte-

brate hosts, namely, rodents and birds, respectively [44,45]. Different Borrelia species cause

different symptoms in humans. For instance, B. burgdorferi s.s. infection is associated with

Lyme arthritis, whereas B. garinii is mostly linked to neuroborreliosis, and B. afzelii infection

is related to a chronic skin condition known as acrodermatitis [44,48–50]. In the ROK, B. burg-
dorferi s.l. was first detected in 1993 and has been sporadically identified in ticks, dogs, horses,

wild rodents, and humans [51–56].

Coxiella burnetii is an obligate intracellular bacterium with a worldwide distribution and is

the causative agent of Q fever in humans and a wide range of animals [57]. It is highly infec-

tious and has the ability to form spore-like particles that can withstand harsh environmental

conditions and can be easily dispersed by airflow [58]. Humans acquire C. burnetii infection

through inhalation of contaminated aerosols or dust particles [59]. Q fever is a public health

concern as it ranks as one of the 13 leading global priority zoonoses. Moreover, it has been

considered a potential biological weapon due to its widespread availability, aerosolized spread,

and environmental stability [60]. The clinical manifestations of C. burnetii infection include

fever and flu-like symptoms. The major sources of these infections are infected ruminants,

which experience issues of abortion and infertility. Ticks and rodents are also known as natural

reservoirs of C. burnetii [61]. Other studies have recently performed molecular characteriza-

tion of this pathogen in domestic animals in the ROK [57,62]; however, these studies had a

limited spatial distribution and were species-specific.

Leptospirosis is a zoonotic infectious disease with a global distribution and is caused by a

spirochete of the genus Leptospira [63,64]. It infects more than one million people annually,

with 60,000 deaths recorded [65]. Leptospira is maintained in several wild and domestic animal

hosts through renal carriage and is excreted in the urine for several months [66,67]. Infection

in humans and animals primarily occurs through direct contact with the urine of infected

hosts or indirect exposure to contaminated water, soil, or food [68]. Its clinical manifestations

in humans range from a mild febrile illness to life-threatening renal failure, pulmonary hemor-

rhage, and/or cardiac complications [69]. Recent studies have suggested that an increase in the

incidence of leptospirosis in humans is often associated with heavy rainfall and flooding

[70,71]. Rodents are considered the most important reservoir of pathogenic Leptospira spp.

and contribute to disease transmission because of their close contact with humans and domes-

tic animals [72]. L. interrogans, L. borgpetersenii, and L. kirschneri are the most abundant spe-

cies circulating in humans and animals worldwide [73], with L. interrogans being the most

commonly described in rodents [72].

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral dis-

ease that has been primarily reported in China, the ROK, Japan, Vietnam, and Taiwan [74–

78]. SFTS is formally caused by Bandavirus dabieense [also commonly known as SFTS virus

(SFTSV)], which belongs to the genus Bandavirus in the family Phenuiviridae. SFTSV infec-

tions are characterized by high fever, fatigue, myalgia, gastrointestinal symptoms, thrombocy-

topenia, and multiorgan failure [74,79]. SFTSV can also spread from person to person through
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exposure to the blood of an infected individual [80]. Due to its potential as a public health

threat, SFTS was chosen as one of nine emerging diseases given a priority for research by the

World Health Organization in 2017 [81]. As humans are often in close contact with domestic

animals and may encounter rodents when they work outdoors, transmission between animals

and humans is another possible major transmission route [82]. The overall mortality rate of

this disease has been reported to be 3–30% in different countries [74,83,84]. Although SFTSV

has been identified in various animals, its natural reservoir hosts have not been determined.

As demonstrated in the abovementioned studies, rodents may be involved in the transmis-

sion cycles of various diseases. Recently, the incidences of several infectious diseases have been

rapidly increasing worldwide due to climate warming. Rodent populations are also growing

exponentially due to climate change and urbanization. To date, most studies on rodent-borne

diseases in the ROK have been primarily focused on identifying hantavirus infections.

Although rodents are considered important reservoirs of zoonotic infectious pathogens, epide-

miological information regarding their involvement in infectious diseases is limited in the

ROK. Therefore, the aims of this study were to investigate the occurrence of some rodent-

borne diseases, characterize their genetic relationships, and determine the roles of rodents as

reservoir hosts for these diseases.

Methods

Ethical statement

Rodent collection was approved by the Seoul National University Institutional Animal Care

and Use Committee (No. SNU-190524-2-1) and performed according to the Seoul National

University Guidelines on the care and use of laboratory animals.

Sample collection

Rodents were captured using Sherman traps (3 × 3.5 × 9-inch folding traps; H.B. Sherman

Traps, Tallahassee, FL, USA) from 27 regions in eight provinces across the country between

March 2019 and November 2020. Rodents were captured from at least one region in each

province (S1 Table). The traps were set in locations where human infections with SFTSV had

been reported based on statistical data from the Korea Disease Control and Prevention

Agency. To capture rodents, rural (agricultural land such as regions with rivers, valleys, moun-

tains, and lakes) and peri-urban (human residential and farm) areas were selected. Rural areas

were defined as regions with natural landscapes and minimal urban impact, whereas peri-

urban areas were defined as transitional zones between urban and rural areas. A total of 60

traps were installed in each capture region in lines in 3-m intervals between 5 p.m. and 6 p.m.

and retrieved the next day between 9 a.m. and 10 a.m. after setup: 60 traps per night were set

in each region. The capture duration for every site was 14–15 h, and each capture site was sam-

pled only once. The captured rodents [rural (n = 127) and peri-urban (n = 29)] were trans-

ported to the laboratory in an icebox with the traps, morphologically identified, and

euthanized using CO2. Thereafter, blood, spleen, and kidney samples were collected from each

animal. A whole blood sample was also collected in a serum separation tube, and the serum

was separated and used for RNA extraction.

DNA/RNA extraction and PCR analysis

DNA was extracted from spleen (10 mg) and kidney (25 mg) samples using the DNeasy Blood

& Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions and

stored at −20˚C until analysis. Splenic DNA was subjected to PCR amplification to detect A.
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phagocytophilum, Bartonella spp., Borrelia spp., and C. burnetii, and kidney DNA was sub-

jected to PCR to detect L. interrogans. These pathogens were screened using each specific

primer with the nested PCR method under the following conditions: 93–95˚C for 5 min, fol-

lowed by 30–40 cycles of 93–95˚C for 1 min, the annealing temperature of each pathogen,

72˚C for 1 min, and a final extension step at 72˚C for 10 min (Table 1). Distilled water was

used as a negative control in all PCR analyses. Secondary PCR products were visualized on

1.5% agarose gels stained with ethidium bromide.

RNA was extracted from 200-μL aliquots of serum using the Gene-spin Viral DNA/RNA

Extraction Kit (iNtRON Biotechnology, Seongnam, ROK) according to the manufacturer’s

instructions. The viral RNA was stored at − 80˚C until use. Each RNA sample was tested using

nested reverse transcription-polymerase chain reaction (RT-PCR) assays to detect the small

(S) segment of SFTSV. Primary PCR was performed using one-step RT-PCR premix (Solgent,

Daejeon, ROK) under the following conditions: initial step of 30 min at 50˚C and 15 min at

95˚C for denaturation, followed by 40 cycles of 20 s at 95˚C, 40 s at 52˚C, and 30 s at 72˚C,

with a final extension step of 5 min at 72˚C. Nested PCR was conducted using 1 μL of the pri-

mary PCR product as a template (BIOFACT, Daejeon, ROK). The reaction for the nested PCR

consisted of 25 cycles of 20 s at 94˚C, 40 s at 55˚C, and 30 s at 72˚C. The primer information

used to detect SFTSV is listed in Table 1. Secondary PCR products were visualized on 1.5%

agarose gels stained with ethidium bromide.

Table 1. Primer information used for PCR analysis.

Pathogen Target genes Sequences (50–30) Sizes

(bp)

Annealing temp./Time

Anaplasma phagocytophilum 16S rRNA TCCTGGCTCAGAACGAACGCTGGCGGC 1,433 50˚C/30 s

AGTCACTGACCCAACCTTAAATGGCTG

GTCGAACGGATTATTTTTATAGCTTGC 926 56˚C/30 s

CCCTTCCGTTAAGAAGGATCTAATCTCC

Bartonella spp. ITS TTCAGATGATGATCCCAAGC 639 55˚C/30 s

AACATGTCTGAATATATCTTC

CCGGAGGGCTTGTAGCTCAG 499 55˚C/30 s

CACAATTTCAATAGAAC

Borrelia spp. ospA GGGAATAGGTCTAATATTAGCC 665 42˚C/60 s

CACTAATTGTTAAAGTGGAAGT

GCAAAATGTTAGCAGCCTTGAT 392 56˚C/60 s

CTGTGTATTCAAGTCTGGC

Coxiella burnetii IS1111 TATGTATCCACCGTAGCCAGTC 687 54˚C/30 s

CCCAACAACAACCTCCTTATTC

GAGCGAACCATTGGTATCG 203 54˚C/30 s

CTTTAACAGCGCTTGAACGT

Leptospira interrogans rpoB GTTCCAACATGCAACGYCAR 1,649 52˚C/60 s

GTTGAAGGATTCRGGRATAC

TYATGCCKTGGGAAGGWTAC 1,023 56˚C/30 s

GCATRTCRTCKGACTTGATG

SFTSV S CATCATTGTCTTTGCCCTGA 461 52˚C/40 s

AGAAGACAGAGTTCACAGCA

AAYAAGATCGTCAAGGCATCA 346 55˚C/40 s

TAGTCTTGGTGAAGGCATCTT

*SFTSV: severe fever with thrombocytopenia syndrome virus

https://doi.org/10.1371/journal.pntd.0012306.t001

PLOS NEGLECTED TROPICAL DISEASES Detection of rodent-borne pathogen in the Republic of Korea

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012306 July 8, 2024 5 / 25

https://doi.org/10.1371/journal.pntd.0012306.t001
https://doi.org/10.1371/journal.pntd.0012306


Phylogenetic analysis

The secondary PCR products were purified using the AccuPrep PCR Purification Kit (Bioneer,

Daejeon, ROK) according to the manufacturer’s instructions and directly sequenced (Macro-

gen Inc., Seoul, ROK). Less than five PCR-positive samples from each pathogen were utilized

for all sequencing analyses. In cases in which there were more than five positive samples, we

selected only a few samples and used them for the sequencing analysis. All the nucleotide

sequences obtained for each pathogen were aligned using the BioEdit software and then com-

pared with reference sequences from the National Center for Biotechnology Information data-

base (http://www.ncbi.nlm.nih.gov) to determine their similarity using Geneious Prime 2022.2

software (http://www.geneious.com). Phylogenetic analysis of each pathogen was performed

using the maximum-likelihood method implemented in MEGA11 using the best substitution

model. Bootstrap values were calculated by analyzing 1,000 replicates to evaluate the reliability

of clusters. The models used in this study were K2 + G for A. phagocytophilum, Tamura

3-parameter + G + I for Bartonella spp., Tamura-Nei for Borrelia spp., and the Kimura

2-parameter model for C. burnetii, L. interrogans, and SFTSV. The nucleotide sequences

obtained in this study were assigned the following accession numbers: OR287077-OR287091

for A. phagocytophilum, OR288176-OR288190 for B. grahamii, OR288191-OR288193 for B.

taylorii, OR284310-OR284311 for B. afzelii, OR284312-OR284321 for C. burnetii,
OR284322-OR284324 for L. interrogans, and OR257718-OR257726 for SFTSV.

Statistical analysis

The infection rates were calculated with 95% confidence intervals (CIs). The PCR results for

each rodent sample were recorded as negative or positive and were categorized as a single

infection or a co-infection with two or three pathogens. Statistical analysis was performed

using the SPSS 29.0 software package for Windows (SPSS Inc., Chicago, IL, USA). The associa-

tion between sex and the infection rate for each pathogen was determined using the chi-square

test. A P-value� 0.05 was considered statistically significant.

Results

Sample collection

A total of 175 rodents were captured and morphologically classified as follows: 151 Apodemus
agrarius (striped field mouse) (70 males and 81 females), 5 Rattus norvegicus (Norway rat) (2

males and 3 females), and 19 unknown. A. agrarius was found in most of the capture sites in

the ROK, whereas R. norvegicus was captured only in two provinces (Table 2). Unknown sam-

ples were excluded from this study, and the remaining 156 rodents were used for data analysis.

Prevalence of pathogens detected in the captured rodents

The presence of six pathogens was investigated by PCR analysis from the two species, A. agrar-
ius and R. norvegicus. Of the 156 rodents, 104 (66.7%; 95% CI: 59.3–74.1) were infected with at

least one pathogen. The infection rate was 64.3% in females (54/84) and 66.6% in males (48/

72). There was no significant difference between single infection or co-infections and sex

(P = 0.886). The infection rates of each pathogen by sex are shown in Table 3. In all the six

pathogens, no significant difference was found in the infection rate between the sexes

(Table 3).

In terms of pathogens, Bartonella spp. were frequently detected (46.8%; 95% CI: 39.0–54.6),

followed by C. burnetii (16.0%; 95% CI: 10.2–21.8), L. interrogans (15.4%; 95% CI: 9.7–21.1),

A. phagocytophilum (13.5%; 95% CI: 8.1–18.9), SFTSV (5.8%; 95% CI: 2.1–9.5), and Borrelia

PLOS NEGLECTED TROPICAL DISEASES Detection of rodent-borne pathogen in the Republic of Korea

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012306 July 8, 2024 6 / 25

http://www.ncbi.nlm.nih.gov/
http://www.geneious.com/
https://doi.org/10.1371/journal.pntd.0012306


spp. (3.2%; 95% CI: 0.4–6.0) (Table 4). The details of the pathogens identified by province are

shown in Table 4. All six pathogens were detected in Gangwon, Chungbuk, and Gyeongbuk

provinces. Five of the six pathogens, excluding SFTSV, were found in Gyeongnam province,

whereas only one pathogen was detected in Chungnam and Jeonnam provinces (Table 4). Co-

infections with two and three pathogens from the captured rodents were also detected in 33

(21.2%; 95% CI: 14.8–27.6) and 11 (7.1%; 95% CI: 3.1–11.1) animals, respectively (Table 5),

and co-infections with Bartonella spp. and L. interrogans were the most frequently detected

(Table 5). Information regarding the pathogens identified by region is shown in the map in

(Fig 1).

Phylogenetic trees of rodent-associated pathogens

Anaplasma phagocytophilum. A. phagocytophilum was detected in rodents from all the

examined provinces, indicating that this pathogen is spread throughout the ROK. Of 21 posi-

tive samples, 15 were sequenced and confirmed to be A. phagocytophilum by a phylogenetic

tree analysis based on the 16S rRNA gene (Fig 2). Our sequences exhibited 97.6–99.9% identity

with each other and 95.6–100% identity with those reported in the ROK. These 15 sequences

were similar to those previously reported from several different hosts such as cattle, dogs,

horses, humans, ticks, and rodents in other countries, sharing 96.9–100% nucleotide identities

with these. Furthermore, several variants co-existed in the same geographical area. According

to the phylogenetic tree, A. phagocytophilum was divided into clades 1 and 2, and all our

Table 2. Number of rodents captured by province.

Province Apodemus agrarius Rattus norvegicus Total

Gyeonggi 12 - 12

Gangwon 18 - 18

Chungbuk 19 - 19

Chungnam/Daejeon 4 - 4

Jeonbuk 13 - 13

Jeonnam 4 - 4

Gyeongbuk 76 4 80

Gyeongnam 5 1 6

Total 151 5 156

“-”: no rodents captured

https://doi.org/10.1371/journal.pntd.0012306.t002

Table 3. Association between each pathogen and the sex of the captured rodents.

Pathogens Male (n = 72) Female (n = 84) χ2 (P-value)

A. phagocytophilum 9 12 0.008 (0.928)

Bartonella spp. 40 33 3.494 (0.062)

Borrelia spp. 2 3 0.000 (1.000)

C. burnetii 9 16 0.796 (0.372)

L. interrogans 12 12 0.035 (0.851)

SFTSV 4 5 0.000 (1.000)

Total 48 54 0.020 (0.886)

*P < 0.05

**P < 0.005

https://doi.org/10.1371/journal.pntd.0012306.t003
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sequences from A. agrarius belonged to clade 1 (Fig 2). The difference in sequences between

clades 1 and 2 revealed 94.7–98.5% nucleotide identities. Clade 2 had 10 nucleotide differences

compared with clade 1. Genetic variants were detected in A. phagocytophilum circulating in

the ROK.

Bartonella spp.. Bartonella spp. were frequently detected in A. agrarius in the ROK, but

they were not found in all provinces (Table 4). Bartonella spp. were detected in both A. agrar-
ius and R. norvegicus. Of 73 internal transcribed spacer (ITS) PCR-positive samples, 18

sequences were included in a phylogenetic analysis. Two species of Bartonella spp. were identi-

fied circulating in the examined rodents using the phylogenetic tree based on the ITS gene: B.

grahamii and B. taylorii (Fig 3). The prevalence of B. grahamii and B. taylorii was 83.3% (15/

18) and 16.7% (3/18), respectively. The 15 sequences belonging to B. grahamii showed 94.9–

100% identity with each other and formed the same group as B. grahamii found in leeches

(KX270012) and A. agrarius (JN810851) reported in the ROK, exhibiting 95.9–99.8% identity

with those sequences. Furthermore, another sequence (JN810855) reported from A. agrarius
in the ROK demonstrated 87.1–90.8% similarity to the sequences reported in our study. The

three sequences classified as B. taylorii exhibited 100% identity with each other and shared

92.5–100% identity with those belonging to this species.

Borrelia spp.. Borrelia spp. were found in four provinces (Table 4), and the infection rate

of Borrelia spp. was the lowest (3.2%) compared with those of the other pathogens identified.

Among the five PCR-positive samples, only two sequences were obtained and demonstrated

98.6% identity with each other. A phylogenetic analysis based on the outer surface protein A

(ospA) gene revealed that our sequences were assigned to B. afzelii (Fig 4). The two sequences

exhibited 98.9–100% homology with those identified previously in A. agrarius in the ROK.

Our sequences showed 97.8–100% identity with those belonging to this group. Furthermore,

these sequences displayed 98.2–99.6% similarity to those reported in humans from Austria,

Germany, the Czech Republic, the ROK, and Sweden.

Coxiella burnetii. C. burnetii was the second most frequently detected pathogen and was

identified in both A. agrarius and R. norvegicus. However, it was found in five different prov-

inces. Of 25 positive samples, 10 sequences were included in a phylogenetic tree based on the

IS1111 gene. These sequences showed 97.5–100% identity with each other. Only one sequence

(OR284314) had the closest genetic relationship with strains identified in febrile and pneu-

monic patients (KP645188 and JF970260), which are known as virulent strains, exhibiting

100% homology with those (Fig 5). The others formed a separate branch, exhibiting 99.0–

99.5% identity with two human isolates (KP645188 and JF970260). The phylogenetic tree

revealed the presence of genetic variations within the C. burnetii sequences.

Table 4. Number of positive samples in which pathogens were identified in captured rodents according to each province.

Province A. phagocytophilum Bartonella spp. Borrelia spp. C. burnetii L. interrogans SFTSV

Gyeonggi (n = 12) 1 5 - - 2 2

Gangwon (n = 18 4 12 1 5 6 1

Chungbuk (n = 19) 3 10 1 2 6 2

Chungnam/Daejeon (n = 4) 1 - - - - -

Jeonbuk (n = 13) 3 8 - 3 - -

Jeonnam (n = 4) 1 - - - - -

Gyeongbuk (n = 76) 7 32 2 14 6 4

Gyeongnam (n = 5) 1 6 1 1 4 -

Total (n = 151) 21 (13.5%) 73 (46.8%) 5 (3.2%) 25 (16.0%) 24 (15.4%) 9 (5.8%)

“-”: not detected.

https://doi.org/10.1371/journal.pntd.0012306.t004
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Leptospira interrogans. L. interrogans was the third most commonly detected pathogen

and was also found in both A. agrarius and R. norvegicus. Of 24 positive samples, only three

sequences were obtained, and they had 97.7–99.5% identity with each other. A phylogenetic

tree based on the RNA polymerase subunit beta (rpoB) gene revealed that these sequences

belonged to L. interrogans (Fig 6). Two sequences (OR284322 and OR284323) were classified

into L. interrogans serovar Lai and showed 99.2–100% identity with those reported in China

and 99.4–100% identity with those reported in A. agrarius in the ROK. The other sequence

(OR284324) belonged to L. interrogans serovar Manilae, which has detected in Mus musculus
in Japan, exhibiting 98.2% similarity (Fig 6). At least two serovars of L. interrogans were found

to be circulating in A. agrarius in the ROK.

Severe fever with thrombocytopenia syndrome virus. SFTSV was detected in nine A.

agrarius samples (5.8%) and found in four different provinces (Table 4). Of the nine SFTSV

infections, a single infection with SFTSV was detected only in two A. agrarius samples, and the

remaining samples were primarily co-infected with other pathogens such as Bartonella spp.

and L. interrogans (Table 5). Nine sequences were obtained and included in the phylogenetic

tree. These sequences demonstrated 95.95–100.0% identity with each other. The phylogenetic

analysis based on the S segments revealed that five and four sequences were classified into sub-

genotype B-2 and genotype D, respectively (Fig 7). The sequences belonging to genotype B-2

exhibited 94.5–97.4% homology with those identified in human and other animal samples in

the ROK, whereas four sequences showed 99.7–100.0% identity with those identified in

human samples. These results revealed that genotype B-2 is prevalent in the ROK and that

genetic variants exist within genotype B-2.

Discussion

This study demonstrated the infection rate and genetic characterization of zoonotic pathogens

by molecular analysis in rodents captured from throughout the ROK. Rodents were trapped

from rural and peri-urban areas with frequent movement of people, which may be associated

with a high probability of disease transmission because humans and rodents share the same

space. In the present study, all six pathogens were detected in rodents. The results demon-

strated that 66.7% (104/151) of rodents were infected with at least one pathogen. According to

Table 5. Co-infections of two or three pathogens detected in captured rodents.

Pathogens No. of positive samples

A. phagocytophilum + Bartonella spp. 7

A. phagocytophilum + Borrelia spp. 1

A. phagocytophilum + C. burnetii 1

Bartonella spp. + Borrelia spp. 2

Bartonella spp. + C. burnetii 7

Bartonella spp. + L. interrogans 10

Bartonella spp. + SFTSV 3

C. burnetii + L. interrogans 2

A. phagocytophilum + Bartonella spp.+ C. burnetii 1

A. phagocytophilum + Bartonella spp.+ L. interrogans 3

A. phagocytophilum + Bartonella spp.+ SFTSV 2

A. phagocytophilum + C. burnetii + L. interrogans 1

Bartonella spp. + Borrelia spp. + C. burnetii 1

Bartonella spp. + C. burnetii + L. interrogans 1

Bartonella spp. + L. interrogans + SFTSV 2

https://doi.org/10.1371/journal.pntd.0012306.t005
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our findings, Bartonella spp. were most frequently detected, and Borrelia spp. were the least

commonly detected in rodents. Moreover, by sex, there was no difference in the infection rate

and no statistically significant differences between single infection and co-infections. A limita-

tion of this study is that the number of captured rodents in each province varied. Nevertheless,

five pathogens were identified in Gyeongnam province, which had the second lowest number

of rodents captured. In contrast, although more rodents were captured in Gyeonggi and Jeon-

buk provinces than in Gyeongnam province, fewer pathogens were detected. These results

imply that increased sample numbers do not necessarily correlate with the probability of path-

ogen detection. Moreover, because most rodents were captured in rural areas, it is impossible

to compare the infection rates between rural and peri-urban areas. At this time, we cannot

conclude differences in pathogen detection, but this finding may be influenced by the sam-

pling site where the rodents were captured. Although the infection rate was not very high, A.

phagocytophilum was found in all provinces. Considering that the number of rodents captured

varied by province and that few rodents were captured in some provinces, A. phagocytophilum
may be the most widespread pathogen in the ROK. Furthermore, to the best of our knowledge,

Fig 1. Maps showing the regions where rodent-borne pathogens were detected in the Republic of Korea. The word

symbol is indicated differently according to each pathogen. Maps were created using NGII [https://www.data.go.kr/

data/15062309/fileData.do] and are Korea Open Government License Type 1, which can be freely used without any

permission.

https://doi.org/10.1371/journal.pntd.0012306.g001
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this is the first study to report C. burnetii and SFTSV infections in rodents in the ROK and to

conduct an extensive study to investigate infections with several pathogens. These data provide

valuable information for evaluating the potential risk of rodents in public health.

In this study, all six of the evaluated pathogens were detected using the nested PCR method.

In general, nested PCR is more sensitive than qPCR but is also prone to contamination and is

more cumbersome [85]. There were the discrepancies between PCRs and sequencing results.

We cannot address the reason why the sequencing results were not good at this time. This may

be the need for more amounts of genetic material to enable proper sequencing. Nonetheless,

we considered PCR-positives to be truly positive, regardless of whether the amplicons could be

sequenced. It seems difficult to consider them negative only because some amplicons could

not be sequenced.

Anaplasma phagocytophilum is known as the third most common tick-borne pathogen in

the USA and Europe [86] and has been detected in 20 different rodent species [87]. A. phagocy-
tophilum infection rates range considerably in rodent species [87]; this may be explained by

differences in small mammals that maintain tick species. In this study, the prevalence of

Fig 2. Phylogenetic tree inferred by maximum-likelihood analysis using the K2 + G model of the 16S rRNA gene

sequence of Anaplasma phagocytophilum. The numbers at the nodes are bootstrap values expressed as a percentage

of 1,000 replicates. The scale bar indicates nucleotide substitution per site. Samples sequenced from Apodemus agrarius
are shown in filled circles.

https://doi.org/10.1371/journal.pntd.0012306.g002
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A. phagocytophilum infections in A. agrarius was 13.5%, which was rather lower than reported

in a previous study conducted in the ROK (19.1%) [88]. To date, there has been no report of A.

phagocytophilum infection in Rattus spp. in the ROK; however, a high infection rate (31.5%) of

A. phagocytophilum has been reported in Rattus spp. from China [89]. A. phagocytophilum has

been detected in a variety of animals, including ticks in the ROK, but its pathogenicity still

remains unclear. The sequences obtained from rodents showed 97.9–100% identity to A.

agrarius (KR611719) reported in the ROK. According to the phylogenetic analysis, there are

several genetic variants among A. phagocytophilum circulating in the ROK. Haemaphysalis
longicornis, which is found primarily in the ROK, tends to use A. agrarius as the major host to

maintain A. phagocytophilum [23,89], indicating that A. agrarius is an enzootic reservoir.

Thus, further studies are required to determine the pathogenicity of A. phagocytophilum vari-

ants circulating in the ROK.

The overall prevalence of Bartonella spp. in rodents was 46.8%, which was the highest of the

prevalence rates of all the other pathogens examined in this study. However, the detection rate

in the present study was lower than that described in a previous report (62.0%) based on the

ITS gene [43]; this difference may be because of the location where the rodents were captured.

Fig 3. Phylogenetic analysis based on the ITS region of Bartonella spp. (maximum-likelihood analysis using the

Tamura 3-parameter + G + I model with 1,000 replicates). The scale bar indicates nucleotide substitution per site.

Sequences determined from A. agrarius are indicated in filled circles.

https://doi.org/10.1371/journal.pntd.0012306.g003
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Moreover, the prevalence of Bartonella spp. in rodents varies across countries, e.g., 5.5% in

Turkey [37], 23.7% in Lithuania [90], 36.3% in Chile [32], 40.4% in Slovenia [34], and 65.8% in

Eastern Germany [41]. In addition, the Bartonella spp. that are prevalent in each country are

different [27,32,34,38,90–93]. According to the phylogenetic tree, B. grahamii has two distinct

groups, and the sequences obtained in this study formed the same group and diverged from

some sequences previously identified in the ROK. This indicates that genetic variations of B.

grahamii exist in the ROK. R. norvegicus and R. rattus are known as major reservoirs for Barto-
nella spp. in several countries [27,94–96], but Bartonella spp. have not been detected in other

rodent species or in R. norvegicus in the ROK [22]. The analysis of R. norvegicus in this study

was unfortunately limited because only five animals were captured, and their data were

excluded. Further studies are necessary to investigate Bartonella spp. infection in R. norvegicus.
The present results demonstrated that B. grahamii was the most predominant species, and B.

taylorii was found in three rodents, which is consistent with the findings of a previous study

[43]. B. grahamii is a zoonotic pathogen that is associated with neuroretinitis and retinal artery

occlusion in humans [25]. B. taylorii can cause infection in animals [90], but its pathogenicity

remains unclear. In Europe, B. taylorii is the predominant species found in rodents [24,37]. In

Fig 4. Maximum-likelihood phylogenetic tree using the Tamura-Nei model based on the ospA gene of Borrelia
spp. Bootstrap values were calculated with 1,000 replicates of the alignment. The scale bar indicates nucleotide

substitution per site. Sequences obtained from A. agrarius are symbolized in filled circles.

https://doi.org/10.1371/journal.pntd.0012306.g004
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this study, the Bartonella spp. detected were different by province, and in Jeonbuk province,

both B. grahamii and B. taylorii were identified, indicating that the pathogens present in each

province are different. Although B. taylorii has been detected in some A. agrarius in the ROK,

its transmission route remains unknown. Considering its high infection rate in A. agrarius,
potential vectors of this pathogen should be identified to prevent infection.

The detection rate of Borrelia spp. in A. agrarius was 3.2% and was the lowest infection rate

compared with those of the other pathogens examined in this study. Our result was different

from those of previous studies that evaluated heart samples from A. agrarius (29.6%) [56] and

ticks (33.6%) collected from wild rodents in the ROK [97]. This finding can be explained by

the differences in the genes and samples used. For instance, Kim et al [56] reported that B.

burgdorferi s.s. and B. garinii infected the spleen and that B. afzelii exhibited a high detection

rate in the heart; however, B. burgdorferi s.s. and B. garinii were not detected in the spleen. It is

speculated that the number of positive samples was small and could not be detected. Among

the Borrelia burgdorferi s.l. group, only B. afzelii was identified in A. agrarius, which supports

previous findings that B. afzelii is the predominant species in the ROK [54,97]. Furthermore,

Fig 5. Maximum-likelihood phylogenetic tree from the IS1111 gene of Coxiella burnetii. The evolutionary analysis

was inferred using the Kimura 2-parameter model. Bootstrap values (1,000 replicates) are indicated in each node. The

scale bar indicates nucleotide substitution per site. Sequences determined from A. agrarius are highlighted in filled

circles.

https://doi.org/10.1371/journal.pntd.0012306.g005
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our results were significantly lower than those reported in rodents in other countries: 24% in

Austria [98], 16% in the Czech Republic [99], and 6.3% in Spain [100]. These differences in

prevalence may be due to the tick vectors; the common tick vectors of Borrelia spp. in the

ROK are Ixodes persulcatus, I. nipponensis, and I. granulatus [101]. B. afzelii is transmitted by

I. ricinus and hosted by small mammals, and it is the most common causative agent of human

LB [45,102]. The sequences from rodents showed 98.2–99.6% identity with those identified in

ticks and humans in several countries. In the ROK, B. afzelii has been primarily reported in

ticks [54,97,103] and rarely in humans [104]. Nevertheless, information on B. afzelii is still

lacking. Although the infection rate of B. afzelii in rodents was the lowest, our findings suggest

that B. afzelii may act as a causative agent of LB in the ROK.

This is the first report of C. burnetii in A. agrarius in the ROK. In this study, C. burnetii
exhibited the second highest infection rate (16.0%). Nevertheless, our results were lower than

those reported in China (18%) [105], Senegal (22.4%) [106], and Zambia (45%) [107] but

higher than those reported in Brazil (4.6%) [93], Egypt (6.7%) [58], and Italy (1.4%) [61].

Fig 6. Phylogenetic analysis based on the rpoB gene of Leptospira interrogans. The tree was inferred in MEGA X

using maximum-likelihood and Kimura 2-parameter with 1,000 replicates. The scale bar implies nucleotide

substitution per site. The box of dash lines indicates L. interrogans. Sequences obtained from A. agrarius are shown in

filled circles.

https://doi.org/10.1371/journal.pntd.0012306.g006
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These differences may be explained by the rodent species and samples used for detection. In

prior studies, C. burnetii detection was performed using various sample types such as blood,

spleen, liver, and fecal samples. Consequently, the liver and spleen are considered suitable for

the identification of C. burnetii. According to a previous study, the infection rate of C. burnetii
in domestic livestock ranged from 6% to 22.7% depending on the species [57]. Although C.

burnetii is a tick-borne pathogen, there are only a few reports of C. burnetii in ticks in the ROK

[108,109]. Recent studies have reported co-infections of C. burnetii and SFTSV in ticks and

humans [110, 111]; however, there was no co-infection with these two pathogens identified in

rodents in this study. Despite the small number of R. norvegicus captured, C. burnetii infection

was mostly detected in R. norvegicus; this could be because R. norvegicus may also serve as a

reservoir in the ROK. A phylogenetic analysis based on the IS1111 gene revealed the presence

of genetic variations within the sequences identified in A. agrarius. One sequence formed the

same clade with the virulent strains reported in Brazil, whereas the other exhibited high simi-

larity to strains reported in different countries. The disadvantage of the IS1111 gene is that it

does not provide exact information, such as pathogenicity and species specificity (Fig 5); thus,

Fig 7. Phylogenetic tree of the severe fever with thrombocytopenia syndrome virus based on the analysis of partial

sequences of small segments. Maximum-likelihood analysis was used to construct the Kimura 2-parameter model

(1,000 bootstrap replicates). The scale bar implies nucleotide substitution per site. Sequences identified from A.

agrarius are indicated in filled circles.

https://doi.org/10.1371/journal.pntd.0012306.g007
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we cannot draw any conclusions about what the separate groupings within these C. burnetii
sequences might represent. Further research is necessary to determine the pathogenicity of C.

burnetii circulating in the ROK. The results obtained in the present study suggest that A. agrar-
ius plays a role in the transmission of C. burnetii in humans and animals.

Leptospira interrogans is a rodent-borne pathogen, and accordingly, it was the third most

frequently detected (15.4%) in this study. Our results demonstrated a relatively high prevalence

compared with that reported in previous studies [88,112]. This is the first time that Leptospira
spp. have been investigated in rodents through sampling of extensive regions in the ROK.

Compared with those reported in other countries, the infection rates ranged from 1.3% to

35.2% [113–117]. R. norvegicus is also an important reservoir of this pathogen [72]; however,

L. interrogans was detected in only one R. norvegicus and mostly detected in A. agrarius. Con-

sidering that R. norvegicus is commonly found around barns and farmhouses, this species also

plays a critical role in the transmission of leptospirosis in domestic animals and humans. To

date, L. interrogans has been divided into 23 serogroups based on serological methods and sub-

divided into more than 300 serovars [72]. The serovars circulating in each country are differ-

ent, but the most frequently reported serovar worldwide is Icterohaemorrhagiae [72]. In the

ROK, only a few studies have been conducted on serovar Lai [88, 118]. The phylogenetic anal-

ysis revealed that of the three sequences from rodents, two were classified as serovar Lai and

one as serovar Manila, consistent with the findings from a previous study [88]. Consequently,

Lai and Manilae are considered epidemic serovars in the ROK. The most important limita-

tions of this study are that a serological analysis such as a microscopic agglutination test was

not performed and that only a small number of samples were sequenced; therefore, serovar

comparisons by province were not conducted. Although the number of the sequenced samples

was low, the rpoB gene used in this study can be applicable for detection and serovar identifica-

tion of L. interrogans. Furthermore, for accurate identification of L. interrogans serovars, sero-

logical testing along with the PCR method is absolutely necessary. These results suggest that

the existence of various serovars in each province cannot be ruled out.

Since its first identification in China, SFTSV has been primarily detected in Asia [74–78].

Due to its associated high mortality rate, there is significant interest in SFTSV [74,83,84]. In

the present study, the infection rate of SFTSV in A. agrarius was 5.8%, and this is the first

report to describe SFTSV infection in A. agrarius in the ROK. Our results were significantly

lower than those reported in China (32.3%) [119]. Compared with the infection rates reported

in other animals in the ROK, the prevalence of SFTSV in rodents was similar to that in wild

boars (5.2%) [120] and ticks (6.0%) [121], but higher than that in cats (4.0%) [122], dogs

(2.9%) [123], pigs (1.7%) [124], black goats (2.4%) [125], and wild animals (3.3%) [126]. How-

ever, the prevalence of SFTSV was the highest in feral cats (17.5%) in the ROK [127]. There

has been a recent increase in the populations of feral cats, and they share habitats with wildlife,

domestic animals, and humans. Several studies have demonstrated that SFTSV is transmitted

to humans through direct contact with cats [128,129], suggesting that feral cats are infected by

rodents. It is believed that SFTSV circulates in a zoonotic cycle between ticks and vertebrates

[130]. Rodents are considered the representative reservoirs in maintaining tick-borne patho-

gens and may play a vital role in the transmission of SFTSV. The sequences obtained from A.

agrarius belonged to subgenotype B-2 and D genotype; these results revealed a similar distribu-

tion in both genotypes. Sequences belonging to subgenotype B-2 are the most prevalent and

associated with the highest mortality rate (43.8%) in the ROK [131], whereas genotype D is pri-

marily found in China. Four sequences belonging to genotype D were identical to those found

in a human patient in the ROK, suggesting that this genotype is pathogenic. Different geno-

types of SFTSV have been shown to trigger different clinical manifestations in a ferret model

[130]; however, although the clinical manifestations have not been confirmed in rodents, they
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may be pathogenic to humans. To date, SFTSV has been detected in diverse animals, but no

conclusions can be drawn on how the virus is transmitted to these animals. The results of the

present study provide a clue for elucidating the transmission route of SFTSV, suggesting the

need to establish a continuous monitoring and surveillance systems to minimize a serious risk

of SFTSV infection.

Conclusions

Urbanization and climate change affect not only on humans but also wildlife. The most signifi-

cant concern caused by these changes is that the probability of disease transmission through

ecosystem destruction has been significantly increasing compared with that observed in the

past. This study investigated the prevalence of zoonotic pathogens in rodent populations

through a systematic epidemiological investigation. Although we did not screen for all rodent-

borne pathogens, the results indicated that, at least, rodents may act as critical reservoirs for A.

phagocytophilum, Bartonella spp., B. afzelii, C. burnetii, L. interrogans, and SFTSV in the ROK.

Our findings also demonstrated that rodents harbor several pathogens, implying the possibility

of simultaneous transmission to humans. Most importantly, except for SFTSV, the pathogens

investigated in this study are commonly misdiagnosed or underdiagnosed in the ROK; thus,

their importance is neglected. Our findings indicate that rodents pose a potential risk to public

health. Overall, our study provides useful information on rodent-borne pathogens and under-

scores the urgent need for rapid diagnosis, prevention, and control strategies for zoonotic

diseases.
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