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☯ These authors contributed equally to this work.

* gerrit.burger@online.de (GB); matthew.mccall@radboudumc.nl (MBBM)

Abstract

Background

Chronic infection by Loa loa remains an unsolved immunological paradox. Despite harbor-

ing subcutaneously migrating adult worms and often high densities of microfilariae, most

patients experience only relatively mild symptoms, yet microfilaricidal treatment can trigger

life-threatening inflammation. Here, we investigated innate cell populations hypothesized to

play a role in these two faces of the disease, in an endemic population in Gabon.

Methodology/Principal findings

We analyzed numbers and activation of eosinophils and basophils, as well as myeloid-

derived suppressor cell (MDSC) subsets and associated circulating cytokine levels by flow

cytometry in sex- and age-matched L. loa-uninfected (LL-), -amicrofilaraemic (MF-) and

-microfilaraemic (MF+) individuals (n = 42), as well as microfilaraemic individuals treated

with albendazole (n = 26). The percentage of eosinophils was lower in LL- (3.0%) than in the

combined L. loa-infected population, but was similar in MF+ (13.1%) and MF- (12.3%).

Upon treatment of MF+, eosinophilia increased from day 0 (17.2%) to day 14 (24.8%) and

had decreased below baseline at day 168 (6.3%). Expression of the eosinophil activation

marker CD123 followed the same pattern as the percentage of eosinophils, while the

inverse was observed for CD193 and to some extent CD125. Circulating IL-5 levels after

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012203 May 21, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Burger G, Adamou R, Kreuzmair R,

Ndoumba WN, Mbassi DE, Mouima AMN, et al.

(2024) Eosinophils, basophils and myeloid-derived

suppressor cells in chronic Loa loa infection and its

treatment in an endemic setting. PLoS Negl Trop

Dis 18(5): e0012203. https://doi.org/10.1371/

journal.pntd.0012203

Editor: Subash Babu, NIAID-ICER, INDIA

Received: January 8, 2024

Accepted: May 8, 2024

Published: May 21, 2024

Copyright: © 2024 Burger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was funded by grants

attributed to MBBM by the German Research

Foundation (DFG, https://www.dfg.de/) through the

German-African Infectiology programme (project

number MC 559/1-1) and MR by the Federal

Ministry of Science, Research and Economy of

Austria (https://www.bmbwf.gv.at/) as part of the

European and Developing Countries Clinical Trials

https://orcid.org/0000-0002-0142-5284
https://doi.org/10.1371/journal.pntd.0012203
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0012203&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1371/journal.pntd.0012203
https://doi.org/10.1371/journal.pntd.0012203
http://creativecommons.org/licenses/by/4.0/
https://www.dfg.de/
https://www.bmbwf.gv.at/


treatment followed the same pattern as eosinophil dynamics. Basophil numbers did not dif-

fer between infection states but increased after treatment of MF+. We did not observe differ-

ences in MDSC numbers between infection states or upon treatment.

Conclusions/Significance

We demonstrate that both chronic infection and treatment of L. loa microfilaraemia are asso-

ciated with eosinophil circulation and distinct phenotypical activation markers that might

contribute to inflammatory pathways in this setting. In this first ever investigation into MDSC

in L. loa infection, we found no evidence for their increased presence in chronic loiasis, sug-

gesting that immunomodulation by L. loa is induced through other pathways.

Author summary

Loiasis–also called African eye worm for its most pathognomonic feature–is a disease

caused by the helminth Loa loa, affecting over ten million people in Central and West

Africa. While L. loa seems to successfully evade an effective immune response in chronic

infection, treatment can lead to severe inflammation upon rapid death of L. loa larvae in

the blood. Here, we investigated different subsets of immune cells hypothesized to play a

role in L. loa-mediated immune modulation in chronically infected individuals and upon

treatment of individuals with circulating larvae. We found that eosinophils–an important

cell population in the immune response to helminths–increase in numbers and are acti-

vated in both L. loa-infection and its treatment. Myeloid-derived suppressor cells can sup-

press immune responses in cancer and some other infectious diseases but have never been

investigated in loiasis. We hypothesized that they are involved in immunosuppression by

L. loa but found no evidence thereof. Better understanding of immunomodulation in

chronic loiasis may ultimately improve the management of this neglected disease.

Introduction

Loiasis is a filarial disease caused by the nematode Loa loa. Also known as African eye worm

for its pathognomonic manifestation of adult worms migrating through the conjunctiva, loia-

sis is endemic in Central and West Africa [1,2], where at least 10 million people are infected

[3]. Until recently, loiasis was primarily considered of public health importance due to severe

adverse events that occur in L. loa-infected individuals receiving treatment in the context of

mass drug administration programs against onchocerciasis and lymphatic filariasis in areas of

co-endemicity. The drugs used in these programs–ivermectin and diethylcarbamazine

(DEC)–also have a strong microfilaricidal effect on L. loa microfilariae. An association

between severe adverse inflammatory reactions and L. loa microfilaraemia was first established

in Cameroon, where it was estimated that individuals harboring more than 30,000 L. loa
microfilariae per milliliter of blood (mf/ml) are at significant risk of serious neurological reac-

tions following ivermectin treatment [4–7]. However, loiasis deserves attention as a major

public health issue in its own right: a recent cross-sectional burden of disease study conducted

in rural Gabon found a prevalence of over 70% in some communities and a disease burden

estimated at 412.9 disability-adjusted life years (DALYs) per 100,000 inhabitants [8]. In addi-

tion, microfilaraemic individuals have a higher risk of mortality [9,10]. Although it is evident
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that loiasis causes significant morbidity and mortality in affected populations, it remains so

neglected that it does not even feature on the WHO’s formalized list of neglected tropical dis-

eases, in spite of urgent appeals to address this issue [2,11,12].

The clinical spectrum of L. loa-infection is characterized by a remarkable dichotomy. Acute

incidental infection in short-term visitors to endemic regions generally presents with manifest

symptoms and a pro-inflammatory state typified by profound hypereosinophilia, episodes of

angioedema and hypergammaglobulinemia [13]. In contrast, chronic infection in life-long res-

idents of endemic regions seems to be more diverse in clinical outcome. While it has often

been described as relatively asymptomatic, more recent data suggest a spectrum of more fre-

quent albeit non-specific symptoms associated with chronic loiasis despite high burdens of

infection [8,14]. Interestingly, microfilaraemic individuals experience fewer Calabar swellings

and less pruritus than amicrofilaraemic individuals (i.e. infection involving only adult worms)

[15,16]. L. loa has moreover been associated with higher frequency of other filarial [17] and

human T-lymphotropic virus (HTLV) [18] infections, as well as impaired CD4+ memory T

cell responses to tuberculosis antigen [19], suggesting a state of immunosuppression that

extends to bystander-antigens. However, once microfilaraemic individuals are treated with

microfilaricidal drugs such as ivermectin and DEC, they risk developing life-threatening

inflammatory reactions. Although treatment with albendazole is usually not associated with

acute immunological reactions, similar severe adverse events have been reported [20–22].

The complex interplay between parasite and host immune response that underlies these

paradoxical facets of chronic loiasis remains poorly understood. IL-5 driven eosinophils are

the primary effector cell type thought to be responsible for parasite death and feature promi-

nently in acute incidental infection, though their role in chronic infection and treatment-

driven adverse events is less clear [23–27]. Basophils have emerged as important contributors

to the immune response against parasitic [28,29] and filarial [30,31] infection by initiating and

amplifying type 2 cytokine production. However, they have never been investigated in loiasis.

On the other hand, in order for adult worms to survive for 10 years or even longer whilst

migrating subcutaneously, they must evade, modulate and/or suppress the host’s immune

defenses–a characteristic common amongst many other parasites [32–36]. Of particular inter-

est in this regard are myeloid-derived suppressor cells (MDSC), a heterogeneous population of

immature immune cells capable of abrogating natural killer, B and T cell responses. First and

most extensively described for their role in facilitating immune-evasion in cancer, their immu-

nomodulatory activity is also known to be exploited by pathogens including various helminths

and other parasites [37–43]. However, their role in loiasis has previously never been

investigated.

The present study aimed to further improve our understanding of the enigmatic bipolar

immunology of chronic loiasis by investigating innate cell populations in different infection

states and following treatment of L. loa.

Methods

Ethics statement

Written informed consent was obtained from each study participant or a legal representative.

The study was conducted in accordance with the Declaration of Helsinki, ICH-GCP guidelines

and local regulations. The immunological study was approved by the CERMEL (Centre de

Recherches Médicales de Lambaréné) Institutional Ethics Committee (reference number CEI-

022/2018), as were the underlying cross-sectional study (CEI-011/2017) and treatment trial

(CEI-013/2017).
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Study design and population

This immunological study was conducted in the area surrounding Lambaréné, Gabon between

March 2018 and December 2020. Loiasis, other helminth infections and malaria are highly

prevalent in this rural setting [15,44,45]. Immunological analysis was performed on a subset of

participants enrolled in two ongoing studies: a large cross-sectional burden of disease study [8]

and an open-label randomized controlled trial assessing the efficacy of different albendazole-

based treatment regimens in 42 L. loa-microfilaraemic individuals [46].

Forty-two malaria-RDT-negative (Paracheck Pf, Orchid Biomedical Systems, Goa, India)

individuals of at least two years of age were included in a case-control design from among par-

ticipants enrolled in the cross-sectional burden of disease study. Participants were selected

pragmatically by best match across infection status by sex, age, and region. They were matched

by sex and age across three groups by L. loa infection status: (i) microfilaraemic (detectable L.

loa microfilaraemia), (ii) amicrofilaraemic (history of eye worm, no detectable L. loa microfi-

laraemia, detectable anti-L. loa IgG) and (iii) uninfected (no history of eye worm, no detectable

L. loa microfilaraemia, no detectable anti-L. loa IgG).

In the randomized controlled trial (Pan African Clinical Trials Registry ID

PACTR201807197019027), microfilaraemic adult individuals (who had not received albenda-

zole treatment during the four previous weeks) were allocated randomly at a 1:2:2:2 ratio to

receive no causal treatment, 3 weeks of albendazole (800 mg/d), 5 weeks of albendazole or 3

weeks albendazole + sequential single-dose ivermectin (150 μg/kg). Gastrointestinal helminth

infections were assessed at baseline by stool microscopy in most participants, but were not sig-

nificantly associated with the immunological parameters (e.g., eosinophil numbers, Tables B

and C in S1 Appendix). Because all participants received the same treatment until sampling

for immunology at day 14 and no significant differences in immunological responses between

treatment regimens were observed at the end of follow-up (day 168), a pooled analysis com-

bining the three treatment regimens was performed in our immunological study. Thus, all

twenty-six participants who received one of the albendazole-based regimens and completed

follow-up were available for immunological analysis.

Loa loa diagnosis

History of eye worm was evaluated by the rapid assessment procedure for L. loa (RAPLOA)

questionnaire [47]. Loa loa microfilaraemia was assessed by microscopy of venous EDTA

blood collected between 10:00 and 15:00 hours because L. loa has diurnal periodicity of micro-

filaraemia. Microscopy was performed on thick blood smears or after leukoconcentration, as

appropriate. Participants were considered amicrofilaraemic only after applying leukoconcen-

tration technique with saponin lysis and microscopy of 1 ml of blood, as described previously

[8]. Co-infection with Mansonella perstans (M. perstans) was documented. Loa loa serology

was performed on EDTA plasma using the L. loa SXP-1 IgG rapid lateral flow immunoassay

(Drugs & Diagnostics for Tropical Diseases, San Diego, USA) according to the manufacturer’s

instructions. Results were obtained visually, and any detectable line was considered positive.

Immunology

A 10 ml tube of sodium heparin anticoagulated venous blood was collected for immunological

assays once from each participant in the cross-sectional study and at baseline (day 0), during

albendazole treatment (day 14) and at the end of follow-up (day 168) from each participant in

the treatment trial. All cellular flow cytometry was performed on a Guava EasyCyte 8 HT flow

cytometer using Guava InCyte version 2.7 (Merck Millipore, Burlington, USA). Flow

PLOS NEGLECTED TROPICAL DISEASES Eosinophils, basophils and myeloid-derived suppressor cells in loiasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012203 May 21, 2024 4 / 19

https://doi.org/10.1371/journal.pntd.0012203


cytometry data were analyzed with FlowJo version 10.6.1 (BD Biosciences, San Jose, USA).

Clones and isotypes of all antibodies used for flow cytometry are listed in Table A in S1

Appendix.

Eosinophils and basophils

For eosinophil and basophil characterization, whole blood was incubated with anti-human

CD125 (IL5Ra, interleukin 5 receptor alpha) PE, CD193 (CCR3, CC motif chemokine receptor

3) PerCP-Cy5.5 (both BD Biosciences), CD69 FITC, CD123 (IL3R, interleukin 3 receptor)

PE-Cy7, CD16 (FcγRIII) APC-Cy7 and CX3CR1 (CX3C motif chemokine receptor 1) APC

(all BioLegend, San Diego, USA) for 15 minutes. Erythrocyte lysis was performed with FACS

lysing solution (BD Biosciences) for 10 minutes, after which samples were washed twice in

phosphate-buffered saline (PBS) (Thermo Fisher Scientific, Waltham, USA). Percentages of

SSChi CD125+ CD193+ eosinophils and SSClo CD123+ CD193+ basophils among single leu-

kocytes were determined (for gating strategy, see Fig A in S1 Appendix), as described else-

where [48,49]. Of note, during initial assay development Siglec-8 was assessed as an additional

marker but was not found of added value to CD123 and CD193 in discriminating eosinophils.

Expression of activation markers was recorded as median fluorescence intensity (MFI) or per-

centage of positive events, as appropriate. CD123 is a marker of eosinophil progenitors and

upregulated upon activation, [50,51] while CD125 and CD193 are downregulated in a negative

feedback loop [50,52,53]. Surface expression of CD16 and CD69 have been associated with

eosinophil activation [51]. Activated basophils express less CD193 [54].

Myeloid-derived suppressor cells (MDSC)

For MDSC quantification, peripheral blood mononuclear cells (PBMC) were isolated by density

gradient centrifugation (Ficoll-Paque PLUS, GE Healthcare, Chicago, USA) according to pub-

lished procedures [55]. Next, 250,000 PBMC were blocked with rabbit serum (Capricorn Scien-

tific, Ebsdorfergrund, Germany) and stained with anti-human CD66b FITC, HLA-DR (human

leukocyte antigen–DR isotype) PerCP, CD14 APC-Cy7 (all BD Biosciences), CD33 PE and

CD11b (integrin alpha M) APC (both Miltenyi Biotec, Bergisch Gladbach, Germany) for 20

minutes. Freshly isolated samples were analyzed. Percentages of SSChi CD66b+ CD11b+ CD14-

polymorphonuclear (PMN-)MDSC and SSClo CD14+ HLA-DR- CD11b+ CD33+ monocytic

(M-)MDSC among single PBMC were determined (Fig A in S1 Appendix), as described else-

where [43].

PMN-MDSC isolation and T cell proliferation-suppression assay

As proof-of-principle–to confirm that PMN-MDSC defined phenotypically by flow cytometry

are indeed functionally suppressive–a T cell proliferation-suppression assay was performed in

a subset of participants (selected pragmatically by the total number of PBMC available) follow-

ing a published protocol [43]. Briefly, participant PMN-MDSC were isolated by magnet-acti-

vated cell sorting (MACS), added to healthy donor PBMCs at varying effector-to-target ratios

and their effect on CD4+ and CD8+ T cell proliferation assessed by flow cytometry (S2 Appen-

dix and Fig A in S1 Appendix).

Cytometric bead array (CBA)

Heparin plasma was separated by centrifugation, aliquoted and stored at -80˚C. Cytokines

were assessed using a commercial cytometric bead array (CBA) kit (BD Biosciences) as recom-

mended by the manufacturer. Briefly, this procedure uses multiplex bead array technology to
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simultaneously detect IL-1b, IL-4, IL-5, IL-6, IL-10, IFN-g, and TNF-a, GM-CSF. Samples

were acquired on a FACS Symphony A1 flow cytometer (BD Biosciences) using FACS Diva

software and the Median Fluorescence Intensities (MFI) were generated using FlowJo version

10.7.1 software. Standard curves were generated by analyzing the serial dilutions of the stan-

dards spanning the concentration range from 1 to 2,500 pg/ml using GraphPad Prism version

6 (GraphPad Software, San Diego, USA). Lower limits of quantification were 1 pg/ml; samples

with cytokine concentrations below the lower level of quantification were represented as half

the value of the lower limit of quantification.

Statistical analyses

Data analysis was performed in R version 3.5.3 (R Foundation for Statistical Computing,

Vienna, Austria) within the tidyverse package version 1.3.0. [56] Categorical data were sum-

marized by frequency and numeric data by median and interquartile range (IQR). Prolifera-

tion indices in the T cell suppression assay were normalized to the stimulated control.

Friedman tests were used to assess differences between participants in the cross-sectional

study and within-subject differences across time points in the treatment study. Nemenyi’s

post-hoc test was applied after significant Friedman results. Spearman rank analysis was used

for correlation between immunological parameters and microfilaraemia. P-values< 0.05 were

considered statistically significant.

Results

Study population

We included 33 female and 9 male participants in the cross-sectional study, with a median age

of 25 years (Table 1). Age was similar between L. loa-microfilaraemic (MF+), amicrofilaraemic

(MF-) and uninfected (LL-) participants (p = 0.61). Co-infection with M. perstans was present

in only one MF- and two MF+ participants. In the clinical trial, we included 13 female and 13

male participants who received an albendazole-based treatment regimen and completed

immunological sampling and analysis. Microfilaraemia at enrolment (median: 9,000; IQR:

7,500–15,000 mf/ml) decreased to 24% of baseline (2,200; 1,100–4,500 mf/ml) and 16% of

baseline (1,400; 430–5,100 mf/ml) on day 14 and day 168 after start of treatment, respectively

(Fig B in S1 Appendix). Microfilaraemia with M. perstans was detected by thick blood smear

in 8 of 26 individuals at baseline. M. perstans microfilaraemia was below 500 mf/ml at baseline

and became undetectable upon albendazole treatment in these 8 participants. Stool micros-

copy for gastrointestinal helminths at baseline was performed in 18 of 26 (69%) participants

and yielded positive results in 7 of 18 (39%) participants (Tables 1 and B in S1 Appendix).

Complete eosinophil/basophil and MDSC data were each available for in total 22 participants.

Table 1. Study population.

Characteristic Uninfected (n = 14) Cross-sectional Amicrofilaraemic (n = 14) Microfilaraemic (n = 14) Clinical trial

Treated

(n = 26)

Sex, no. female (% total) 11 (79) 11 (79) 11 (79) 13 (50)

Median age, years (IQR) 28 (16–42) 24 (16–44) 24 (15–47) 61 (47–72)

Median Loa loa, mf/ml (IQR) - - 26 (3–150) 9,000 (7,500–15,000)

M. perstans +, no. (% total) 0 (0) 1 (7) 2 (14) 8 (13)

GI helminths +, no. (% total) - - - 7/18 (39)*

* Stool microscopy was performed in 18 of 26 participants in the treatment study.

https://doi.org/10.1371/journal.pntd.0012203.t001
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Eosinophils

Eosinophilia, as a percentage of total leukocytes, did not differ significantly between microfi-

laraemic (MF+, median: 13.1%; IQR: 9.0–24.5) and amicrofilaraemic (MF-, 12.3%; 10.2–19.2)

L. loa-infected participants in the cross-sectional study, but was low in uninfected (LL-, 3.0%;

1.8–5.0) participants (Fig 1A). In the treatment study, eosinophilia increased from 17.2%

(13.2–21.5) at baseline to 24.8% (19.5–37.4) at day 14 post-treatment and subsequently

decreased to below baseline at day 168 (6.3%; 4.9–8.9, Fig 1B). Moreover, CD123 expression

(median fluorescence intensity–MFI), a marker of young eosinophils and their progenitors,

was higher in MF+ (46.9; 27.7–57.4) and to some extent in MF- (31.6; 18.9–42.5) than in LL-

participants (20.8; 15.2–24.5, Fig 1C); and upon treatment tended to increase from baseline

(44.2; 36.1–54.2) to day 14 (52.9; 35.1–73.9), followed by a decrease to below baseline at day

168 (30.8; 21.7–40.2, Fig 1D). MFI of CD125–a marker that is downregulated in activated

eosinophils–did not differ between groups in the cross-sectional study (MF+: 28.4, 25.9–37.1;

MF-: 29.6, 22.5–33.2; LL-: 26.0, 21.3–29.4, Fig 1E). However, in contrast to eosinophil numbers

and CD123 expression, CD125 MFI decreased upon treatment from baseline (35.8; 30.6–40.6)

to day 14 (29.0; 24.6–33.6) and increased again to 34.4 (30.5–37.3) at day 168 (Fig 1F). CD193

MFI–that is also known to be downregulated upon eosinophil activation–was lower in MF+

(87.4; 81.1–120) than in MF- (110; 88.8–126) and lower still than in LL- participants (137;

107–164, Fig 1G), though not statistically significantly and–similarly to CD125 expression–

decreased from baseline (116; 86.2–136) to day 14 (92.0; 77.4–114), followed by an increase

above baseline at day 168 (136; 120–170, Fig 1H). Analogously, CD16 expression–which is

considered a marker of eosinophil activation–was lower in MF+ (10.4%; 9.1–16.8) and MF-

(14.9%; 11.5–16.8) than LL- (20.8%; 17.2–23.1) participants (Fig 1I), appeared to decrease

slightly between baseline (13.8%; 9.2–18.1) and day 14 (9.2%; 6.8–15.1) and then increased

again to around baseline levels at day 168 (13.7%; 9.5–18.9, Fig 1J). The percentage of eosino-

phils expressing CX3CR1 and CD69 MFI did not differ significantly between groups in the

cross-sectional or between time points in the treatment study. CD16 expression correlated

inversely with baseline microfilaraemia in the treatment (r = -0.43, p = 0.031), but not in the

cross-sectional study (Fig C in S1 Appendix). We found no significant correlation between

microfilarial density at day 0, 14 or 168, or the drop in microfilaraemia between day 0 and day

14, and other eosinophil parameters in the two data sets (Figs C and D in S1 Appendix).

Basophils

Basophil numbers, as a percentage of total leukocytes, did not differ between groups in the

cross-sectional study (MF+: 0.30%, 0.19–0.40; MF-: 0.35%, 0.25–0.49; LL-: 0.37%, 0.24–0.51;

Fig 2). However, upon treatment they tended to increase from baseline (0.29%; 0.25–0.36) to

day 14 (0.36%; 0.29–0.51) to day 168 (0.48%; 0.38–0.62). We found no difference in basophil

CD193 MFI between MF+ (124; 111–154), MF- (132; 113–169) and LL- (157; 135–163) partici-

pants. In the treatment study CD193 MFI remained stable between baseline (144; 124–180)

and day 14 (135; 126–152) but thereafter increased to 176 (148–202) at day 168.

Myeloid-derived suppressor cells (MDSC)

We found no difference in PMN-MDSC numbers between MF+ (3.08%; 1.46–9.56), MF-

(1.60%; 0.90–4.50) and LL- (2.75%; 0.34–7.40) participants in the cross-sectional study (Fig 3).

Despite high individual variation of PMN-MDSC numbers over the course of treatment, no

clear trend was observed between day 0 (7.02%; 5.10–9.68), day 14 (7.58%; 3.04–13.2) and day

168 (6.53%; 4.62–13.2). There was no difference in M-MDSC numbers between MF+ (0.36%;

0.13–0.46), MF- (0.21%; 0.16–0.34) and LL- (0.26%; 0.13–0.71) participants. Although not
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Fig 1. Eosinophil numbers and surface activation markers. Percentage of SSChi CD125+ CD193+ eosinophils

among single leukocytes and expression of surface activation markers as depicted by median fluorescence intensity

(MFI) or percentage positive in 39 age- and sex-matched Loa loa-uninfected (LL-), -amicrofilaraemic (MF-) and

-microfilaraemic (MF+) participants in the cross-sectional study (left column, horizontal bars represent median) and

in 22 microfilaraemic participants receiving different albendazole-based treatment regimens at baseline (D0), on day
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statistically significant, we observed a trend towards an increase in M-MDSC numbers between

day 0 (0.36%; 0.22–0.54) and day 14 (0.57%; 0.19–1.20), followed by a decrease back to around

baseline at day 168 (0.26%; 0.15–0.54). We found no significant correlation between baseline

microfilarial density or drop in microfilaraemia between day 0 and day 14 and MDSC numbers.

T cell proliferation-suppression assay

T cell proliferation-suppression assays were performed using PMN-MDSC from a subset of

five study participants in three independent experiments in combination with freshly isolated

14 of treatment (D14) and at the end of follow-up (D168) (right column, Tukey’s boxplot gives median, interquartile

range (IQR) and whiskers 1.5 IQR). P values were obtained by Friedman’s and Nemenyi’s post-hoc test. Matched

eosinophil data were unavailable for three participants in the cross-sectional and four participants in the treatment

study.

https://doi.org/10.1371/journal.pntd.0012203.g001

Fig 2. Basophil numbers and CD193 expression. Percentage of SSClo CD123+ CD193+ basophils among single

leukocytes and expression of CD193 median fluorescence intensity (MFI) in 39 age- and sex-matched Loa loa-

uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) participants in the cross-sectional study (left

column, horizontal bars represent median) and in 22 microfilaraemic participants receiving different albendazole-

based treatment regimens at baseline (D0), on day 14 of treatment (D14) and at the end of follow-up (D168) (right

column, Tukey’s boxplot gives median, interquartile range (IQR) and whiskers 1.5 IQR). P values were obtained by

Friedman’s and Nemenyi’s post-hoc test. Matched basophil data were unavailable for three participants in the cross-

sectional and four participants in the treatment study.

https://doi.org/10.1371/journal.pntd.0012203.g002
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PBMC from a single healthy L. loa-uninfected donor. The purity and viability of PMN-MDSC

isolated by magnet-activated cell-sorting were> 90% and> 95%, respectively. PMN-MDSC

from study participants showed a dose-dependent suppression of both CD4+ and CD8+ T cell

proliferation indices by 15 to 41% at the highest PMN-MDSC to PBMC ratio (Fig E in S1

Appendix). Control mature PMN granulocytes from the same participants did not show sup-

pression of T cell proliferation.

Circulating cytokines

We found no statistically significant differences in levels of any of the circulating cytokines

that we measured between LL-, MF- and MF+ individuals in the cross-sectional study (Figs 4

and F in S1 Appendix). Following albendazole treatment, circulating IL-5 levels followed the

pattern of eosinophil dynamics, dropping to below baseline again by day 168 (D0: 780 pg/ml,

510–1160; D14: 940 pg/ml, 540–1960; D168: 450 pg/ml, 260–560; Fig 4). We also observed a

trend to increased circulating IL-10 levels between day 0 (1160 pg/ml, 300–2160) and day 14

Fig 3. Myeloid-derived suppressor cells (MDSC). Percentage of SSChi CD66b+ CD11b+ CD14- polymorphonuclear

(PMN-)MDSC and SSClo CD14+ HLA-DR- CD11b+ CD33+ monocytic (M-)MDSC among single PBMC in 42 age-

and sex-matched Loa loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) participants in the

cross-sectional study (left column, horizontal bars represent median) and in 22 microfilaraemic participants receiving

different albendazole-based treatment regimens at baseline (D0), on day 14 of treatment (D14) and at the end of

follow-up (D168) (right column, Tukey’s boxplot gives median, interquartile range (IQR) and whiskers 1.5 IQR). P

values were obtained by Friedman’s and Nemenyi’s post-hoc test. Matched MDSC data were unavailable for four

participants in the treatment study.

https://doi.org/10.1371/journal.pntd.0012203.g003

PLOS NEGLECTED TROPICAL DISEASES Eosinophils, basophils and myeloid-derived suppressor cells in loiasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012203 May 21, 2024 10 / 19

https://doi.org/10.1371/journal.pntd.0012203.g003
https://doi.org/10.1371/journal.pntd.0012203


(2920 pg/ml, 820–3530), which then dropped again by day 168 (1020 pg/ml, 40–2080). No sig-

nificant changes were seen in interleukin 1 (IL-1), IL-4, IL-6, granulocyte-macrophage colony-

stimulating factor (GM-CSF), interferon gamma (IFNg) and tumor necrosis factor alpha

(TNFa) levels, either during or following albendazole treatment (Fig F in S1 Appendix).

Discussion

We set out with the hypothesis that chronic loiasis is associated with marked immunosuppres-

sion, whilst treatment would result in inflammatory responses particularly in the eosinophil

compartment.

Indeed, we found that both eosinophilia and eosinophil activation, as well as circulating IL-

5 levels, increased during treatment and dropped to below baseline six months thereafter, in

line with several treatment studies in endemic [26,57,58] and non-endemic [59] populations.

This inflammatory response is thought to be induced by parasite antigen released from dying

Fig 4. Circulating cytokines. Plasma levels of interleukin 5 (IL-5) and interleukin 10 (IL-10) in 33 age- and sex-

matched Loa loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) participants in the cross-

sectional study (left column, horizontal bars represent median) and in 21 microfilaraemic participants receiving

different albendazole-based treatment regimens at baseline (D0), on day 14 of treatment (D14) and at the end of

follow-up (D168) (right column, Tukey’s boxplot gives median, interquartile range (IQR) and whiskers 1.5 IQR). P

values were obtained by Friedman’s and Nemenyi’s post-hoc test. Matched cytokine data were unavailable for nine

participants in the cross-sectional and five participants in the treatment study. Three and nine IL-5 measurements and

five and 15 IL-10 measurements were below the lower limit of quantification (blue dashed line, 1 pg/ml) in the cross-

sectional and treatment study, respectively.

https://doi.org/10.1371/journal.pntd.0012203.g004
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microfilaria following administration of microfilaricidal drugs like ivermectin and DEC, as

also suggested by recent observations in a baboon model [60]. Microfilarial counts in our treat-

ment trial dropped somewhat faster than was observed in some but not all similar studies,

which might be related to differences in dose [61] or duration [62–64] of albendazole adminis-

tered, or the extensive variability in its pharmacokinetics [65]. The rapid decrease in microfi-

laraemia and such evident eosinophil responses following albendazole treatment suggest that

this embryostatic drug may also have some microfilaricidal activity and/or that it exerts direct

toxicity against adult filaria, resulting in antigen release and subsequent eosinophilic inflam-

mation. Its effects moreover appear relatively long-lasting, as not only did microfilarial counts

remain significantly lower at end of follow-up (six months after treatment), but immunological

parameters had normalized beyond baseline.

In contrast with the only previous study to investigate eosinophils in L. loa infection in a

cross-sectional setting in a highly endemic, Central African population, [66], but in common

with some previous reports from elsewhere (including endemic residents presenting at West-

ern travel clinics) [67,68], we also found L. loa-infection to be associated to eosinophilia, eosin-

ophil activation and to some extent circulating IL-5 levels. Moreover, these all appeared

marginally more pronounced in microfilaraemic compared to amicrofilaraemic participants,

as observed again more clearly in a recent study at our research center [16]. The discrepant

results of the original Gabonese study [66], may in retrospect be explained by the absence of

serostatus for L. loa-specific antibodies in its case-definition (because e.g. anti-SXP-1 antibod-

ies were not assessed), as some amicrofilaraemic infections may have been missed and errone-

ously included in the L. loa-negative population.

These immunological observations would fit with recently published evidence that far from

being a largely benign condition, chronic loiasis is in fact associated with significant morbidity

[8]. Indeed, in highly endemic regions, L. loa-infection is responsible for a sizeable loss of dis-

ability-adjusted life years (DALYs). We thus consider that even in chronically infected individ-

uals, activated eosinophils continue to play an important role in the immunopathogenesis of

this disease.

Whereas the expression of most eosinophil surface markers that we measured followed a

congruent pattern, the percentage of eosinophils expressing CD16 –a marker commonly asso-

ciated with eosinophil activation–was higher in L. loa-uninfected individuals and appeared to

decrease further during treatment of L. loa-microfilaraemic participants, while increasing sig-

nificantly thereafter. CD16 upregulation of eosinophils has been linked to pro-inflammatory

cytokines (IFN-γ, IL-2), IgG immune complexes, states of allergy and soil-transmitted helminth

infection [69–72]. However, recent work actually proposing a regulatory role for CD16+ “sup-

pressive eosinophils” underlines that understanding of eosinophil phenotypes and functions is

still in its infancy and deserves further research–particularly in loiasis [73]. Finally, these obser-

vations must be interpreted knowing that eosinophil function and activity may differ in differ-

ent tissues and observations in peripheral blood do not have to reflect their function and

activation in other organs.

Basophils have been shown to play an important role in the response against helminth

infections [28–31], but this study is the first to assess in vivo basophil responses in chronic loia-

sis. We did not observe significant differences in either basophil percentages or basophil acti-

vation between uninfected and (microfilaraemic) infected individuals or during albendazole

treatment. By the end of follow-up, however, basophil percentages had increased significantly

above baseline in treated participants, yet their activity appeared to be diminished in compari-

son with baseline, as indicated by significantly higher CD193 expression. The implications

thereof remain unclear.
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Our study also investigated for the first time the potential role of MDSC in chronic loiasis.

Although PMN-MDSC from L. loa-infected individuals are functionally suppressive, we

observed no significant difference in either PMN- or M-MDSC percentages between unin-

fected and (a-)microfilaraemic infected individuals or in response to albendazole treatment.

While the percentage of M-MDSC tended to slightly increase temporarily upon treatment, this

presumably represents a physiological regulatory response to a primary inflammatory

response. MDSC expansion has been linked to a variety of chronic parasitic infections [37],

including a mouse model of filarial infection, where MDSC expanded in the thoracic cavity,

the site of infection with Litomosoides sigmodontis [74]. Although we cannot exclude MDSC

expansion in subcutaneous tissues in response to migrating adult L. loa, rather than in blood

to circulating microfilariae, MDSC expansion in peripheral blood is common in both solid

tumors [75] and tissue-dwelling parasitic infections [76]. It thus remains noteworthy that we

did not find evidence of elevated MDSC numbers in chronic loiasis. However, future studies

could also investigate MDSC activation and function in this setting.

Other than IL-5, the only other circulating cytokine that we were able to detect significant

changes in was IL-10. In line with this, a previous study at our center noted that L. loa microfi-

laraemic participants harbored greater numbers of IL-10 producing CD4+ T cells than amicro-

filaraemic individuals [77]. Indeed, filarial antigen can drive the production of IL-10 in

infected individuals, suggesting expansion of regulatory responses [78]. Animal models of L.

loa infection have shown that Th1 and Th2 responses are downregulated upon patency, lead-

ing to T cell hyporesponsiveness and potentially preventing parasite clearance [79–81]. In

humans, L. loa has been associated with impaired CD4+ memory T cell responses to tubercu-

losis antigen [19], suggesting a state of immunosuppression that extends to bystander-anti-

gens. However,–as our MDSC data underline–the key cellular players in L. loa-mediated

immunomodulation remain to be identified. In one previous study at our center, T regulatory

cells in cord blood from offspring of L. loa-infected mothers correlated inversely with Th1 and

Th17 cells, which thus deserves further investigation as an immunoregulatory pathway in loia-

sis [82]. However, other mechanisms such as modulation of innate pattern-recognition recep-

tor responses or of antigen presentation and co-stimulatory pathways might also contribute to

immunomodulation by L. loa.

One limitation of our current study–apart from small sample size–is the relatively low

microfilarial density in our cross-sectional population. Since in our endemic setting both the

prevalence and burden of L. loa-infection is strongly correlated with age, our study design

called for age-matching of uninfected and infected individuals and inclusion of a wide range of

ages to avoid confounding due purely to immunosenescence. An unintended consequence

thereof, was low median parasitemia in our matched microfilaraemic individuals, which may

have limited our ability to detect specific immunological patterns associated with microfilariae

as opposed to infection itself. However, we did include some highly microfilaraemic individu-

als (up to>40,000/ml) in the treatment study, but other than an inverse correlation with

CD16 expression on eosinophils, we found no immunologic parameters correlating signifi-

cantly with microfilaraemia. A second limitation is the restricted microfilaricidal activity of

albendazole in comparison with drugs like ivermectin and DEC; in combination with an

absence of high microfilarial densities, this may have diminished our chances of witnessing the

most fulminant immune responses to dying microfilariae. Although one of the treatment arms

in our study did involve follow-up administration of ivermectin, this sub-group was too small

to allow meaningful immunological assessments. A general limitation of treatment studies

concerning loiasis applies to our longitudinal population: There are currently no means to

assess the direct impact of therapy on adult worms. Even though we observed a significant

decrease in microfilaraemia, adult worms might have survived and continued to modulate the

PLOS NEGLECTED TROPICAL DISEASES Eosinophils, basophils and myeloid-derived suppressor cells in loiasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012203 May 21, 2024 13 / 19

https://doi.org/10.1371/journal.pntd.0012203


host‘s immune responses–dampening the observable effect of treatment on the immune

responses. Finally, we were not able to exclude all other helminth infections that could poten-

tially interfere with the immunological observations in our study population. However, partici-

pants in the cross-sectional study were selected by best match by sex, age and region to avoid

confounding by exposure. In the treatment study, gastrointestinal helminth co-infection was

assessed and not associated with immunological differences. Thus, although confounding due

to other unidentified helminth co-infections cannot be excluded, we mainly consider infection

by L. loa to be responsible for the immunological effects reported here.

Notwithstanding our recent documentation of the significant morbidity caused by chronic

loiasis [8] and our demonstration of eosinophil activation in chronically-infected individuals,

it remains remarkable that far more inflammation does not occur in response to subcutane-

ously migrating adults and circulating microfilariae, given that minute quantities of allergen

and bacterial toxins like lipopolysaccharide may cause anaphylaxis and life-threatening sepsis,

respectively. Deeper molecular understanding of the regulatory pathways induced by this

remarkable parasite to ensure its own survival so successfully may ultimately lead to improved

management of this neglected disease.
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