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Abstract

Background

Rodents are recognized as the hosts of many vector-borne bacteria and protozoan para-

sites and play an important role in their transmission and maintenance. Intensive studies

have focused on their infections in vectors, especially in ticks, however, vector-borne bacte-

rial and protozoan infections in rodents are poorly understood although human cases pre-

senting with fever may due to their infection have been found.

Methods

From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi

Province, and the spleen samples were collected to reveal the presence of vector-borne

bacterial and protozoan infections in them. The microorganisms in rodents were identified

by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size

were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recov-

ered sequences were subjected to nucleotide identity and phylogenetic analyses.

Results

As a result, 192 rodents representing seven species were captured, and Bandicota indica

were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested

PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Ana-

plasma phagocytophilum, “Candidatus Neoehrlichia mikurensis”, “Candidatus E. hainanen-

sis”, “Candidatus E. zunyiensis”, three uncultured Ehrlichia spp., Bartonella

coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica,

two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in

six rodent species. More importantly, six species (including two Anaplasma, two Bartonella,

“Ca. N. mikurensis” and Bab. microti) are zoonotic pathogens except Anaplasma bovis and

Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between
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different microorganisms, and the most common type of co-infection is between “Ca. N.

mikurensis” and other microorganisms. Additionally, potential novel Bartonella species and

Hepatozoon species demonstrated the presence of more diverse rodent-associated Barto-

nella and Hepatozoon.

Conclusions

The results in this work indicated great genetic diversity of vector-borne infections in wild

rodents, and highlighted the potential risk of human pathogens transmitted from rodents to

humans through vectors.

Author summary

Rodents are the important hosts of many pathogens, especially vector-borne pathogens,

and can harbor and transmit them to humans and cause diseases. In China, little informa-

tion is known about the infection of vector-borne pathogens in rodents although the

rodent species are very diverse. In this study, seven wild rodent species were collected to

identify the genetic diversity of vector-borne bacteria and protozoan. Interestingly, diverse

vector-borne microorganisms, including four Anaplasma, five Ehrlichia, “Candidatus
Neoehrlichia mikurensis”, six Bartonella, Babesia microti and diverseHepatozoon were

identified in six rodent species. Furthermore, two potential novel Bartonella species were

detected. All these data suggested great genetic diversity of vector-borne pathogens infec-

tions in rodents. Of them, six species (including two Anaplasma, two Bartonella, “Ca. N.

mikurensis” and Bab.microti) are pathogenic to humans except A. bovis and A. ovis with

zoonotic potential, suggesting significant risks to local human population.

Introduction

As the most abundant and diverse mammals, rodents are notorious due to their ability to host

and transmit a wide range of zoonotic pathogens, such as bacteria, viruses, and parasites [1].

Among them, infection with some pathogens can cause serious diseases in humans, including

Yersina pestis causing plague [2], orthohantaviruses causing hemorrhagic fever with renal syn-

drome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) [3], Lassa virus causing

Lassa fever (LF) [4], Francisella tularensis causing tularemia [5], etc. Except for the direct

route, rodent-associated causative agents can be transmitted indirectly to humans and animals

mainly through blood-feeding ectoparasitic arthropods [6]. As the important hosts infested by

immature ticks, rodents are considered to be the competent reservoirs of many vector-borne

pathogens. They play an important role in maintaining and transmitting a great extensive vec-

tor-borne zoonotic and veterinary bacterial and protozoan pathogens, such as Anaplasmata-

ceae, Bartonella, Babesia andHepatozoon [1].

Many tick-borne Anaplasmataceae bacteria are pathogenic to humans and animals [7]. Spe-

cifically, pathogens that cause diseases mainly include some members within Anaplasma, Ehr-
lichia and CandidatusNeoehrlichia [8]. Because no transovarial transmission of Anaplasma,
CandidatusNeoehrlichia, and Ehrlichia was observed in ticks [9], vertebrates including

rodents are necessary to be the hosts of them. Many species within these genera, including A.

phagocytophilum and Ehrlichia chaffeensis causing human monocytic ehrlichiosis (HME) and

PLOS NEGLECTED TROPICAL DISEASES Bacteria and protozoan in rodents from Guangxi, China

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012159 May 13, 2024 2 / 21

202001 to WPG). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0012159


human granulocytic ehrlichiosis (HGE), respectively, have been identified in rodents [1]. Con-

trary to the family Anaplasmataceae, Bartonella spp. are facultative intracellular alphaproteo-

bacteria and comprise a large number of vector-borne bacteria [10]. To date, more than 40

species including eight zoonotic pathogens have been identified in a wide range of rodents

[11]. Therefore, rodents are recognized as the main natural reservoirs of the genus Bartonella
[11]. In China, 22 rodent-associated Bartonella species, including eight pathogenic to humans,

have been found so far, indicating a potential risk to humans [12].

Genera Babesia and Hepatozoon belong to Apicomplexa of Protozoa. Some species within

the genus Babesia are uncommon zoonotic agents and are transmitted to humans through

blood feeding by ticks [13,14]. Rodents are considered to be the main reservoirs of Babesia,
especially for Bab.microti, which is commonly distributed throughout the world and identified

in diverse rodent species [13]. GenusHepatozoon is composed of more than three hundred

species, and invertebrate animals and vertebrate animals are used as its definitive and interme-

diate hosts, respectively [15,16]. Its transmission from vectors to vertebrates occurs when the

intermediate host ingests the definitive host, differing from most other vector-borne protozoal

and bacterial pathogens [17]. Definitely, rodents have been confirmed to be the intermediate

hosts ofH. ayorgbor [18]. In addition,Hepatozoon spp. have been identified in diverse rodents

although their role as intermediate or paratenic hosts toHepatozoon spp. is uncertain [19,20].

Guangxi Zhuang Autonomous Region is located in South China, and its topography is

characterized by mountains and hills. The subtropical climate and dense vegetation are condu-

cive to the survival of various wild rodents. As the hosts of many vector-borne microorganisms

including human pathogens, molecular surveys on vector-borne bacterial and protozoan

infections in rodents, including Anaplasmataceae, Bartonella and Babesia, have been per-

formed in many parts of China in the past 20 years [12,19,21–26]. In recent years, an increas-

ing number of patients presenting with fever but lacking a confirmed viral etiology has been

observed mainly in Guangxi. In addition, almost no study on vector-borne pathogens in

rodents has been done in Guangxi although diverse rodents are present locally. In this study,

rodents were captured from probable infection sites of most of such patients to enhance the

understanding of the genetic diversity of vector-borne bacteria and protozoan in rodents. The

objective of this study was to reveal potential pathogens responsible for these patients.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee of Chengde Medical University (No.

202004). All the rodents were treated in accordance with the “Rules for Implementation of

Laboratory Animal Medicine” from the National Health Commission, China.

Sample collection and DNA extraction

From May to October 2019, rodents were collected in wild environment around fields from

Fengshan county of Hechi city, Ningming county of Chongzuo city, and Shangsi county of

Fangchenggang city in Guangxi, China (Fig 1). The rodents were captured alive using baited

cages with a treadle release mechanism (27×14×11). Two trapping sessions were conducted

per month, and a total of two hundred cages were set up in each session. The trap line was set

at the edge of the fields, and the cage traps were set at 10 m intervals. All the collected rodents

were anesthetized with isofluorane before euthanasia to minimize suffering. The spleen tissue

was aseptically collected after sacrifice. The rodent species were first identified based on mor-

phological characteristics [27]. Rodents that tested positive for vector-borne microorganisms,

approximately one-third of those that tested negative, and those with a small sample size were
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further confirmed at the species level by sequence analysis of the mitochondrial cytochrome b

(mt-cyt b) gene [28]. Twenty-five milli grams of spleen tissue per sample was homogenized in

200 μL of TL Buffer (tissue lysis buffer). Total DNA was extracted using a Tissue DNA Kit

(Omega, Norcross, GA, USA) and eluted in 80 μL of double-distilled water as per the manufac-

turer’s protocol in a fume hood in a separate laboratory room. The OD260/OD280 ratio of all

the extracted DNA samples was 1.73–1.87. The extracted DNA was stored at -20˚C before

microorganism detection.

Detection and molecular characterization of diverse microorganisms

The presence of microorganisms in rodents was identified by amplifying some marker genes

using (semi-)nested PCR [12,21,29–32]. PrimeSTAR GXL Premix (Takara, Dalian, China) was

used in all PCR reaction for the detection of microorganisms. Genera Ehrlichia and Anaplasma
were screened using primer pairs of fD1/Eh-out2 and fD1/Eh-gs2, and Eh-out1/rp2 and Eh-

gs1/rp2 targeting 16S rRNA gene [29,30]. “CandidatusN. mikurensis” was identified using

primer pairs of CNM-out1/CNM-in2 and CNM-in1/CNM-R targeting groEL gene [21].

Primer pairs of bovis-gltA-F1/bovis-gltA-R and bovis-gltA-F2/bovis-gltA-R were used to

detect A. bovis by amplifying the gltA gene [31]. Primer pairs of Abovis-groEL-F1/Abovis-

groEL-R1 and Abovis-groEL-F2/Abovis-groEL-R2, designed in this study, were used to detect

Fig 1. Geographical distribution of the rodent sampling sites (black dots) in Guangxi Province, China. The figure was generated

using Rstudio. The source of the basemap shapefile was obtained from GADM (https://geodata.ucdavis.edu/gadm/gadm4.1/shp/

gadm41_ZMB_shp.zip).

https://doi.org/10.1371/journal.pntd.0012159.g001
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a novel lineage of A. bovis (identified from Australia) by amplifying the groEL gene. Primer

pairs of HS1/HS6 and HS3/HSVR [33,34] were used to detect the genera Anaplasma and Ehrli-
chia by amplifying the groEL gene. Primer pairs of Ehrlichia-1F/Ehrlichia-R and Ehrlichia-2F/

Ehrlichia-R (designed in this study) were used to detect the genus Ehrlichia by amplifying the

gltA gene. Primer pairs of CS7F2/HG1085R and F1b/AnaCS1076R were used to amplify the

gltA gene of the genus Anaplasma [32]. Genus Bartonella was identified by amplifying both

the gltA and ftsz genes. Primer pairs of Bar-gltA-F (Bar-gltA-FM)/Bar-gltA-R1 and Bar-gltA-F

(Bar-gltA-FM)/Bar-gltA-R2 were used for gltA and Bar-ftsz-F1/Bar-ftsz-R (Bar-ftsz-RM) and

Bar-ftsz-F2/Bar-ftsz-R (Bar-ftsz-RM) for ftsz gene, respectively [12]. Primer pairs of New-

Babesia-F/New-Babesia-R1 and New-Babesia-F/New-Babesia-R2, designed in this study, were

used to identify genera Babesia andHepatozoon by amplifying18S rRNA gene. All the primer

sequences are shown in Table 1.

For the detection of microorganisms using (semi-)nested PCR, several rigorous measures

were taken to prevent contamination, including filter tips used in each assay, each assay (the

PCR mixture preparation, template addition, and agarose gel electrophoresis) performed in a

fume hood in three separate rooms, and negative control using ddH2O as a template.

The PCR product of the expected size analyzed by denaturing gel electrophoresis was puri-

fied using the Takara MiniBEST Agarose Gel DNA Extraction Kit Version 4.0 (Takara, Dalian,

China). The purified PCR product was sent to Shenggong Biotechnology Co., Ltd. for sequenc-

ing using the PCR primers. The PCR amplicons were sequenced with the ABI-PRISM Dye

Termination Sequencing kit (Thermo Fisher Scientific, Waltham, MA) using an ABI 373-A

genetic analyzer (Applied Biosystems, Carlsbad, CA).

Sequence analysis

All the newly generated nucleotide sequences were edited using BioEdit [35], and then blasted

against the nucleotide sequences deposited in the GenBank database (https://blast.ncbi.nlm.

nih.gov) to determine the similarity. Nucleotide sequence identity was determined among

sequences obtained in this study and reference sequences downloaded from the GenBank

database using the MegAlign program in Lasergene [36]. The maximum likelihood (ML) tree

was reconstructed using PhyML v3.2 [37] under the best-fit substitution model determined by

MEGA 7.0 [38]. Bootstrap value determined with 1000 replicates was used to estimate the con-

fidence values for each branch of the ML tree.

Results

Rodent sample collection

A total of 192 rodents were collected in three sampling sites of Guangxi, China (Fig 1), and

seven species belonging to five genera were tentatively identified based on the morphological

characteristics. Consistently, the rodents captured in the current study were classified into

seven clades in the phylogenetic tree based on the cytb gene (Fig 2), and these seven clades cor-

responded to seven rodent species, namely Bandicota indica (Greater Bandicoot Rat, n = 91),

Berylmys bowersi (n = 3), Leopoldamys edwardsi (Edward’s long-tailed rat, n = 9),Mus caroli
(n = 3),Mus pahari (Gairdner’s shrew-mouse, n = 10), Rattus andamanensis (n = 49), and Rat-
tus losea (Lesser Rice-field Rat, n = 27) (S2 Table).

Genetic and phylogenetic analysis of Ehrlichia
Using primer pairs fD1/Eh-out2 and fD1/Eh-gs2, sample GXS19 tested positive for the genus

Ehrlichia (Tables 2 and S2), and presented the highest nucleotide identity of 98.73% with some
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Table 1. Primer sequences used in this study.

Pathogens Target

gene

round Primer Oligonucleotide sequences (5’- 3’) Size Tm References

Anaplasma and

Ehrlichia
rrs first fD1 AGAGTTTGATCCTGGCTCAG (+) 707 bp 55˚C 29,30

Eh-out2 AGTAYCGRACCAGATAGCCGC (-)

second fD1 AGAGTTTGATCCTGGCTCAG (+) 639 bp 55˚C

Eh-gs2 CTAGGAATTCCGCTATCCTCT (-)

first Eh-out1 AACGAACGCTGGCGGCAAGC (+) 1,449 bp 55˚C

rp2 ACGGCTACCTTGTDACGACTT (-)

second Eh-gs1 TGCATAGGAATCTACCTAGTAG (+) 1,354 bp 55˚C

rp2 ACGGCTACCTTGTDACGACTT (-)

“Candidatus N.

mikurensis”

groEL first CNM-out1 TGGCAAATGTAGTTGTAACAGG (+) 1,024 bp 50˚C 21

CNM-in2 GAAGAATTACTATCTACRCTACC (-)

second CNM-in1 GCTATTAGTAAGCCTTATGGTAC (+) 631 bp 50˚C

CNM-R GYAGWGGTCTACCTGATCTTGCT (-) This study

A. bovis gltA first bovis-gltA-F1 TACATCWACWGTAAGAATGG (+) 360 bp 50˚C 31

bovis-gltA-R TCWATGAAGTAYTCATCCT (-)

second bovis-gltA-F2 ACWGTAAGAATGGTKGGCTC (+) 353 bp 50˚C

bovis-gltA-R TCWATGAAGTAYTCATCCT (-)

groEL first Abovis-groEL-F1 CTCTTATGTCNATGAGACG (+) 795 bp 50˚C This study

Abovis-groEL-R1 TACGCTCYTTTACTTCYACT (-)

second Abovis-groEL-F2 GTTGAAGAAGARGAAATAGC (+) 356 bp 50˚C

Abovis-groEL-R2 CCTTCCACATCTTCAGCTAT (-)

Ehrlichia gltA first Ehrlichia-1F CCAGGHTTTATGTCWACTGC (+) 1,092 bp 50˚C This study

Ehrlichia-R ACTGACGTGGACGACATATYT (-)

second Ehrlichia-2F TTTATGTCWACTGCTGCTTGT (+) 1,086 bp 50˚C

Ehrlichia-R ACTGACGTGGACGACATATYT (-) 50˚C

groEL first HS1 CGYCAGTGGGCTGGTAATGAA (+) 1,412 bp 52˚C 33,34

HS6 CCWCCWGGTACWACACCTTC (-)

second HS3 ATAGTYATGAAGGAGAGTGAT (+) 1,369 bp 55˚C

HSVR TCAACAGCAGCTCTAGTWG (-)

Anaplasma gltA first CS7F2 ATGRTAGAAAAWGCTGTTTT (+) 1,091 bp 52˚C 32

HG1085R ACTATACCKGAGTAAAAGTC (-)

second F1b GAYCAYGARCARAATGCYTC (+) 416 bp 52˚C

AnaCS1076 GAGTAAAAGTCGACRTTKGG (-)

Bartonella gltA first Bar-gltA-F/Bar-

gltA-FM

TTACYTAYGAYCCYGGBTTTA (+)

/GCHGATCAYGARCAAAATGC (+)

1,086 bp

/526 bp

54˚C 12

Bar-gltA-R1 CYTCRATCATTTCTTTCCAYTG (-)

second Bar-gltA-F/Bar-

gltA-FM

TTACYTAYGAYCCYGGBTTTA (+)

/GCHGATCAYGARCAAAATGC (+)

1,036 bp

/476 bp

54˚C

Bar-gltA-R2 GCAAAVAGAACMGTRAACAT (-)

ftsz first Bar-ftsz-F1 ATGACGATTAATCTGCATCG (+) 866 bp /581

bp

50˚C

Bar-ftsz-R/Bar-ftsz-

RM

TCTTCRCGRATACGATTRGC (-)

/TAAAGHACTTGRTCAGCCAT (-)

second Bar-ftsz-F2 ATTAATCTGCATCGGCCAGA (+) 860 bp /575

bp

50˚C

Bar-ftsz-R/Bar-ftsz-

RM

TCTTCRCGRATACGATTRGC (-)

/TAAAGHACTTGRTCAGCCAT (-)

Babesia 18S rRNA first Babesia-F GTAATTCCAGCTCCAATAGC (+) 1,050 bp 50˚C This study

Babesia-R1 ATAATTCACCGGATCACTCG (-)

second Babesia-F GTAATTCCAGCTCCAATAGC (+) 679 bp 50˚C

Babesia-R2 ATTAASCAGACAAATCACTC (-)

https://doi.org/10.1371/journal.pntd.0012159.t001
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Fig 2. ML tree reconstructed based on the cytb gene sequences of rodent species. Bootstrap values were calculated with 1000

replicates and only>70% are shown. Sequences of rodent species determined herein are marked with black circle. One representative

cytb gene sequence for each rodent species was used for the phylogenetic analysis.

https://doi.org/10.1371/journal.pntd.0012159.g002
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strains of E. chaffeensis for 16S rRNA gene (Query cover: 100%, E-value: 0.0, MN368552,

NR_074500, CP007475–CP007480, CP007473 and CP000236). Furthermore, two partial 16S

rRNA gene sequences were recovered by PCR with primer pairs Eh-out1/rp2 and Eh-gs1/rp2

(Table 2). All these two sequences (GXS35 and GXS50, S2 Table) shared the highest nucleotide

identity of 99.8% with those of uncultured Ehrlichia sp. clone YN04m, uncultured Ehrlichia sp.

clone YN04 and Ehrlichia sp. 360 (Query cover: 100%, E-value: 0.0), and all of them clustered

together in the phylogenetic tree (Fig 3A). Unfortunately, we failed to get other genes whether

the primers in the previous studies or designed in this study were applied in the PCR

reactions.

Two species in the genus Ehrlichia were identified by PCR with the primer pairs for detec-

tion of “Ca. N. mikurensis” (Table 2). In the groEL gene tree (Fig 3B), “Ca. E. hainanensis” iso-

late CCBF6 presented the closest relationship with both “Ca. E. hainanensis” clones Hainan 67

and Hainan 43. Consistently, BLASTn showed that CCBF6 shared the highest nucleotide iden-

tity of 98.6% with both these two “Ca. E. hainanensis” isolates identified in Niviventer fulves-
cens from Hainan Province for the groEL gene. In addition to “Ca. E. hainanensis”, another

uncultured Ehrlichia species was identified in sample GXS15 (Tables 2 and S2). BLASTn

showed that its groEL gene sequence had the highest nucleotide identity of 99.5% with those of

uncultured Ehrlichia sp. clone Dehong-17 and Dehong-86 in Rhipicephalus microplus collected

from Yunnan of China, followed by uncultured Ehrlichia sp. clone UN2-100 in Rhi.microplus
from Malaysia. In the groEL gene tree (Fig 3B), GXS15 clustered with the above-mentioned

three Ehrlichia isolates.

Table 2. Detection of vector-borne microorganisms in wild rodents from Guangxi, China.

Fengshan Ningming Shangsi

Rat.
andamanensis

Rat.
losea

Mus
caroli

Mus
pahari

Ber.
bowersi

Leo.

edwardsi
Ban.

indica
Ban. indica Ban.

indica
A. bovis 3/49a 0/27 0/3 1/10 0/3 0/9 0/14 0/38 1/49

A. capra 0/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

A. ovis 2/49 2/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

A. phagocytophilum 3/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

Ca. N. mikurensis 21/49 3/27 1/3 0/10 0/3 0/9 0/14 0/38 2/49

Ca. E. hainanensis 0/49 0/27 0/3 0/10 0/3 1/9 0/14 0/38 0/49

Ca. E. zunyiensis 0/49 0/27 0/3 0/10 0/3 2/9 0/14 0/38 0/49

uncultured Ehrlichia sp. 1 (E. chaffeensis-like) 1/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

uncultured Ehrlichia sp. 2 (uncultured Ehrlichia
sp. clone YN04m)

2/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

uncultured Ehrlichia sp. 3 (uncultured Ehrlichia
sp. clone Dehong-17)

1/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

Bar. coopersplainsensis 0/49 0/27 0/3 0/10 0/3 1/9 0/14 0/38 0/49

Bar. tribocorum 2/49 4/27 0/3 0/10 0/3 2/9 0/14 2/38 2/49

Bar. rattimassiliensis 0/49 2/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

Bar. silvatica 0/49 0/27 0/3 0/10 0/3 0/9 0/14 2/38 4/49

Ca. Bar. fengshanensis 0/49 3/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

Ca. Bar. shangsiensis 0/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 6/49

Bab.microti 3/49 0/27 0/3 2/10 0/3 0/9 0/14 0/38 0/49

Hepatozoon spp. 1/49 9/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

a positive samples/total samples

https://doi.org/10.1371/journal.pntd.0012159.t002
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In addition to the above-mentioned potential Ehrlichia species, two samples (CCBF3 and

CCBF4) tested positive for “Ca. E. zunyiensis” using primer pairs Eh-out1/rp2 and Eh-gs1/rp2

(Tables 2 and S2). In addition, two partial groEL gene sequences were obtained using primer pairs

HS1/HS6 and HS3/HSVR, and one partial gltA gene sequence was obtained using primer pairs

Ehrlichia-1F/Ehrlichia-R and Ehrlichia-2F/Ehrlichia-R. These two isolates shared 100% nucleo-

tide identity for partial 16S rRNA gene and 99.9% for groEL gene with each other. Furthermore,

these two isolates had the highest nucleotide identity with known “Ca. E. zunyiensis” isolates, pre-

senting 99.8% nucleotide identity for 16S rRNA gene, 99.8–99.9% nucleotide identities for gltA
gene and 99.8–99.9% for groEL gene. Consistently, in the three trees based on 16S rRNA, gltA and

groEL genes, these two isolates in this study clustered with the “Ca. E. zunyiensis” isolates identi-

fied in Be. bowersi collected from Zunyi City of Guizhou Province (Fig 3A-3C).

Fig 3. ML trees reconstructed based on the genus Ehrlichia. (A) ML tree based on partial 16S rRNA gene; (B) ML tree based on partial groEL gene;

(C) ML tree based on partial gltA gene. The legend follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g003
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Genetic and phylogenetic analysis of Anaplasma
Using primer pairs fD1/Eh-out2 and fD1/Eh-gs2, six samples tested positive for the genus

Anaplasma (Tables 2 and S2). Of the six partial 16S rRNA gene sequences, BLASTn showed

that four sequences (GXS5, GXS45, GXS14 and GXS56) had the highest nucleotide identity of

100% with some 16S rRNA gene sequences of A. ovis deposited in GenBank (Query cover:

100%, E-value: 0.0), one (GXS70) presented the highest nucleotide identity of 99.8% with that

of A. bovis isolate Zhouzhi-cattle-10 (Query cover: 100%, E-value: 0.0), and the last (GXS74)

shared the highest nucleotide identity of 100% with some 16S rRNA gene sequences of A.

capra (Query cover: 100%, E-value: 0.0). Using primer pairs Eh-out1/rp2 and Eh-gs1/rp2, one

partial 16S rRNA gene sequence was recovered from sample GXS6, which most closely resem-

bled those of A. bovis. Interestingly, BLASTn showed that this sequence had 100% nucleotide

identity with A. bovis isolate 9689B recovered from Ban. indica and A. bovis isolate 80-1t from

H. bandicota parasitizing Ban. indica from Taiwan, 99.7% with A. bovis isolate 9100t from Rhi.
haemaphysaloides parasitizingMus caroli also from Taiwan, 99.6% with isolates from

Amblyomma triguttatum from Australia, and 98.9–99.2% nucleotide identities with other A.

bovis isolates. In the phylogenetic tree, all these seven isolates were classified into three clades,

and corresponded to A. capra, A. ovis and A. bovis, respectively (Fig 4A). Especially, isolate

GXS6 first clustered with isolates 9689B, 80-1t and 9100t from Taiwan, and then all of them

formed a clade with isolates from Australia in the diversity of A. bovis.
Because of the absence of gltA and groEL genes of isolates 9689B, 80-1t and 9100t, primers

based on groEL gene of isolates above-mentioned identified in Australia were designed. Sur-

prisingly, using the primer pairs Abovis-groEL-F1/Abovis-groEL-R1 and Abovis-groEL-F2/

Abovis-groEL-R2, one partial groEL gene sequence was amplified successfully from sample

SS7 rather than from sample GXS6 (Tables 2 and S2). The partial groEL gene sequence showed

the highest nucleotide identity of 91.4% (Query cover: 96%, E-value: 1e-111) with A. bovis iso-

lates identified from Australia, followed by isolate Zhouzhi-goat-29 with 84.6% nucleotide

identity (Query cover: 99%, E-value: 7e-80). However, it only presented less than 80% nucleo-

tide identity with other A. bovis isolates both in and outside China. In the absence of a gener-

ally recognized cutoff value to identify a novel Anaplasma species, as well as the absence of

other gene sequences, it is difficult to determine whether it represents a new species or just a

variant of A. bovis. In the phylogenetic tree, this partial groEL gene sequence was closely related

to those isolates recovered from Amblyomma triguttatum in Australia (Fig 4B). Additionally,

sample GXS27 tested positive for A. bovis using prime pairs bovis-gltA-F1/bovis-gltA-R and

bovis-gltA-F2/bovis-gltA-R (Tables 2 and S2). In the gltA gene tree, this A. bovis isolate fell

into the diversity of lineage 1 of Guo et al. [31] (Fig 4C). The nucleotide sequence identity

between the gltA sequence in this study and those belonging to lineage 1 ranged from 94.1% to

99.4%. We also tried to obtain the 16S rRNA and groEL sequences using the primers listed

above and in the previously study but failed.

Furthermore, Anaplasma spp. was identified using primer pairs CS7F2/HG1085R and F1b/

AnaCS1076R. As a result, three partial gltA gene sequences were recovered from samples

GXS21, GXS33 and GXS61 (Tables 2 and S2), and all of them showed 99.5–99.7% nucleotide

identities with each other. BLASTn showed that all these three gltA gene sequences shared the

highest nucleotide identities of 98.4–98.7% with that of A. phagocytophilum isolate Yanshou-

103 identified inHaemaphysalis longicornis tick from Heilongjiang Province (Query cover:

100%, E-value: 0.0), followed by A. phagocytophilum isolates with approximately 85.1–88.4%

nucleotide identities. In the phylogenetic tree, these three isolates in this study were closely

related to isolate Yanshou-103 and clustered together, and separate from other A. phagocyto-
philum isolates (Fig 4D). Although the primer pairs targeting the groEL gene was designed
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based on the corresponding sequences of isolate Yanshou-103 and other A. phagocytophilum
isolates, we failed to obtain the groEL gene from these three positive samples.

Genetic and phylogenetic analysis of Candidatus Neoehrlichia

BLASTn showed that 27 rodent samples tested positive for “Ca. N. mikurensis” (Tables 2 and

S2). All these 27 partial groEL gene sequences were closely related to each other, and presented

Fig 4. ML trees reconstructed based on the genus Anaplasma. (A) ML tree based on partial 16S rRNA gene; (B) ML tree based on partial groEL
gene; (C) ML tree based on partial gltA gene of Anaplasma bovis; (D) ML tree based on partial gltA gene of Anaplasma phagocytophilum. The legend

follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g004
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99.8–100% nucleotide identities. Interestingly, all these isolates clustered with five isolates

(Mulan-96, Fangzheng-108, Binxian-19, Shangzhi-36 and Fangzheng-47) from Heilongjiang

Province, four (2011FJ41N.c, 2010HN13A.a, 2010HN23R.n and 2006ZJ59A.s ZJ) from South-

east China and one (TK4456) from Japan, and formed a separate clade in the phylogenetic tree

(Fig 5), rather than with isolates from Yunnan Province neighboring Guangxi. All the isolates

in this clade shared 99.3–100% nucleotide identities.

Genetic and phylogenetic analysis of Bartonella
Detection of Bartonella spp. targeting both the ftsz and gltA genes revealed that 30 samples

were positive. BLASTn showed that four validated Bartonella species were identified, including

Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassiliensis, and Bar. silvatica (Tables 2 and

S2). In addition, a Bartonella species closely related to Bartonella sp. KM2563 was detected,

and all three isolates shared the highest nucleotide identities of 99.8% and 99.3–99.6% with

Bartonella sp. KM2563 for the ftsz and gltA genes, respectively, followed by Bar. phoceensis.
Furthermore, another Bartonella species was detected (Tables 2 and S2), which was closely

related to uncultured Bartonella sp. clone 026RS18FTSZ in Ra. satarae from India, followed by

Bar. tribocorum. Six ftsz gene sequences were recovered from all the positive samples, and they

shared 99.6–100% nucleotide identities with each other, and 99.2–99.4% with uncultured Bar-
tonella sp. clone 026RS18FTSZ and 97.3% with Bar. tribocorum. Moreover, two gltA gene

sequences were recovered, and they shared 99.5–99.9% nucleotide identities to each other and

96.3–96.4% with Bar. tribocorum due to an absence of the gltA gene of uncultured Bartonella
sp. clone 026RS18FTSZ. As shown in Fig 6, the phylogenetic trees based on the ftsZ and gltA
genes showed a similar topology, and the newly identified isolates in this study clustered with

the corresponding isolates of Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassiliensis
and Bar. silvatica, respectively. Interestingly, the three isolates closely related to Bartonella sp.

KM2563 was determined in this study and Bartonella sp. KM2563 formed a separate clade in

both ftsZ and gltA genes trees. Both nucleotide and phylogenetic analyses suggested that they

represent a novel species, and we name it “Candidatus Bartonella fengshanensis” according to

the site where the rodents were collected. As for another six isolates closely related to uncul-

tured Bartonella sp. clone 026RS18FTSZ, all of them first clustered with uncultured Bartonella
sp. clone 026RS18FTSZ, and then with Bar. tribocorum in the ftsZ tree. On the contrary, these

isolates formed a distinct clade and were separate from Bar. tribocorum in the gltA tree. There-

fore, they represent another novel species although it was closely related to Bar. tribocorum,

and we name it as “Candidatus Bartonella shangsiensis” according to the site where the

rodents were collected.

Genetic and phylogenetic analysis of protozoan parasites

By amplifying the partial 18S rRNA gene, 15 rodent samples tested positive protozoan para-

sites. BLASTn showed that five isolates belonged to Bab.microti and other 10 belonged to the

genusHepatozoon (Tables 2 and S2). The five partial 18S rRNA gene sequences of Bab.microti
shared 99.9–100% nucleotide identities to each other and 98.1–100% with corresponding

sequences of other known Bab.microti isolates. The 10 partial 18S rRNA gene sequences of

Hepatozoon spp. shared 98.2–100% nucleotide identities with each other. Furthermore, GXS48

shared the highest identity of 100% withHepatozoon sp. isolates R50 and R38. Of another

nine, six showed the highest identities of 98.5–98.9% withHepatozoon sp. isolate RT9 and the

remaining three showed the highest identities of 98.8–98.9% withHepatozoon sp. DJH-2014c,

respectively. For Bab.microti, all five isolates determined in this study fell into the diversity of

Bab.microti, and clustered with the Kobe-type isolates, a zoonotic genotype (Fig 7A). In the
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Fig 5. ML trees reconstructed based on “Candidatus Neoehrlichia mikurensis”. Three representative groEL gene sequences were

used for the phylogenetic analysis. The legend follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g005
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phylogenetic tree, GXS48 clustered together with Hepatozoon sp. isolates R50 and formed a

distinct clade. Although clustering together, another nine isolates formed six distinct clades,

suggesting potential novelHepatozoon species (Fig 7B). Interestingly,Hepatozoon species asso-

ciated with rodents and reptiles from different parts of the world formed a large clade in the

phylogenetic tree based on 18S rRNA gene, and those identified in this study fell into the diver-

sity of this clade.

Co-infection of diverse microorganisms

Dual infection was observed between different microorganisms (S2 Table). Specifically, dual

infection was identified between A. bovis and Bar. tribocorum in SS7, “Ca. E. zunyiensis” and

Bar. tribocorum in CCBF3 and CCBF4, A. bovis and Bab.microti in GXS6, uncultured Ehrli-
chia sp. clone YN04m and “Ca. N. mikurensis” in GXS35, “Ca. Bar. fengshanensis” and “Ca.
N. mikurensis” in GXS63, A. phagocytophilum and “Ca. N. mikurensis” in GXS21, and “Ca.
Bar. fengshanensis” and “Ca. N. mikurensis” in GXS64 were identified. Interestingly, co-infec-

tion between “Ca. N. mikurensis” and other microorganisms is the most common type.

Discussion

In this study, a molecular survey of vector-borne pathogens in field rodents was performed,

and the results showed that four Anaplasma, five Ehrlichia, “Ca. N. mikurensis”, six Bartonella,
Bab.Microti and diverseHepatozoon were identified in six rodent species collected from three

Fig 6. ML tree reconstructed based on the genus Bartonella. (A) ML tree based on partial ftsz gene; (B) ML tree based on partial gltA gene. One

representative sequence of ftsz and gltA genes for each Bartonella species was used for the phylogenetic analysis. The legend follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g006
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sampling sites in Guangxi Province. In addition, A. capra, A. ovis and E. chaffeensis-like, as

well as several potential newHepatozoon species, were identified although more evidences are

needed, which is the limitation of this study. Of them, six, including A. capra, A. phagocytophi-
lum, “Ca. N. mikurensis”, Bar. rattimassiliensis, Bar. tribocorum and Bab.microti are zoonotic

pathogens in addition to A. bovis and A. ovis with zoonotic potential. Hence, our results greatly

contribute to revealing the species diversity of rodent-borne bacteria and protozoan circulating

in this area, especially those pathogenic to humans.

As the natural hosts of many Anaplasma and Ehrlichia species, rodents have been reported

to harbor A. phagocytophilum, A. bovis, A. ovis [39], E. chaffeensis, E.muris, “Ca. E. hainanen-

sis” [26], “Ca. E. zunyiensis” [25], “Ca. E. khabarensis”, and “Ca. E. extremiorentalis”

(AY584851). In this study, sequence analysis showed that four Anaplasma and five Ehrlichia
were detected in rodents, respectively. Interestingly, this is the first evidence of A. capra infec-

tion in rodents although further evidence is needed. Anaplasma phagocytophilum is distributed

worldwide, and presents extensive genetic diversity. In this study, three isolates, GXS21,

GXS33, and GXS61, were closely related to isolate Yanshou-103 [40], and formed a distinct

clade in the phylogenetic tree, suggesting a novel lineage of A. phagocytophilum. Interestingly,

these three isolates were identified in Guangxi in Southwest China; while isolate Yanshou-103

was identified in Heilongjiang in Northeast China. Hence, we propose a conjecture that this

novel lineage of A. phagocytophilummay be present in other parts of China. For A. bovis,
except known lineage circulating in mainland China, one 16S rRNA gene sequence presenting

the closest relationship with isolates from Taiwan, and another groEL gene showing the highest

nucleotide identity of 91.4% with isolates from Australia [41], were generated in this study. In

the absence of a generally recognized cutoff value to identify a novel Anaplasma species, we

temporarily suppose that they may be variants of A. bovis based on the phylogenetic analysis.

However, these two sequences were amplified from two rodent samples from two different

sampling sites, so we cannot determine whether these two sequences are from the same lineage

of A. bovis. But anyway, there must be at least one novel lineage of A. bovis circulating locally.

Previous studies demonstrated that “Ca. N. mikurensis” was widely distributed in rodents in

and outside China, and its genetic diversity was correlated with the geographic origin [21]. In

2023, “Ca. N. mikurensis” isolates identified from northeastern China closely related to those

from southeastern China were identified in ticks [40]. In this study, “Ca. N. mikurensis” iso-

lates in this lineage were also identified in rodents, indicating its wide distribution.

As emerging zoonotic causative agents, most members of the genus Bartonella are hosted

by diverse rodent species, with the prevalence reaching up to more than 50% in the field

[10,11,22]. Of rodent-associated species, eight are regarded as human pathogens causing bar-

tonellosis with a variety of clinical features, namely, Bar. doshiae, Bar. elizabethae, Bar.graha-
mii, Bar. rattimassiliensis, Bar. rochalimae, Bar. tribocorum, Bar. vinsonii, and Bar. washoensis,
and all have been identified in China [12]. Based on the genetic and phylogenetic analysis, four

validated Bartonella species, including Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassi-
liensis, and Bar. silvatica, were identified in four rodent species. Notably, Bar. tribocorum are

considered to be zoonotic pathogens in recent years [42]. In addition, two potential novel spe-

cies were detected in Ra. losea and Ban. indica, respectively. Specifically, one was most closely

related to Bar. phoceensis, with approximate 95.5% nucleotide identities for gltA gene. Based

on the criteria suggested by La Scola et al. [43] for Bartonella targeting the gltA gene (the gltA
fragment shares <96.0% sequence similarity with validated species), this Bar. phoceensis-like

species can be attributed to a novel species, named “Ca. Bartonella fengshanensis”. For another

species, it had the closest relationship with Bar. tribocorum (96.4% nucleotide identity for gltA
gene), which doesn’t fit the criteria suggested by La Scola et al [43]. However, Bar. tribocorum
and Bar. kosoyi are known as two distinct species although they share 98.6% nucleotide identity
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for gltA gene. Combination the fact that less than 4% genetic divergence between two known Bar-
tonella species and the position of Bar. tribocorum-like on the gltA tree, we still consider it as a

novel Bartonella species, named “Ca. Bartonella shangsiensis”. The human-pathogenic Bar. tribo-
corum and two presumably novel Bartonella species infections in rodents call for more robust sur-

veillance studies to reveal the prevalence of Bartonella in rodents, even in humans.

Of the Babesia species pathogenic to humans, Bab.microti, Bab. venatorum, and Bab. diver-
gens have been identified in patients and cause babesiosis with atypical clinical systems in

Fig 7. ML tree reconstructed based on partial 18S rRNA gene sequences of protozoan. (A) ML tree based on partial 18S rRNA gene sequences of

the genus Babesia; (B) ML tree based on partial 18S rRNA gene sequences of the genusHepatozoon. The legend follows that of Fig 2. The sequences

marked with black triangle were identified in rodents, and those shown in bold were recovered from reptiles, including snakes.

https://doi.org/10.1371/journal.pntd.0012159.g007
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China [44]. Besides, Bab. crassa-like and Babesia. sp. XXB/Hangzhou causing sporadic cases

have also been reported [45,46]. To date, only Bab.microti was detected in rodents in Yunnan,

Beijing, Zhejiang, Fujian and Henan Provinces, although the above-mentioned pathogens

were detected in ticks on a much wider geographical scale in China [23,24,47–50]. In Guangxi,

Bab.microti has been identified in patients, ticks (Rhi. sanguineus), and farmedMacaca fasci-
cularis in Nanning city [51–53]. Consistently, five Bab.microti isolates were identified inMus
pahari and Ra. andamanensis collected from Fengshan of Hechi city in the current study, indi-

cating its wide geographical distribution in Guangxi. In addition, all five Bab.microti isolates

belong to Kobe-type with zoonotic, therefore, surveillance focusing on human cases should be

performed in the future study.

Hepatozoon spp. are important veterinary pathogens and their pathogenicity to humans is

unclear althoughHepatozoon sp. detected in humans from Russia has been reported [54].

Rodents are regarded as natural intermediate and potential paratenic hosts of someHepato-
zoon species [55,56]. Furthermore, these agents have been identified in diverse rodent species

around the world [20]. In China,Hepatozoon spp. have been identified in snakes [57,58], dogs

[59], cats (GenBank: OM714911), and one rodent species, namely, Rhombomys opimus [19].

Therefore, the information onHepatozoon spp. in rodents is scarce in China. In this study, ten

Hepatozoon isolates were identified inMus pahari and Ra. andamanensis. This is the first

report ofHepatozoon spp. infections in these two rodents, expanding the rodent range. Con-

sidering the nucleotide identity among them and their position in the phylogenetic tree, nine

isolates may belong to different potential novel species. In addition, the most related sequences

in the phylogenetic tree were from rodents and snakes, hence, we put forward a hypothesis

thatHepatozoon species can be transmitted from rodents as the paratenic host to reptiles, con-

sistent with a previous study [20].

Several limitations existed in this study. First, an inadequate representation of rodent spe-

cies existed in two sampling sites in Ningmign and Shangsi, respectively, resulting in an

incomplete depiction of the vector-borne pathogens in wild rodents. Second, only one gene or

partial gene sequences were obtained for some pathogens, affecting our understanding of their

genetic characteristics. Third, the age or gender of the captured rodents was not recorded;

therefore, the assessment of the prevalence of each pathogen across age groups or sexes of

rodents could not be determined. Forth, blood-sucking vectors on the rodents were not col-

lected in this study; therefore, it is uncertain whether there is consistency between the patho-

gens carried by rodents and those carried by arthropods on rodents.

Conclusion

In sum, a wide variety of bacterial and protozoan microorganisms were identified in rodents

from Guangxi Province, China. Of them, six are human pathogens, including one Bartonella,
one Babesia, “Ca. N. mikurensis”, and three Anaplasma. In addition, potential novel Bartonella
species and diverse unculturedHepatozoon clones were identified, contributing to a better

understanding of the genetic diversity of rodent-associated Bartonella andHepatozoon, respec-

tively. Our findings underscore the potential risk of transmission to humans and emphasize

the need for enhanced surveillance of these causative agents in human populations. Further-

more, our results offer valuable insights to mitigate the public health risk posed by the causa-

tive agents identified in this study.
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5. Carvalho CL, Lopes de Carvalho I, Zé-Zé L, Núncio MS, Duarte EL. Tularaemia: a challenging zoono-

sis. Comp Immunol Microbiol Infect Dis. 2014; 37(2): 85–96. https://doi.org/10.1016/j.cimid.2014.01.

002 PMID: 24480622

6. Mohd Zain SN, Amdan SA, Braima KA, Abdul-Aziz NM, Wilson JJ, Sithambaran P, et al. Ectoparasites

of murids in peninsular Malaysia and their associated diseases. Parasit Vectors. 2015; 8: 254. https://

doi.org/10.1186/s13071-015-0850-1 PMID: 25924677

7. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG. Intracellular pathogens go extreme:

genome evolution in the Rickettsiales. Trends Genet. 2007; 23(10): 511–520. https://doi.org/10.1016/j.

tig.2007.08.002 PMID: 17822801

8. Merhe V, Angelakis E, Socolovschi C, Raoult D. Genotyping, evolution and epidemiological findings of

Rickettsia species. Infect Genet Evol. 2014; 25: 122–37. https://doi.org/10.1016/j.meegid.2014.03.014

PMID: 24662440

9. Rar V, Golovljova I. Anaplasma, Ehrlichia, and "Candidatus Neoehrlichia" bacteria: pathogenicity, biodi-

versity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011; 11(8): 1842–1861.

https://doi.org/10.1016/j.meegid.2011.09.019 PMID: 21983560

10. Okaro U, Addisu A, Casanas B, Anderson B. Bartonella Species, an Emerging Cause of Blood-Culture-

Negative Endocarditis. Clin Microbiol Rev. 2017; 30(3): 709–746. https://doi.org/10.1128/CMR.00013-

17 PMID: 28490579
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