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Abstract

Background

Rodents are recognized as the hosts of many vector-borne bacteria and protozoan para-
sites and play an important role in their transmission and maintenance. Intensive studies
have focused on their infections in vectors, especially in ticks, however, vector-borne bacte-
rial and protozoan infections in rodents are poorly understood although human cases pre-
senting with fever may due to their infection have been found.

Methods

From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi
Province, and the spleen samples were collected to reveal the presence of vector-borne
bacterial and protozoan infections in them. The microorganisms in rodents were identified
by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size
were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recov-
ered sequences were subjected to nucleotide identity and phylogenetic analyses.

Results

As a result, 192 rodents representing seven species were captured, and Bandicota indica
were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested
PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Ana-
plasma phagocytophilum, “Candidatus Neoehrlichia mikurensis”, “Candidatus E. hainanen-
sis”, “Candidatus E. zunyiensis”, three uncultured Ehrlichia spp., Bartonella
coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica,
two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in
six rodent species. More importantly, six species (including two Anaplasma, two Bartonella,
“Ca. N. mikurensis” and Bab. microti) are zoonotic pathogens except Anaplasma bovis and
Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between
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Conclusions

The results in this work indicated great genetic diversity of vector-borne infections in wild
rodents, and highlighted the potential risk of human pathogens transmitted from rodents to
humans through vectors.

Author summary

Rodents are the important hosts of many pathogens, especially vector-borne pathogens,
and can harbor and transmit them to humans and cause diseases. In China, little informa-
tion is known about the infection of vector-borne pathogens in rodents although the
rodent species are very diverse. In this study, seven wild rodent species were collected to
identify the genetic diversity of vector-borne bacteria and protozoan. Interestingly, diverse
vector-borne microorganisms, including four Anaplasma, five Ehrlichia, “Candidatus
Neoehrlichia mikurensis”, six Bartonella, Babesia microti and diverse Hepatozoon were
identified in six rodent species. Furthermore, two potential novel Bartonella species were
detected. All these data suggested great genetic diversity of vector-borne pathogens infec-
tions in rodents. Of them, six species (including two Anaplasma, two Bartonella, “Ca. N.
mikurensis” and Bab. microti) are pathogenic to humans except A. bovis and A. ovis with
zoonotic potential, suggesting significant risks to local human population.

Introduction

As the most abundant and diverse mammals, rodents are notorious due to their ability to host
and transmit a wide range of zoonotic pathogens, such as bacteria, viruses, and parasites [1].
Among them, infection with some pathogens can cause serious diseases in humans, including
Yersina pestis causing plague [2], orthohantaviruses causing hemorrhagic fever with renal syn-
drome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) [3], Lassa virus causing
Lassa fever (LF) [4], Francisella tularensis causing tularemia [5], etc. Except for the direct
route, rodent-associated causative agents can be transmitted indirectly to humans and animals
mainly through blood-feeding ectoparasitic arthropods [6]. As the important hosts infested by
immature ticks, rodents are considered to be the competent reservoirs of many vector-borne
pathogens. They play an important role in maintaining and transmitting a great extensive vec-
tor-borne zoonotic and veterinary bacterial and protozoan pathogens, such as Anaplasmata-
ceae, Bartonella, Babesia and Hepatozoon [1].

Many tick-borne Anaplasmataceae bacteria are pathogenic to humans and animals [7]. Spe-
cifically, pathogens that cause diseases mainly include some members within Anaplasma, Ehr-
lichia and Candidatus Neoehrlichia [8]. Because no transovarial transmission of Anaplasma,
Candidatus Neoehrlichia, and Ehrlichia was observed in ticks [9], vertebrates including
rodents are necessary to be the hosts of them. Many species within these genera, including A.
phagocytophilum and Ehrlichia chaffeensis causing human monocytic ehrlichiosis (HME) and
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human granulocytic ehrlichiosis (HGE), respectively, have been identified in rodents [1]. Con-
trary to the family Anaplasmataceae, Bartonella spp. are facultative intracellular alphaproteo-
bacteria and comprise a large number of vector-borne bacteria [10]. To date, more than 40
species including eight zoonotic pathogens have been identified in a wide range of rodents
[11]. Therefore, rodents are recognized as the main natural reservoirs of the genus Bartonella
[11]. In China, 22 rodent-associated Bartonella species, including eight pathogenic to humans,
have been found so far, indicating a potential risk to humans [12].

Genera Babesia and Hepatozoon belong to Apicomplexa of Protozoa. Some species within
the genus Babesia are uncommon zoonotic agents and are transmitted to humans through
blood feeding by ticks [13,14]. Rodents are considered to be the main reservoirs of Babesia,
especially for Bab. microti, which is commonly distributed throughout the world and identified
in diverse rodent species [13]. Genus Hepatozoon is composed of more than three hundred
species, and invertebrate animals and vertebrate animals are used as its definitive and interme-
diate hosts, respectively [15,16]. Its transmission from vectors to vertebrates occurs when the
intermediate host ingests the definitive host, differing from most other vector-borne protozoal
and bacterial pathogens [17]. Definitely, rodents have been confirmed to be the intermediate
hosts of H. ayorgbor [18]. In addition, Hepatozoon spp. have been identified in diverse rodents
although their role as intermediate or paratenic hosts to Hepatozoon spp. is uncertain [19,20].

Guangxi Zhuang Autonomous Region is located in South China, and its topography is
characterized by mountains and hills. The subtropical climate and dense vegetation are condu-
cive to the survival of various wild rodents. As the hosts of many vector-borne microorganisms
including human pathogens, molecular surveys on vector-borne bacterial and protozoan
infections in rodents, including Anaplasmataceae, Bartonella and Babesia, have been per-
formed in many parts of China in the past 20 years [12,19,21-26]. In recent years, an increas-
ing number of patients presenting with fever but lacking a confirmed viral etiology has been
observed mainly in Guangxi. In addition, almost no study on vector-borne pathogens in
rodents has been done in Guangxi although diverse rodents are present locally. In this study,
rodents were captured from probable infection sites of most of such patients to enhance the
understanding of the genetic diversity of vector-borne bacteria and protozoan in rodents. The
objective of this study was to reveal potential pathogens responsible for these patients.

Materials and methods
Ethics statement

This study was approved by the Ethics Committee of Chengde Medical University (No.
202004). All the rodents were treated in accordance with the “Rules for Implementation of
Laboratory Animal Medicine” from the National Health Commission, China.

Sample collection and DNA extraction

From May to October 2019, rodents were collected in wild environment around fields from
Fengshan county of Hechi city, Ningming county of Chongzuo city, and Shangsi county of
Fangchenggang city in Guangxi, China (Fig 1). The rodents were captured alive using baited
cages with a treadle release mechanism (27x14x11). Two trapping sessions were conducted
per month, and a total of two hundred cages were set up in each session. The trap line was set
at the edge of the fields, and the cage traps were set at 10 m intervals. All the collected rodents
were anesthetized with isofluorane before euthanasia to minimize suffering. The spleen tissue
was aseptically collected after sacrifice. The rodent species were first identified based on mor-
phological characteristics [27]. Rodents that tested positive for vector-borne microorganisms,
approximately one-third of those that tested negative, and those with a small sample size were
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Fig 1. Geographical distribution of the rodent sampling sites (black dots) in Guangxi Province, China. The figure was generated
using Rstudio. The source of the basemap shapefile was obtained from GADM (https://geodata.ucdavis.edu/gadm/gadm4.1/shp/
gadm41_ZMB_shp.zip).

https://doi.org/10.1371/journal.pntd.0012159.9001

further confirmed at the species level by sequence analysis of the mitochondrial cytochrome b
(mt-cyt b) gene [28]. Twenty-five milli grams of spleen tissue per sample was homogenized in
200 pL of TL Buffer (tissue lysis buffer). Total DNA was extracted using a Tissue DNA Kit
(Omega, Norcross, GA, USA) and eluted in 80 pL of double-distilled water as per the manufac-
turer’s protocol in a fume hood in a separate laboratory room. The OD260/0D280 ratio of all
the extracted DNA samples was 1.73-1.87. The extracted DNA was stored at -20°C before
microorganism detection.

Detection and molecular characterization of diverse microorganisms

The presence of microorganisms in rodents was identified by amplifying some marker genes
using (semi-)nested PCR [12,21,29-32]. PrimeSTAR GXL Premix (Takara, Dalian, China) was
used in all PCR reaction for the detection of microorganisms. Genera Ehrlichia and Anaplasma
were screened using primer pairs of fD1/Eh-out2 and fD1/Eh-gs2, and Eh-outl/rp2 and Eh-
gs1/rp2 targeting 16S rRNA gene [29,30]. “Candidatus N. mikurensis” was identified using
primer pairs of CNM-outl/CNM-in2 and CNM-in1l/CNM-R targeting groEL gene [21].
Primer pairs of bovis-gltA-F1/bovis-gltA-R and bovis-gltA-F2/bovis-gltA-R were used to
detect A. bovis by amplifying the gltA gene [31]. Primer pairs of Abovis-groEL-F1/Abovis-
groEL-R1 and Abovis-groEL-F2/Abovis-groEL-R2, designed in this study, were used to detect
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anovel lineage of A. bovis (identified from Australia) by amplifying the groEL gene. Primer
pairs of HS1/HS6 and HS3/HSVR [33,34] were used to detect the genera Anaplasma and Ehrli-
chia by amplifying the groEL gene. Primer pairs of Ehrlichia-1F/Ehrlichia-R and Ehrlichia-2F/
Ehrlichia-R (designed in this study) were used to detect the genus Ehrlichia by amplifying the
gltA gene. Primer pairs of CS7F2/HG1085R and F1b/AnaCS1076R were used to amplify the
gltA gene of the genus Anaplasma [32]. Genus Bartonella was identified by amplifying both
the gltA and ftsz genes. Primer pairs of Bar-gltA-F (Bar-gltA-FM)/Bar-gltA-R1 and Bar-gltA-F
(Bar-gltA-FM)/Bar-gltA-R2 were used for gltA and Bar-ftsz-F1/Bar-ftsz-R (Bar-ftsz-RM) and
Bar-ftsz-F2/Bar-ftsz-R (Bar-ftsz-RM) for ftsz gene, respectively [12]. Primer pairs of New-
Babesia-F/New-Babesia-R1 and New-Babesia-F/New-Babesia-R2, designed in this study, were
used to identify genera Babesia and Hepatozoon by amplifying18S rRNA gene. All the primer
sequences are shown in Table 1.

For the detection of microorganisms using (semi-)nested PCR, several rigorous measures
were taken to prevent contamination, including filter tips used in each assay, each assay (the
PCR mixture preparation, template addition, and agarose gel electrophoresis) performed in a
fume hood in three separate rooms, and negative control using ddH,O as a template.

The PCR product of the expected size analyzed by denaturing gel electrophoresis was puri-
fied using the Takara MiniBEST Agarose Gel DNA Extraction Kit Version 4.0 (Takara, Dalian,
China). The purified PCR product was sent to Shenggong Biotechnology Co., Ltd. for sequenc-
ing using the PCR primers. The PCR amplicons were sequenced with the ABI-PRISM Dye
Termination Sequencing kit (Thermo Fisher Scientific, Waltham, MA) using an ABI 373-A
genetic analyzer (Applied Biosystems, Carlsbad, CA).

Sequence analysis

All the newly generated nucleotide sequences were edited using BioEdit [35], and then blasted
against the nucleotide sequences deposited in the GenBank database (https://blast.ncbi.nlm.
nih.gov) to determine the similarity. Nucleotide sequence identity was determined among
sequences obtained in this study and reference sequences downloaded from the GenBank
database using the MegAlign program in Lasergene [36]. The maximum likelihood (ML) tree
was reconstructed using PhyML v3.2 [37] under the best-fit substitution model determined by
MEGA 7.0 [38]. Bootstrap value determined with 1000 replicates was used to estimate the con-
fidence values for each branch of the ML tree.

Results

Rodent sample collection

A total of 192 rodents were collected in three sampling sites of Guangxi, China (Fig 1), and
seven species belonging to five genera were tentatively identified based on the morphological
characteristics. Consistently, the rodents captured in the current study were classified into
seven clades in the phylogenetic tree based on the cytb gene (Fig 2), and these seven clades cor-
responded to seven rodent species, namely Bandicota indica (Greater Bandicoot Rat, n = 91),
Berylmys bowersi (n = 3), Leopoldamys edwardsi (Edward’s long-tailed rat, n = 9), Mus caroli
(n = 3), Mus pahari (Gairdner’s shrew-mouse, n = 10), Rattus andamanensis (n = 49), and Rat-
tus losea (Lesser Rice-field Rat, n = 27) (S2 Table).

Genetic and phylogenetic analysis of Ehrlichia

Using primer pairs f{D1/Eh-out2 and fD1/Eh-gs2, sample GXS19 tested positive for the genus
Ehrlichia (Tables 2 and S2), and presented the highest nucleotide identity of 98.73% with some
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Table 1. Primer sequences used in this study.

Pathogens Target round |Primer Oligonucleotide sequences (5’- 3°) Size Tm | References
gene
Anaplasma and rrs first fD1 AGAGTTTGATCCTGGCTCAG (+) 707 bp 55°C | 29,30
Ehrlichia Eh-out2 AGTAYCGRACCAGATAGCCGC (-)
second | fD1 AGAGTTTGATCCTGGCTCAG (+) 639 bp 55°C
Eh-gs2 CTAGGAATTCCGCTATCCTCT (-)
first Eh-outl AACGAACGCTGGCGGCAAGC (+) 1,449 bp 55°C
rp2 ACGGCTACCTTGTDACGACTT (-)
second | Eh-gs1 TGCATAGGAATCTACCTAGTAG (+) 1,354 bp 55°C
rp2 ACGGCTACCTTGTDACGACTT (-)
“Candidatus N. groEL first CNM-outl TGGCAAATGTAGTTGTAACAGG (+) 1,024 bp 50°C | 21
mikurensis™ CNM-in2 GAAGAATTACTATCTACRCTACC (-)
second | CNM-in1 GCTATTAGTAAGCCTTATGGTAC (+) 631 bp 50°C
CNM-R GYAGWGGTCTACCTGATCTTGCT (-) This study
A. bovis glitA first bovis-gltA-F1 TACATCWACWGTAAGAATGG (+) 360 bp 50°C | 31
bovis-gltA-R TCWATGAAGTAYTCATCCT (-)
second | bovis-gltA-F2 ACWGTAAGAATGGTKGGCTC (+) 353 bp 50°C
bovis-gltA-R TCWATGAAGTAYTCATCCT (-)
groEL first Abovis-groEL-F1 CTCTTATGTCNATGAGACG (+) 795 bp 50°C | This study
Abovis-groEL-R1 TACGCTCYTTTACTTCYACT (-)
second | Abovis-groEL-F2 GTTGAAGAAGARGAAATAGC (+) 356 bp 50°C
Abovis-groEL-R2 CCTTCCACATCTTCAGCTAT (-)
Ehrlichia gltA first Ehrlichia-1F CCAGGHTTTATGTCWACTGC (+) 1,092 bp 50°C | This study
Ehrlichia-R ACTGACGTGGACGACATATYT (-)
second | Ehrlichia-2F TTTATGTCWACTGCTGCTTGT (+) 1,086 bp 50°C
Ehrlichia-R ACTGACGTGGACGACATATYT (-) 50°C
groEL first HS1 CGYCAGTGGGCTGGTAATGAA (+) 1,412 bp 52°C | 33,34
HS6 CCWCCWGGTACWACACCTTC (-)
second | HS3 ATAGTYATGAAGGAGAGTGAT (+) 1,369 bp 55°C
HSVR TCAACAGCAGCTCTAGTWG (-)
Anaplasma gltA first CS7F2 ATGRTAGAAAAWGCTGTTTT (+) 1,091 bp 52°C |32
HG1085R ACTATACCKGAGTAAAAGTC (-)
second | F1b GAYCAYGARCARAATGCYTC (+) 416 bp 52°C
AnaCS1076 GAGTAAAAGTCGACRTTKGG (-)
Bartonella gltA first Bar-gltA-F/Bar- TTACYTAYGAYCCYGGBTTTA (+) 1,086 bp 54°C| 12
gltA-FM /GCHGATCAYGARCAAAATGC (+) /526 bp
Bar-gltA-R1 CYTCRATCATTTCTTTCCAYTG (-)
second | Bar-gltA-F/Bar- TTACYTAYGAYCCYGGBTTTA (+) 1,036 bp 54°C
gltA-FM /GCHGATCAYGARCAAAATGC (+) /476 bp
Bar-gltA-R2 GCAAAVAGAACMGTRAACAT (-)
ftsz first Bar-ftsz-F1 ATGACGATTAATCTGCATCG (+) 866 bp /581 | 50°C
Bar-ftsz-R/Bar-ftsz- | TCTTCRCGRATACGATTRGC (-) bp
RM /TAAAGHACTTGRTCAGCCAT (-)
second | Bar-ftsz-F2 ATTAATCTGCATCGGCCAGA (+) 860 bp /575 | 50°C
Bar-ftsz-R/Bar-ftsz- | TCTTCRCGRATACGATTRGC (-) bp
RM /TAAAGHACTTGRTCAGCCAT (-)
Babesia 18S rRNA | first Babesia-F GTAATTCCAGCTCCAATAGC (+) 1,050 bp 50°C | This study
Babesia-R1 ATAATTCACCGGATCACTCG (-)
second | Babesia-F GTAATTCCAGCTCCAATAGC (+) 679 bp 50°C
Babesia-R2 ATTAASCAGACAAATCACTC (-)

https://doi.org/10.1371/journal.pntd.0012159.t001
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Fig 2. ML tree reconstructed based on the cytb gene
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93

sequences of rodent species. Bootstrap values were calculated with 1000

replicates and only >70% are shown. Sequences of rodent species determined herein are marked with black circle. One representative
cytb gene sequence for each rodent species was used for the phylogenetic analysis.

https:/doi.org/10.1371/journal.pntd.0012159.g002

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012159

May 13, 2024 7/21


https://doi.org/10.1371/journal.pntd.0012159.g002
https://doi.org/10.1371/journal.pntd.0012159

PLOS NEGLECTED TROPICAL DISEASES Bacteria and protozoan in rodents from Guangxi, China

Table 2. Detection of vector-borne microorganisms in wild rodents from Guangxi, China.

Fengshan Ningming | Shangsi

Rat. Rat. Mus Mus Ber. Leo. Ban. Ban. indica | Ban.

andamanensis losea caroli pahari bowersi edwardsi indica indica
A. bovis 3/49° 0/27 0/3 1/10 0/3 0/9 0/14 0/38 1/49
A. capra 0/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
A. ovis 2/49 2/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
A. phagocytophilum 3/49 027 | 0/3 0/10 0/3 0/9 0/14 0/38 0/49
Ca. N. mikurensis 21/49 3/27 1/3 0/10 0/3 0/9 0/14 0/38 2/49
Ca. E. hainanensis 0/49 0/27 0/3 0/10 0/3 1/9 0/14 0/38 0/49
Ca. E. zunyiensis 0/49 0/27 0/3 0/10 0/3 2/9 0/14 0/38 0/49
uncultured Ehrlichia sp. 1 (E. chaffeensis-like) 1/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
uncultured Ehrlichia sp. 2 (uncultured Ehrlichia | 2/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
sp. clone YN04m)
uncultured Ehrlichia sp. 3 (uncultured Ehrlichia | 1/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
sp. clone Dehong-17)
Bar. coopersplainsensis 0/49 0/27 0/3 0/10 0/3 1/9 0/14 0/38 0/49
Bar. tribocorum 2/49 4/27 0/3 0/10 0/3 2/9 0/14 2/38 2/49
Bar. rattimassiliensis 0/49 2/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
Bar. silvatica 0/49 0/27 0/3 0/10 0/3 0/9 0/14 2/38 4/49
Ca. Bar. fengshanensis 0/49 3/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49
Ca. Bar. shangsiensis 0/49 0/27 0/3 0/10 0/3 0/9 0/14 0/38 6/49
Bab. microti 3/49 0/27 0/3 2/10 0/3 0/9 0/14 0/38 0/49
Hepatozoon spp. 1/49 9/27 0/3 0/10 0/3 0/9 0/14 0/38 0/49

? positive samples/total samples

https://doi.org/10.1371/journal.pntd.0012159.t002

strains of E. chaffeensis for 16S rRNA gene (Query cover: 100%, E-value: 0.0, MN368552,
NR_074500, CP007475-CP007480, CP007473 and CP000236). Furthermore, two partial 16S
rRNA gene sequences were recovered by PCR with primer pairs Eh-outl/rp2 and Eh-gs1/rp2
(Table 2). All these two sequences (GXS35 and GXS50, S2 Table) shared the highest nucleotide
identity of 99.8% with those of uncultured Ehrlichia sp. clone YNO4m, uncultured Ehrlichia sp.
clone YNO4 and Ehrlichia sp. 360 (Query cover: 100%, E-value: 0.0), and all of them clustered
together in the phylogenetic tree (Fig 3A). Unfortunately, we failed to get other genes whether
the primers in the previous studies or designed in this study were applied in the PCR
reactions.

Two species in the genus Ehrlichia were identified by PCR with the primer pairs for detec-
tion of “Ca. N. mikurensis” (Table 2). In the groEL gene tree (Fig 3B), “Ca. E. hainanensis” iso-
late CCBF6 presented the closest relationship with both “Ca. E. hainanensis” clones Hainan 67
and Hainan 43. Consistently, BLASTn showed that CCBF6 shared the highest nucleotide iden-
tity of 98.6% with both these two “Ca. E. hainanensis” isolates identified in Niviventer fulves-
cens from Hainan Province for the groEL gene. In addition to “Ca. E. hainanensis”, another
uncultured Ehrlichia species was identified in sample GXS15 (Tables 2 and S2). BLASTn
showed that its groEL gene sequence had the highest nucleotide identity of 99.5% with those of
uncultured Ehrlichia sp. clone Dehong-17 and Dehong-86 in Rhipicephalus microplus collected
from Yunnan of China, followed by uncultured Ehrlichia sp. clone UN2-100 in Rhi. microplus
from Malaysia. In the groEL gene tree (Fig 3B), GXS15 clustered with the above-mentioned
three Ehrlichia isolates.
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OMB883910/Candidatus Ehrlichia zunyiensis GZ81/China
OMB883906/Candidatus Ehrlichia zunyiensis GZ55/China
@ OR104951/CCBF4/China
@ ORI104950/CCBF3/China
AB454074/Ehrlichia sp. NS101/USA
| CP007480/Ehrlichia chaffeensia West Paces/USA
CP007473/Ehrlichia chaffeensia Heartland/USA
CP006917/Ehrlichia muris AS145/USA
CP007474/Ehrlichia sp. HF/USA
@ ORI104953/GXS35/China
@ OR104954/GXS50/China
99 KY433582/Uncultured Ehrlichia sp. clone YNO4m/China
KY433581/Uncultured Ehrlichia sp. clone YNO04/China
AB428564/Ehrlichia sp. 360/Japan
761 CR925677/Ehrlichia ruminantium Gardel/France
KRO063138/Candidatus Ehrlichia khabarensis m3/Russia
AB074459/Candidatus Ehrlichia shimanensis/USA
MZ733621/Candidatus Ehrlichia pampeana N3HjW33/Uruguay
NR_044747/Ehrlichia ewingii Stillwater/USA

100] CP025749/Ehrlichia canis YZ-1/China
%3 NC_007354/Ehrlichia canis Jake/USA
NR_148800/Ehrlichia minasensis UFMG-EV/USA

OL838197/Uncultured Ehrlichia sp. clone Dehong-17/China
KY046298/Uncultured Ehrlichia sp. clone UN2-100/Malaysia
OL838194/Uncultured Ehrlichia sp. clone Dehong-86/China
100] MT875365/Candidatus Ehrlichia hainanensis Hainan 43/China
MT875371/Candidatus Ehrlichia hainanensis Hainan 67/China

84

C OM920705/Candidatus Ehrlichia zunyiensis GZ81/China
OM920701/Candidatus Ehrlichia zunyiensis GZ55/China
@ OR117471/CCBF3/China

CPO007474/Ehrlichia sp. HF/USA

CP006917/Ehrlichia muris/AS145/USA

100 CP007473/Ehrlichia chaffeensia Heartland/USA
CP007480/Ehrlichia chaffeensia West Paces/USA
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100f MT875372/Candidatus Ehrlichia hainanensis Hainan 67/China

4' MT875366/Candidatus Ehrlichia hainanensis Hainan 43/China
DQ365879/Ehrlichia ewingii/USA

OL907281/Uncultured Ehrlichia sp. clone Dehong-86/China
4‘00{ KY046302/Uncultured Ehrlichia sp. clone UN2-100/Malaysia

OL907283/Uncultured Ehrlichia sp. clone Dehong-17/China

KR063140/Candidatus Ehrlichia khabarensis m3/Russia
CR925677/Ehrlichia ruminantium Gardel/France

100

100

—
0.05

B 731 @ OR117599/CCBF4/China

@ OR117598/CCBF3/China

OM920706/Candidatus Ehrlichia zunyiensis GZ55/China
OM920710/Candidatus Ehrlichia zunyiensis GZ81/China
AB454077/Ehrlichia sp. NS101/USA

CP006917/Ehrlichia muris AS145/USA

0] DQ672553/Candidatus Ehrlichia ovata/Japan
CP007474/Ehrlichia sp. HF/USA
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1ho) CP000107/Ehrlichia canis Jake/USA

CP025749/Ehrlichia canis YZ-1/China

CR925677/Ehrlichia ruminantium Gardel/France
AB074462/Candidatus Ehrlichia shimanensis/USA
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@ OR117601/GXS15/China

100] OL907298/Uncultured Ehrlichia sp. clone Dehong-17/China
0L.907291/Uncultured Ehrlichia sp. clone Dehong-86/China
KY046306/Uncultured Ehrlichia sp. clone UN2-100/Malaysia
AF195273/Ehrlichia ewingii/lUSA

1001 MZ779096/Candidatus Ehrlichia pampeana N3HIW33/Uruguay
MZ779098/Candidatus Ehrlichia pampeana S16HH13/Uruguay

@ OR117600/CCBF6/China
MT875367/Candidatus Ehrlichia hainanensis Hainan 43/China
MT875373/Candidatus Ehrlichia hainanensis Hainan 67/China

71

Fig 3. ML trees reconstructed based on the genus Ehrlichia. (A) ML tree based on partial 16S rRNA gene; (B) ML tree based on partial groEL gene;

(C) ML tree based on partial gitA gene. The legend follows that of Fig 2.
https://doi.org/10.1371/journal.pntd.0012159.g003

In addition to the above-mentioned potential Ehrlichia species, two samples (CCBF3 and
CCBF4) tested positive for “Ca. E. zunyiensis” using primer pairs Eh-outl/rp2 and Eh-gs1/rp2
(Tables 2 and S2). In addition, two partial groEL gene sequences were obtained using primer pairs
HS1/HS6 and HS3/HSVR, and one partial gitA gene sequence was obtained using primer pairs
Ehrlichia-1F/Ehrlichia-R and Ehrlichia-2F/Ehrlichia-R. These two isolates shared 100% nucleo-
tide identity for partial 16S rRNA gene and 99.9% for groEL gene with each other. Furthermore,
these two isolates had the highest nucleotide identity with known “Ca. E. zunyiensis” isolates, pre-
senting 99.8% nucleotide identity for 16S rRNA gene, 99.8-99.9% nucleotide identities for gitA
gene and 99.8-99.9% for groEL gene. Consistently, in the three trees based on 16S rRNA, gltA and
groEL genes, these two isolates in this study clustered with the “Ca. E. zunyiensis” isolates identi-
fied in Be. bowersi collected from Zunyi City of Guizhou Province (Fig 3A-3C).
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Genetic and phylogenetic analysis of Anaplasma

Using primer pairs f{D1/Eh-out2 and fD1/Eh-gs2, six samples tested positive for the genus
Anaplasma (Tables 2 and S2). Of the six partial 16S rRNA gene sequences, BLASTn showed
that four sequences (GXS5, GXS45, GXS14 and GXS56) had the highest nucleotide identity of
100% with some 16S rRNA gene sequences of A. ovis deposited in GenBank (Query cover:
100%, E-value: 0.0), one (GXS70) presented the highest nucleotide identity of 99.8% with that
of A. bovis isolate Zhouzhi-cattle-10 (Query cover: 100%, E-value: 0.0), and the last (GXS74)
shared the highest nucleotide identity of 100% with some 16S rRNA gene sequences of A.
capra (Query cover: 100%, E-value: 0.0). Using primer pairs Eh-outl/rp2 and Eh-gs1/rp2, one
partial 16S rRNA gene sequence was recovered from sample GXS6, which most closely resem-
bled those of A. bovis. Interestingly, BLASTn showed that this sequence had 100% nucleotide
identity with A. bovis isolate 9689B recovered from Ban. indica and A. bovis isolate 80-1t from
H. bandicota parasitizing Ban. indica from Taiwan, 99.7% with A. bovis isolate 9100t from Rhi.
haemaphysaloides parasitizing Mus caroli also from Taiwan, 99.6% with isolates from
Amblyomma triguttatum from Australia, and 98.9-99.2% nucleotide identities with other A.
bovis isolates. In the phylogenetic tree, all these seven isolates were classified into three clades,
and corresponded to A. capra, A. ovis and A. bovis, respectively (Fig 4A). Especially, isolate
GXS6 first clustered with isolates 9689B, 80-1t and 9100t from Taiwan, and then all of them
formed a clade with isolates from Australia in the diversity of A. bovis.

Because of the absence of gltA and groEL genes of isolates 9689B, 80-1t and 9100t, primers
based on groEL gene of isolates above-mentioned identified in Australia were designed. Sur-
prisingly, using the primer pairs Abovis-groEL-F1/Abovis-groEL-R1 and Abovis-groEL-F2/
Abovis-groEL-R2, one partial groEL gene sequence was amplified successfully from sample
SS7 rather than from sample GXS6 (Tables 2 and S2). The partial groEL gene sequence showed
the highest nucleotide identity of 91.4% (Query cover: 96%, E-value: le-111) with A. bovis iso-
lates identified from Australia, followed by isolate Zhouzhi-goat-29 with 84.6% nucleotide
identity (Query cover: 99%, E-value: 7e-80). However, it only presented less than 80% nucleo-
tide identity with other A. bovis isolates both in and outside China. In the absence of a gener-
ally recognized cutoft value to identify a novel Anaplasma species, as well as the absence of
other gene sequences, it is difficult to determine whether it represents a new species or just a
variant of A. bovis. In the phylogenetic tree, this partial groEL gene sequence was closely related
to those isolates recovered from Amblyomma triguttatum in Australia (Fig 4B). Additionally,
sample GXS27 tested positive for A. bovis using prime pairs bovis-gltA-F1/bovis-gltA-R and
bovis-gltA-F2/bovis-gltA-R (Tables 2 and S2). In the gitA gene tree, this A. bovis isolate fell
into the diversity of lineage 1 of Guo et al. [31] (Fig 4C). The nucleotide sequence identity
between the gltA sequence in this study and those belonging to lineage 1 ranged from 94.1% to
99.4%. We also tried to obtain the 16S rRNA and groEL sequences using the primers listed
above and in the previously study but failed.

Furthermore, Anaplasma spp. was identified using primer pairs CS7F2/HG1085R and F1b/
AnaCS1076R. As a result, three partial gltA gene sequences were recovered from samples
GXS21, GXS33 and GXS61 (Tables 2 and S2), and all of them showed 99.5-99.7% nucleotide
identities with each other. BLASTn showed that all these three gitA gene sequences shared the
highest nucleotide identities of 98.4-98.7% with that of A. phagocytophilum isolate Yanshou-
103 identified in Haemaphysalis longicornis tick from Heilongjiang Province (Query cover:
100%, E-value: 0.0), followed by A. phagocytophilum isolates with approximately 85.1-88.4%
nucleotide identities. In the phylogenetic tree, these three isolates in this study were closely
related to isolate Yanshou-103 and clustered together, and separate from other A. phagocyto-
philum isolates (Fig 4D). Although the primer pairs targeting the groEL gene was designed
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MH255929/Dongda-goat-44/China
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KF728352/Uncultured Anaplasma sp. SY 124/China

JIN055357/Uncultured Anaplasma sp. clone 1/Japan
KM186950/Uncultured Anaplasma sp. JC3-5/China
AY570538/Anaplasma sp. South Africa dog-1108/Japan

KM186949/Uncultured Anaplasma sp. JC3-4/China
100, K1410249/Anaplasma sp. BL.102-7/China

7| NZ_JFBI01000005/Anaplasma phagocytophilum CRT35/USA
NZ_APHHO1000002/Anaplasma phagocytophilum HGE1/USA
CPO15376/Anaplasma phagocytophilum Norway variant2/USA

100/l @ OR104942/GXS74/China

100 901- CP001079/Anaplasma marginale Florida/USA
CP006847/Anaplasma marginale Dawn/Mexi
94 AF309869/Anaplasma centrale IsracVUSA
KJ410245/Anaplasma ovis TC249-5/China
KX579073/Anaplasma ovis $43/China
97| @ OR104948/GXS5/China
@ OR104947/GXS14/China
— @ OR104945/GXS45/China
001 @ OR104946/GXS56/China
MH255923/Dongda-goat-44/China

MH255923/Dongda-goat-44/China
@ OR117475/GXS27/China
MH255923/Dongda-goat-44/China
MH2535923/Dongda-goat-44/China
MHS594291/Zhowzhi-cattle- 11/China
MH255916/Zhengxiaocun-goat-44/China
MH594292/Dongda-goat-210/China
MH255915/Zhengxiaocun-goat-48/China
MH2535911Zhouzhi-goat-29/China
L.C068824/Uncultured Anaplasma sp. C_AP_8-4/Japan
IN588561/Uncultured Anaplasma sp. clone 499/Japan

LC068819/Uncultured Anaplasma sp. C_AP_S-1/Japan
Yooy KR261626/Anaplasma capraltick 93/China/2013/China
—[ KM206274/Anaplasma capra/HLI-14/China
CPO01759/ Anaplasma centrale/lsraeVUSA

85| 1gop KX579068/Anaplasma ovis $43/China
KJ410284/Anaplasma ovis TC249-5/China
00) AF304140/Anaplasma marginale Fiorida/France
AF304139/Anaplasma marginale South Idaho/France
KJ410281/Anaplasma sp. BL102-7/China
KX987358/Candidatus Anaplasma boleense WHBMXZ-43/China
JEBIO1000018/Anaplasma phagocytophitun CRT35/USA
1000 CPO15376/Anaplas) hitum Norway variant2/USA
APHHO1000002/ Anaplasma phagocyiophitun HGE1/USA
100] AF478130/Anaplasma platys RDC/France
AY077620/Anaplasma platys Okinawa/Japan
DQ020101/Anaplasma odocoileilUSA
KF728369/Uncultured Anaplasma sp. $Y124/China
AY570541/Anaplasma sp. South Aftica dog-1108/Japan
001 IN055362/Uncultured Anaplasma sp. clone 2/Japan

02 JN055361/Uncultured Anaplasma sp. clone 1/Japan

Anaplasma bovis

KX987332/Candidatus Anaplasma boleense WHBMXZ-45/China

KM206273/Anaplasma capra H1.J-14 human/China

KR261620/Anaplasma capra tick 93/China/2013 tick/China

Anaplasma bovis

KF728361/Uncultured Anaplasma sp. clone SY49/China
MH255908/Dongda-goat-210/China
MH255909/Zhengxiaocun-goat-44/China
MH255907/Zhengxiaocun-goat-48/China
MH255900/Zhouzhi-cattle-11/China
MH255902/Dongda-goat-55/China
Tpoy KJ410304/Anaplasma sp. TC250-2/China
KJ410303/Anaplasma sp. BL126-13/China
MH255895/Dongda-goat-44/China
96] 1 MH255897/Zhengxiaocun-goat-33/China

Anaplasma bovis

100 K Y425440/Y 197/Australia
82] KY425427/Y83/Australia
@ OR117597/SS7/China
JIN588562/Uncultured Anaplasma sp. clone 499/Japan
MH255910/Zhouzhi-goat-29/China
100y IX092097/China-chipmunk25/Russia
JX092095/Kh-He215/Russia

KJ410302/Anaplasma sp. BL102-7/China
KX987389/Candidatus Anaplasma sp. boleense WHBMXZ-45/China
JFBIO1000003/Anaplasma phagocytophilum CRT35/USA
1008 APHHO1000001/Anaplasma phagocytophilum HGE1/USA

CP015376/Anaplasma phagocytophilum Norway variatt2/USA
1001 IN055360/Uncultured Anaplasma sp. clone 2/Japan
JN055359/Uncultured Anaplasma sp. clone 1/Japan

100 IN121382/Anaplasma platys DSE/Japan

_|—i AY077621/Anaplasma platys Okinawa/Japan
IX876642 UMUM76/USA
99] KM206275/Anaplasma capra HLI-14/China
4' KR261633/Anaplasma capraltick 93/China/2013/China
95 100 KX579069/Anaplasma ovis S43/China
KJ410298/Anaplasma ovis/TC249-5/China

CP001759/Anaplasma centrale 1srael/lUSA

1doj CP006847/Anaplasma marginale Dawn/Mexico
CP001079/Anaplasma marginale/Florida/USA

73

CP006617/IM/USA
CP006616/HZ2/USA
APHHO01000002/Anaplasma phagocytophilum HGE1/USA
OMG648121/Mulan-112/China
861 JFBI01000018Anaplasma phagocytophilum CRT35/USA
MK804077/D24/South Africa
CP015376/dnaplasma phagocytophilum Norway variant2/USA
94, LC496076/samc001/Japan
JQ622145/Ip11/Japan
100 OM648117/Yanshou-103/China
30 @ OR117473GXS21/China
@ OR117474/GXS33/China
@ OR117472/GXS61/China
100f OP585591/5P/Chile
OP585602/1S25/Chile
KF728369/U

100 MG869300/Dongda-goat- 14/China
MG869299/Dongda-goat- 1 1/China
AY570541/Anaplasma sp. South Africa dog-1108/Japan
MG869308/Zhouzhi-goat-30/China
KP076358/Z)56/China
100y JN055362/Anaplasma sp. clone 2/Japan
JN055361/Uncultured Anaplasma sp. clone 1/Japan

DQ020101/. ilei/USA
100§ AF478130/Anaplasma platys RDC/France
AY077620/Anaplasma platys Okinawa/Japan
100y ON245113/Candidatus Anapl hand is Linyil0/China
ON245112/C A is Zibo4/China
KJ410281/Anaplasma sp. BL102-7/China
KX987358/Candidatus Anaplasma boleense WHBMXZ-45/China

]0[),— KP076363/Anaplasma bovis ZJ12/China
JN588561/Uncul sp. clone 499/Japan

100; MG869278/Anaplasma capra Ziwu-sheep-44/China
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Fig 4. ML trees reconstructed based on the genus Anaplasma. (A) ML tree based on partial 16S rRNA gene; (B) ML tree based on partial groEL
gene; (C) ML tree based on partial gltA gene of Anaplasma bovis; (D) ML tree based on partial gitA gene of Anaplasma phagocytophilum. The legend

follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g004

based on the corresponding sequences of isolate Yanshou-103 and other A. phagocytophilum
isolates, we failed to obtain the groEL gene from these three positive samples.

Genetic and phylogenetic analysis of Candidatus Neoehrlichia

BLASTn showed that 27 rodent samples tested positive for “Ca. N. mikurensis” (Tables 2 and
S2). All these 27 partial groEL gene sequences were closely related to each other, and presented
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99.8-100% nucleotide identities. Interestingly, all these isolates clustered with five isolates
(Mulan-96, Fangzheng-108, Binxian-19, Shangzhi-36 and Fangzheng-47) from Heilongjiang
Province, four (2011FJ41N.c, 2010HN13A.a, 2010HN23R.n and 2006ZJ59A.s ZJ) from South-
east China and one (TK4456) from Japan, and formed a separate clade in the phylogenetic tree
(Fig 5), rather than with isolates from Yunnan Province neighboring Guangxi. All the isolates
in this clade shared 99.3-100% nucleotide identities.

Genetic and phylogenetic analysis of Bartonella

Detection of Bartonella spp. targeting both the ftsz and gltA genes revealed that 30 samples
were positive. BLASTn showed that four validated Bartonella species were identified, including
Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassiliensis, and Bar. silvatica (Tables 2 and
S$2). In addition, a Bartonella species closely related to Bartonella sp. KM2563 was detected,
and all three isolates shared the highest nucleotide identities of 99.8% and 99.3-99.6% with
Bartonella sp. KM2563 for the ftsz and gltA genes, respectively, followed by Bar. phoceensis.
Furthermore, another Bartonella species was detected (Tables 2 and S2), which was closely
related to uncultured Bartonella sp. clone 026RS18FTSZ in Ra. satarae from India, followed by
Bar. tribocorum. Six ftsz gene sequences were recovered from all the positive samples, and they
shared 99.6-100% nucleotide identities with each other, and 99.2-99.4% with uncultured Bar-
tonella sp. clone 026RS18FTSZ and 97.3% with Bar. tribocorum. Moreover, two gltA gene
sequences were recovered, and they shared 99.5-99.9% nucleotide identities to each other and
96.3-96.4% with Bar. tribocorum due to an absence of the gltA gene of uncultured Bartonella
sp. clone 026RS18FTSZ. As shown in Fig 6, the phylogenetic trees based on the ftsZ and gitA
genes showed a similar topology, and the newly identified isolates in this study clustered with
the corresponding isolates of Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassiliensis
and Bar. silvatica, respectively. Interestingly, the three isolates closely related to Bartonella sp.
KM2563 was determined in this study and Bartonella sp. KM2563 formed a separate clade in
both ftsZ and gltA genes trees. Both nucleotide and phylogenetic analyses suggested that they
represent a novel species, and we name it “Candidatus Bartonella fengshanensis” according to
the site where the rodents were collected. As for another six isolates closely related to uncul-
tured Bartonella sp. clone 026RS18FTSZ, all of them first clustered with uncultured Bartonella
sp. clone 026RS18FTSZ, and then with Bar. tribocorum in the ftsZ tree. On the contrary, these
isolates formed a distinct clade and were separate from Bar. tribocorum in the gltA tree. There-
fore, they represent another novel species although it was closely related to Bar. tribocorum,
and we name it as “Candidatus Bartonella shangsiensis” according to the site where the
rodents were collected.

Genetic and phylogenetic analysis of protozoan parasites

By amplifying the partial 18S rRNA gene, 15 rodent samples tested positive protozoan para-
sites. BLASTn showed that five isolates belonged to Bab. microti and other 10 belonged to the
genus Hepatozoon (Tables 2 and S2). The five partial 18S rRNA gene sequences of Bab. microti
shared 99.9-100% nucleotide identities to each other and 98.1-100% with corresponding
sequences of other known Bab. microti isolates. The 10 partial 18S rRNA gene sequences of
Hepatozoon spp. shared 98.2-100% nucleotide identities with each other. Furthermore, GXS48
shared the highest identity of 100% with Hepatozoon sp. isolates R50 and R38. Of another
nine, six showed the highest identities of 98.5-98.9% with Hepatozoon sp. isolate RT9 and the
remaining three showed the highest identities of 98.8-98.9% with Hepatozoon sp. DJH-2014c,
respectively. For Bab. microti, all five isolates determined in this study fell into the diversity of
Bab. microti, and clustered with the Kobe-type isolates, a zoonotic genotype (Fig 7A). In the
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MN701627/0Omsk-19_Mruf Myodes rufocanus/Russia
KX980040/RUS/Nov14-2505-Ipv Ixodes pavlovskyi/Russia
_I__ KU865477/LNS5 Ixodes ricinus/Germany
AB074461/1S58 Rattus norvegicus/Japan
9711Q359068/2009YN1058A.d Apodenus draco/Yunnan/China
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AB084583/TK4456 Ixodes ovatus/Japan
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JQ359066/2006ZI59A.s Apodemus sylvaticus/Zhejiang/China
JQ359065/2010HN23R.n Rattus norvegicus/Henan/China
JQ359064/2010HN13A.a Apodemus agrarius/Henan/China
0.02 JQ359063/2011FJ41N.c Niviventer confucianus/Fujian/China
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Fig 5. ML trees reconstructed based on “Candidatus Neoehrlichia mikurensis”. Three representative groEL gene sequences were
used for the phylogenetic analysis. The legend follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.g005
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Fig 6. ML tree reconstructed based on the genus Bartonella. (A) ML tree based on partial ftsz gene; (B) ML tree based on partial gltA gene. One
representative sequence of fisz and gltA genes for each Bartonella species was used for the phylogenetic analysis. The legend follows that of Fig 2.

https://doi.org/10.1371/journal.pntd.0012159.9g006

phylogenetic tree, GXS48 clustered together with Hepatozoon sp. isolates R50 and formed a
distinct clade. Although clustering together, another nine isolates formed six distinct clades,
suggesting potential novel Hepatozoon species (Fig 7B). Interestingly, Hepatozoon species asso-
ciated with rodents and reptiles from different parts of the world formed a large clade in the
phylogenetic tree based on 18S rRNA gene, and those identified in this study fell into the diver-

sity of this clade.

Co-infection of diverse microorganisms

Dual infection was observed between different microorganisms (S2 Table). Specifically, dual
infection was identified between A. bovis and Bar. tribocorum in SS7, “Ca. E. zunyiensis” and
Bar. tribocorum in CCBF3 and CCBF4, A. bovis and Bab. microti in GXS6, uncultured Ehrli-
chia sp. clone YNO4m and “Ca. N. mikurensis” in GXS35, “Ca. Bar. fengshanensis” and “Ca.
N. mikurensis” in GXS63, A. phagocytophilum and “Ca. N. mikurensis” in GXS21, and “Ca.
Bar. fengshanensis” and “Ca. N. mikurensis” in GXS64 were identified. Interestingly, co-infec-
tion between “Ca. N. mikurensis” and other microorganisms is the most common type.

Discussion

In this study, a molecular survey of vector-borne pathogens in field rodents was performed,
and the results showed that four Anaplasma, five Ehrlichia, “Ca. N. mikurensis”, six Bartonella,
Bab. Microti and diverse Hepatozoon were identified in six rodent species collected from three
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sampling sites in Guangxi Province. In addition, A. capra, A. ovis and E. chaffeensis-like, as
well as several potential new Hepatozoon species, were identified although more evidences are
needed, which is the limitation of this study. Of them, six, including A. capra, A. phagocytophi-
lum, “Ca. N. mikurensis”, Bar. rattimassiliensis, Bar. tribocorum and Bab. microti are zoonotic
pathogens in addition to A. bovis and A. ovis with zoonotic potential. Hence, our results greatly
contribute to revealing the species diversity of rodent-borne bacteria and protozoan circulating
in this area, especially those pathogenic to humans.

As the natural hosts of many Anaplasma and Ehrlichia species, rodents have been reported
to harbor A. phagocytophilum, A. bovis, A. ovis [39], E. chaffeensis, E. muris, “Ca. E. hainanen-
sis” [26], “Ca. E. zunyiensis” [25], “Ca. E. khabarensis”, and “Ca. E. extremiorentalis”
(AY584851). In this study, sequence analysis showed that four Anaplasma and five Ehrlichia
were detected in rodents, respectively. Interestingly, this is the first evidence of A. capra infec-
tion in rodents although further evidence is needed. Anaplasma phagocytophilum is distributed
worldwide, and presents extensive genetic diversity. In this study, three isolates, GXS21,
GXS33, and GXS61, were closely related to isolate Yanshou-103 [40], and formed a distinct
clade in the phylogenetic tree, suggesting a novel lineage of A. phagocytophilum. Interestingly,
these three isolates were identified in Guangxi in Southwest China; while isolate Yanshou-103
was identified in Heilongjiang in Northeast China. Hence, we propose a conjecture that this
novel lineage of A. phagocytophilum may be present in other parts of China. For A. bovis,
except known lineage circulating in mainland China, one 16S rRNA gene sequence presenting
the closest relationship with isolates from Taiwan, and another groEL gene showing the highest
nucleotide identity of 91.4% with isolates from Australia [41], were generated in this study. In
the absence of a generally recognized cutoff value to identify a novel Anaplasma species, we
temporarily suppose that they may be variants of A. bovis based on the phylogenetic analysis.
However, these two sequences were amplified from two rodent samples from two different
sampling sites, so we cannot determine whether these two sequences are from the same lineage
of A. bovis. But anyway, there must be at least one novel lineage of A. bovis circulating locally.
Previous studies demonstrated that “Ca. N. mikurensis” was widely distributed in rodents in
and outside China, and its genetic diversity was correlated with the geographic origin [21]. In
2023, “Ca. N. mikurensis” isolates identified from northeastern China closely related to those
from southeastern China were identified in ticks [40]. In this study, “Ca. N. mikurensis” iso-
lates in this lineage were also identified in rodents, indicating its wide distribution.

As emerging zoonotic causative agents, most members of the genus Bartonella are hosted
by diverse rodent species, with the prevalence reaching up to more than 50% in the field
[10,11,22]. Of rodent-associated species, eight are regarded as human pathogens causing bar-
tonellosis with a variety of clinical features, namely, Bar. doshiae, Bar. elizabethae, Bar.graha-
mii, Bar. rattimassiliensis, Bar. rochalimae, Bar. tribocorum, Bar. vinsonii, and Bar. washoensis,
and all have been identified in China [12]. Based on the genetic and phylogenetic analysis, four
validated Bartonella species, including Bar. coopersplainsensis, Bar. tribocorum, Bar. rattimassi-
liensis, and Bar. silvatica, were identified in four rodent species. Notably, Bar. tribocorum are
considered to be zoonotic pathogens in recent years [42]. In addition, two potential novel spe-
cies were detected in Ra. losea and Ban. indica, respectively. Specifically, one was most closely
related to Bar. phoceensis, with approximate 95.5% nucleotide identities for gltA gene. Based
on the criteria suggested by La Scola et al. [43] for Bartonella targeting the gltA gene (the gltA
fragment shares <96.0% sequence similarity with validated species), this Bar. phoceensis-like
species can be attributed to a novel species, named “Ca. Bartonella fengshanensis”. For another
species, it had the closest relationship with Bar. tribocorum (96.4% nucleotide identity for gltA
gene), which doesn’t fit the criteria suggested by La Scola et al [43]. However, Bar. tribocorum
and Bar. kosoyi are known as two distinct species although they share 98.6% nucleotide identity
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Fig 7. ML tree reconstructed based on partial 18S rRNA gene sequences of protozoan. (A) ML tree based on partial 18S rRNA gene sequences of
the genus Babesia; (B) ML tree based on partial 18S rRNA gene sequences of the genus Hepatozoon. The legend follows that of Fig 2. The sequences
marked with black triangle were identified in rodents, and those shown in bold were recovered from reptiles, including snakes.

https://doi.org/10.1371/journal.pntd.0012159.g007

for gltA gene. Combination the fact that less than 4% genetic divergence between two known Bar-
tonella species and the position of Bar. tribocorum-like on the gltA tree, we still consider it as a
novel Bartonella species, named “Ca. Bartonella shangsiensis”. The human-pathogenic Bar. tribo-
corum and two presumably novel Bartonella species infections in rodents call for more robust sur-
veillance studies to reveal the prevalence of Bartonella in rodents, even in humans.

Of the Babesia species pathogenic to humans, Bab. microti, Bab. venatorum, and Bab. diver-
gens have been identified in patients and cause babesiosis with atypical clinical systems in
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China [44]. Besides, Bab. crassa-like and Babesia. sp. XXB/Hangzhou causing sporadic cases
have also been reported [45,46]. To date, only Bab. microti was detected in rodents in Yunnan,
Beijing, Zhejiang, Fujian and Henan Provinces, although the above-mentioned pathogens
were detected in ticks on a much wider geographical scale in China [23,24,47-50]. In Guangxi,
Bab. microti has been identified in patients, ticks (Rhi. sanguineus), and farmed Macaca fasci-
cularis in Nanning city [51-53]. Consistently, five Bab. microti isolates were identified in Mus
pahari and Ra. andamanensis collected from Fengshan of Hechi city in the current study, indi-
cating its wide geographical distribution in Guangxi. In addition, all five Bab. microti isolates
belong to Kobe-type with zoonotic, therefore, surveillance focusing on human cases should be
performed in the future study.

Hepatozoon spp. are important veterinary pathogens and their pathogenicity to humans is
unclear although Hepatozoon sp. detected in humans from Russia has been reported [54].
Rodents are regarded as natural intermediate and potential paratenic hosts of some Hepato-
zoon species [55,56]. Furthermore, these agents have been identified in diverse rodent species
around the world [20]. In China, Hepatozoon spp. have been identified in snakes [57,58], dogs
[59], cats (GenBank: OM714911), and one rodent species, namely, Rhombomys opimus [19].
Therefore, the information on Hepatozoon spp. in rodents is scarce in China. In this study, ten
Hepatozoon isolates were identified in Mus pahari and Ra. andamanensis. This is the first
report of Hepatozoon spp. infections in these two rodents, expanding the rodent range. Con-
sidering the nucleotide identity among them and their position in the phylogenetic tree, nine
isolates may belong to different potential novel species. In addition, the most related sequences
in the phylogenetic tree were from rodents and snakes, hence, we put forward a hypothesis
that Hepatozoon species can be transmitted from rodents as the paratenic host to reptiles, con-
sistent with a previous study [20].

Several limitations existed in this study. First, an inadequate representation of rodent spe-
cies existed in two sampling sites in Ningmign and Shangsi, respectively, resulting in an
incomplete depiction of the vector-borne pathogens in wild rodents. Second, only one gene or
partial gene sequences were obtained for some pathogens, affecting our understanding of their
genetic characteristics. Third, the age or gender of the captured rodents was not recorded;
therefore, the assessment of the prevalence of each pathogen across age groups or sexes of
rodents could not be determined. Forth, blood-sucking vectors on the rodents were not col-
lected in this study; therefore, it is uncertain whether there is consistency between the patho-
gens carried by rodents and those carried by arthropods on rodents.

Conclusion

In sum, a wide variety of bacterial and protozoan microorganisms were identified in rodents
from Guangxi Province, China. Of them, six are human pathogens, including one Bartonella,
one Babesia, “Ca. N. mikurensis”, and three Anaplasma. In addition, potential novel Bartonella
species and diverse uncultured Hepatozoon clones were identified, contributing to a better
understanding of the genetic diversity of rodent-associated Bartonella and Hepatozoon, respec-
tively. Our findings underscore the potential risk of transmission to humans and emphasize
the need for enhanced surveillance of these causative agents in human populations. Further-
more, our results offer valuable insights to mitigate the public health risk posed by the causa-
tive agents identified in this study.
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