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Abstract

Trachoma is the leading infectious cause of blindness worldwide and is now largely confined

to around 40 low- and middle-income countries. It is caused by Chlamydia trachomatis (Ct),

a contagious intracellular bacterium. The World Health Organization recommends mass

drug administration (MDA) with azithromycin for treatment and control of ocular Ct infec-

tions, alongside improving facial cleanliness and environmental conditions to reduce trans-

mission. To understand the molecular epidemiology of trachoma, especially in the context of

MDA and transmission dynamics, the identification of Ct genotypes could be useful. While

many studies have used the Ct major outer membrane protein gene (ompA) for genotyping,

it has limitations.

Our study applies a typing system novel to trachoma, Multiple Loci Variable Number Tan-

dem Repeat Analysis combined with ompA (MLVA-ompA). Ocular swabs were collected

post-MDA from four trachoma-endemic zones in Ethiopia between 2011–2017. DNA from

300 children with high Ct polymerase chain reaction (PCR) loads was typed using MLVA-

ompA, utilizing 3 variable number tandem repeat (VNTR) loci within the Ct genome.

Results show that MLVA-ompA exhibited high discriminatory power (0.981) surpassing

the recommended threshold for epidemiological studies. We identified 87 MLVA-ompA vari-

ants across 26 districts. No significant associations were found between variants and clinical

signs or chlamydial load. Notably, overall Ct diversity significantly decreased after additional

MDA rounds, with a higher proportion of serovar A post-MDA.

Despite challenges in sequencing one VNTR locus (CT1299), MLVA-ompA demonstrated

cost-effectiveness and efficiency relative to whole genome sequencing, providing valuable

information for trachoma control programs on local epidemiology. The findings suggest the

potential of MLVA-ompA as a reliable tool for typing ocular Ct and understanding transmis-

sion dynamics, aiding in the development of targeted interventions for trachoma control.
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Author summary

Trachoma is the leading infectious cause of blindness worldwide and is largely confined

to low- and middle-income countries. It is caused by Chlamydia trachomatis (Ct), a conta-

gious intracellular bacterium. The World Health Organization recommends mass drug

administration (MDA) with the antibiotic azithromycin for treatment of ocular Ct infec-

tions, alongside improving facial cleanliness and environmental conditions to reduce

transmission. In most regions MDA is successfully reducing trachoma prevalence to the

point where it is no longer a public health issue, however in some areas trachoma persists

despite multiple years of interventions. To investigate why trachoma persists, especially in

the context of MDA and transmission dynamics, the identification of Ct sequence types

may aid in understanding and gauge progress of trachoma control. Our study applies a Ct

typing system new to trachoma, which augments the standard method by adding three

loci with high mutation rates. Results show that the typing system was able to discriminate

between variants with greater resolution than the standard method, and was both cost-

effective and more efficient relative to the gold-standard of whole genome sequencing.

The findings suggest that this novel method is a reliable tool for typing ocular Ct, which

can aid in the development of targeted interventions for trachoma control through

improved understanding of Ct transmission.

Introduction

Trachoma is the leading infectious cause of blindness worldwide [1] and is found primarily in

about 40 low- and middle-income countries (LMIC). It is caused by Chlamydia trachomatis
(Ct), a contagious intracellular bacterium with 4 serotypes (A, B, Ba and C) that are typically

responsible for ocular infection in trachoma endemic countries. The World Health Organiza-

tion (WHO) recommends the use of the Surgery, Antibiotics, Facial Cleanliness, and Environ-

mental improvement (SAFE) strategy, including mass drug administration (MDA) of the

antibiotic azithromycin for controlling trachoma [1]. Multiple rounds of MDA are usually

required which is determined by the prevalence of clinical signs within the district. Reinfection

can occur within months of treatment [2–4], and the clinical signs of disease often persist in

the population while ocular Ct infection is low or absent [5,6]. The surveillance of Ct strains is

of interest for monitoring transmission dynamics, as well as identifying the potential domi-

nance of individual strains, which may indicate selection by antibiotics or increased virulence,

persistent infection and/or re-infection [7].

Molecular epidemiological studies of Ct infection within communities often focus on the

outer membrane protein A (ompA) gene, as this codes for the polymorphic major outer mem-

brane protein (MOMP), a key chlamydial antigen targeted by the host immune system and

one therefore theoretically subject to immune selection [8–11]. However, previous work on

genital (D-K) and Lymphogranuloma venereum (LGV) serovars has demonstrated that ompA
genotyping alone has insufficient discriminatory power [12–15] for the reliable identification

of different variants within a population [16]. Since recombination within ompA has been

demonstrated, this may also obscure phylogenetic relationships [17]. Whole-Genome

Sequencing (WGS) should offer the highest resolution for variant identification; however, it

remains prohibitive in terms of cost, equipment, high technical expertise and large sample

load required, placing this beyond the access and feasibility for trachoma control programmes

operating in LMIC. To address this, several polymerase chain reaction (PCR)-amplicon

sequence-based typing methods have been developed, where two or more loci are amplified
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and then subjected to chain termination sequencing (Sanger sequencing) for each individual

sample.

These typing systems have been used to investigate Ct strain diversity, each with varying

levels of discriminatory power [7]. Multi-locus sequence typing (MLST) and multiple loci vari-

able number of tandem repeat analysis (MLVA) are two types of PCR sequencing that use

sequence types (ST) to define different variants. Classic MLST is focused on sequence variation

in loci that are not considered to be under selection pressure and are stable housekeeping

genes [18,19] and is best suited to long-term and global epidemiology. Other MLST studies

have used highly variable loci instead, to improve variant resolution on a smaller epidemiologi-

cal scale [20–22]. MLVA provides a further alternative and uses variable number tandem

repeats (VNTR), which have a higher rate of mutations [23] and can therefore provide a useful

identifier of novel strains for small scale, local epidemiological studies [22]. MLST methods

have been applied to ocular serovars and in trachoma epidemiology [20,24,25], however,

MLVA has not yet been used to investigate the molecular epidemiology of trachoma.

In this study conjunctival DNA collected from children living in trachoma-endemic areas

of Amhara, Ethiopia, which were surveyed between 2011 and 2017, were used to sequence

three VNTR loci and ompA as outlined by Pedersen et al., [26]. The aim of this study was to

determine the efficacy of MLVA-ompA when applied to ocular samples and test the discrimi-

natory power (DP). We then investigated whether MLVA-ompA variants were associated with

clinical signs of trachoma and the impact of MDA on variants in the population. We propose

that MLVA-ompA typing could serve as a tool for the surveillance of emerging Ct variants

within the context of localized epidemiological studies. Additionally, it can be employed to

establish a profile of the evolutionary dynamics of Ct variants over time within populations

remaining endemic to trachoma.

Methods

Ethics statement

The ethical approvals associated with the collection and processing of these samples have been

described previously [27–29]. Survey methods were reviewed and approved by the Emory Uni-

versity Institutional Review Board (protocol 079–2006) as well as by the Amhara Regional

Health Bureau. Due to elevated levels of illiteracy within the community, permission was

granted for obtaining verbal consent or assent. Electronic recording of oral consent or assent

was implemented for all individuals, aligning with the principles outlined in the Declaration of

Helsinki. Participants had the option to conclude the examination at any juncture without the

need for providing an explanation.

Study population

The SAFE strategy was scaled up between 2007 and 2010 to reach all districts in Amhara. This

included community-wide MDA with antibiotics, extensive health campaigns focusing on

proper hygiene and face washing, and advocacy for the construction and use of latrines [29–

32] Between 2011 and 2015 all districts were then surveyed to measure the impact of approxi-

mately 5 years of SAFE interventions on trachoma prevalence [29,33]. Impact surveys use

multi-stage sampling, and trained and certified graders use the WHO-simplified grading sys-

tem [34] to determine the presence of the trachoma clinical signs trachomatous inflammation-

follicular (TF), trachomatous inflammation-intense (TI) and trachomatous scarring (TS), and

to estimate the prevalence of water, sanitation and hygiene (WASH) indicators such as facial

cleanliness and improved water and latrine presence [29]. As part of these surveys, conjuncti-

val swabs were collected to estimate population-based prevalence of Ct infection among
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children aged 1 to 5 years [33]. Impact surveys, including conjunctival swabbing, were

repeated throughout the region between 2014 and 2021 after an additional 3 to 5 years of inter-

ventions [28,30]. The samples used in this study were a subset of those collected between

2011–1015 from 58 surveyed districts which make up four zones (North Gondar, South Gon-

dar, East Gojam and Waghemra) [28]. An additional subset of samples used in this study came

from all 11 districts in South Gondar zone, collected between 2014 and 2017 as part of the sec-

ond round of surveys. Each individual was given a unique ID code which was not known to

anyone outside of the research group [27–29].

DNA extraction and sample preparation for sequencing

The initial testing of samples was performed at the Amhara Public Health Institute in Bahir

Dar, Ethiopia. Swabs were randomised and pooled into batches of five samples per pool, and

tested for two highly conserved Ct plasmid targets using the Abbott Realtime assay on the

Abbott m2000 (Abbott Molecular Inc., Des Plaines, IL, USA) [33]. For the subset of districts

included in this study, individual samples from positive pools were assayed again to determine

individual level infection. Ct load was determined by converting the Abbott m2000 delta cycle

to elementary body (EB) count using an EB standard curve, generated using a standard set of

EB titrations [28,35]. There were 525 Ct positive samples collected from these study districts.

300 samples with the highest Ct load were chosen for further sequencing analysis. DNA was

re-extracted from all 300 conjunctival swabs as previously described [27]. Ninety-nine samples

with a sufficiently high Ct load were chosen for WGS, the results of which have already been

published, including the bioinformatic extraction of the ompA region [27]. For the remaining

201 samples, ompA was sequenced by Sanger sequencing, however for the three VNTRs of

interest, CT1291, CT1299 and CT1335, all 300 samples were sequenced by Sanger sequencing

Reference sequences from serovars A (A/2497: Acc. FM872306; A/HAR13: NC_007429), B (B/

Jali20/OT: Acc. FM872308; B/Tunis864: ERR12253485), C (C/TW-3, Acc. NC_023060), D (D/

UW3/CX, Acc. NC_000117), and L (L3/404/LN: Acc. HE601955; L2/434/Bu: Acc. AM884176)

were also sequenced for the 3 VNTR regions to compare between published WGS sequences.

ompA Sanger sequencing preparation

Prior to sequencing, the extracted eye swab DNA underwent one or two rounds of PCR using

a nested PCR, following the procedure outlined in Andreasen et al. 2008, [11]. For the first

round, 20 μL of 5prime MasterMix (QuantaBio), 20 μL of molecular grade water (Corning,

Manassas, VA20109 USA), 2.5 μL each of forward and reverse primers ompA-87 and ompA-

1163 and 5 μL of DNA template were run using the cycling conditions as follows: Initial dena-

turation of 2 min at 94˚C, then 35 cycles of 94˚C for 15 S and 62˚C for 75 S, and a final elonga-

tion step of 72˚C for 10 min. This PCR resulted in a product of 1076 base pairs (bp) in size.

Samples were run on a gel, and if no band was present, nested PCR was performed. For the

second round of PCR, 10 μL 5Prime HotMasterMix (QuantaBio), 1.25 μL ompA-87 and

1.25 μL ompA-1059 primers and 11.5 μL molecular grade water (Corning, Manassas, VA20109

USA) were added to 1 μL of a 1 in 200 dilution of the PCR product from the first round. The

final product size of the target sequence (ompA-inner) was 972 bp in length. This product was

then cleaned using a ratio of 0.8 X final volume of AMPure XP magnetic beads (Beckman

Coulter) following the manufacturer’s instructions, quantified on the Qubit 2.0 Fluorometer

(Thermo Fisher) and diluted to a concentration of ~10 ng/μL. Samples were sent to Source

BioScience (Cambridge, UK) with ompA-97 forward primer and/or ompA-1059 for samples

sequenced in both directions.
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VNTR sequencing preparation

All 300 samples were processed for the VNTRs, with a separate PCR reaction used to amplify

each VNTR region. DNA extracted from 8 Ct reference samples were also sequenced for com-

parison with existing genomic data. Samples were run in 25 μL reaction volumes, using 5 μL

DNA template, 10 μL Accustart (Quantabio, Hilden, Germany), 1.25 μL each forward and

reverse primers, and 7.5 μL molecular grade water (Corning, Manassas, VA20109 USA). Three

different sources of primers were used, due to complications with the proximity of some of the

VNTR regions to the start of the sequencing, and the subsequent low-quality bases associated

with the first 30–50 bps. For primers sourced from Pedersen et al., [26] and the new CT1299

forward primer, cycling conditions were 10 min held at 94˚C, then 40 cycles of 45 S at 94˚C,

20 S at 59˚C, 20 S at 72˚C, hold at 4˚C. For primers sourced from Labiran et al., [36] the

annealing temperature was 56˚C for CT1335 and 60˚C for CT1299. Samples were sent to

Source BioScience (Cambridge, UK) with 3.2 pmol of forward primer for each VNTR. CT1299

was sequenced in both the forward and reverse direction for some samples with low quality

sequencing due to extended repeat base regions. Primers and amplicon sizes for the 3 VNTR

regions are listed in Table 1. Samples that did not produce sufficient sequencing quality to call

the sequence type in the first round of sequencing for CT1299 were re-run using a modified

CT1299 forward primer to increase the distance between the start of the sequence and the

flanking and VNTR region [37]. A total of 140 samples were tested using the new CT1299 for-

ward primer.

VNTR calling and MLVA-ompA

Only VNTR sequences produced by Sanger sequencing were used in further analysis.

Sequences were aligned within each respective VNTR using MEGA-X (Version 11.0.13), and

the sequence type was recorded by manually counting the number of repeat base pairs as well

as the respective flanking regions, following the typing method outlined by Pedersen et al.,

[26] and Wang et al., [38]. Chromatograms were checked to ensure that base-calling was accu-

rate, and sequences were discarded from further analysis if a specific VNTR type could not be

assigned. References where WGS sequences were available on National Center for Biotechnol-

ogy Information (NCBI) from serovars A (A/2497; A/HAR13), B (B/Jali20/OT; B/Tunis864),

C (C/TW-3), D (D/UW3/CX), and L (L3/404/LN; L2/434/Bu) were used to compare VNTR-

amplicon Sanger sequencing against WGS derived VNTR sequence, alongside comparison of

published WGS data from a subset of samples from this study [27] by calculating the kappa

statistic.

Table 1. Forward and reverse primers used to amplify VNTR regions and ompA of Chlamydia trachomatis in Ethiopian conjunctival samples collected between

2011–2017, for Sanger sequencing and the amplicon size produced. VNTR: Variable number tandem repeat.

Target Source Forward primer Reverse primer Amplicon size

ompA Andreasen et al., [11] TGAACCAAGCCTTATGATCGACGG-(ompA-

87)

CGGAATTGTGCATTTACGTGAG-(ompA-

1163)

1076

ompA-inner Andreasen et al., [11] TGAACCAAGCCTTATGATCGACGG-(ompA-

87)

GCAAGATTTTCTAGATTTCATC-(ompA-

1059)

972

CT1291 Pedersen et al., [26] GCCAAGAAAAACATGCTGGT AGGATATTTCCCTCAGTTATTCG 225

CT1299 Labiran et al., [36] ATCGCTTAAGATTCTCGGAGG AGGTTCTAGCTGAGCATGGG 342

CT1299

(new)

This study and Labiran et al.,

[36]

GGAATTTCCATAGACGGTTGATA AGGTTCTAGCTGAGCATGGG 381

CT1335 Labiran et al., [36] AAAGCGTCCTCTGGAAGGG CCTTCTCCTAACAACTTACGC 208

https://doi.org/10.1371/journal.pntd.0012143.t001
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ompA serovar calling

ompA sequences were extracted from WGS data generated from the 99 samples originally ana-

lysed in Pickering et al., [27). All WGS sequences were aligned to ompA reference sequences

A/HAR13, B/Jali20 and C/TW-3 using bowtie2 [39], and samtools [40] was used to extract the

matching ompA sequences. The best alignments were selected based on the minimum number

of Ns present in the sequence. The 146 Sanger-derived ompA sequences, were separated based

on serovar, and aligned within each serovar group to a reference sequence using MEGA-X;

Serovar A (A/HAR13, Acc. DQ064279), serovar B (B/TW-5/OT, Acc. M17342) and serovar Ba

(VR-347-Ba, Acc. KP120856).

Variant types and typeability

Individual variant types were classified following Pedersen et al., [26], Wang et al., [38], and

Manning et al., [15] including both the VNTR and the associated flanking region. The combi-

nation of all three VNTRs within a sample was used to assign MLVA type, with the addition of

each ompA type to create the MLVA-ompA variant. Variants are technically the same as

strains, however a variant is only referred to as a strain when it shows distinct physical proper-

ties, such as the reference strains used for alignments. As we have not investigated any poten-

tial physical properties of the variants identified in this study only variant has been used.

Typeability was calculated by dividing the number of samples that were successfully sequenced

for all three VNTRs and ompA (MLVA-ompA) by the total number of samples available

(n = 300).

Diversity and discriminatory power

DP is defined as the ability to distinguish different variants, and is expressed as the probability

that two different variants will be placed into different categories. The level of diversity was cal-

culated for each genotyping system with and without associated VNTR-flanking regions (indi-

vidual VNTRs, MLVA, ompA, MLVA- ompA) using Simpson’s index of diversity following

the recommended modification outlined by Hunter and Gaston [41]. Hutcheson’s t-test was

used to compare the Simpson diversity indices for pre- and post-MDA time points for the

South Gondar zone. Data was available from two different time points for South Gondar

because surveys were performed after 5 rounds of MDA and 8–10 rounds of MDA. Zonal

diversity was compared between the two time points using Hutcheson’s t-test in the vegan

package [42] in R, to determine if there was a significant change in the level of diversity after

extra rounds of MDA.

Association analyses

Association analyses were performed to investigate the relationship between individual level

TF and/or TI and the MLVA-ompA variants. Due to the high number of low frequency vari-

ants, variants were stratified as; high (>4), medium [2–4] and low [1] frequency, and treated

as a categorical variable, with the high frequency group set as the reference. Mixed effects logis-

tic regression (package lme4, R, [43]) was performed for each clinical sign, with the 3 variant

categories as the independent variable, adjusting for age, gender and district as a random

effect.

Association analyses were also performed using village-level TI and TF as the independent

variable using generalised linear mixed effects models (Package glmm, R) [44], adjusting for

age, gender and district as a random effect. The same model was run using Ct load as the inde-

pendent variable. District-level Ct, TI and TF prevalence were also used as dependent variables
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to test the relationship with district diversity, accounting for the number of samples per

district.

Minimum spanning tree and phylogenetic tree analysis

Minimum spanning trees (MSTs) were created using Phyloviz 2.0 software [45]. Variants

based on the Pedersen et al., [26] typing system, updated to include the flanking regions by

Wang et al., [38], were used to create MSTs of all available variants, overlaid with data on sero-

var, year of collection, and zone. For the tanglegram construction, we developed two phyloge-

netic trees. The first tree was constructed using the 3 VNTR sequences and their flanking

regions obtained from Sanger sequencing, while the second tree utilized sequences obtained

from WGS. Sequences for each sample were concatenated using Geneious (Version 2023.2.1),

and alignments were performed using MAFFT (Version v7.490) with a 200 PAM/K = 2 scor-

ing matrix [46,47]. The Neighbor-Joining method, incorporating the Jukes-Cantor genetic dis-

tance model with 100 bootstraps and no outgroup, was employed to construct the trees using

Geneious Tree Builder. Subsequently, the trees were exported to Dendroscope (version 3.8.10)

for tanglegram visualization [48].

Results

ompA and VNTR Sequences

OmpA serovar type derived from WGS was obtained for all 99 Ct WGS. A further 201 samples

that were sequenced for ompA using Sanger sequencing generated 146 successful sequences

(72.6%). The 55 unsuccessful sequences were due to unreadable chromatograms containing a

large proportion of Ns, due to either poor quality DNA or overlapping peaks. These could

potentially represent mixed infection with multiple variants however these results cannot be

reliably resolved and were excluded. Data was missing in relatively equal proportion over the

six years that samples were collected (S1 Table). For the 3 VNTRs generated by Sanger

sequencing, CT1291 was successfully sequenced in 266/300 samples (88.6%), CT1299 in 252/

300 (84%) and CT1335 in 255/300 (85%). In total, 194/300 (65%) samples had sequencing

results of a high enough quality to call serovar and VNTR sequence types for all 3 VNTRs (Fig

1). Sequencing of ompA and the 3 VNTRs produced variable results, with CT1291 the most

successful in terms of typeability (88.7%) and CT1299 the least (84.0%) (Table 2, Fig 2). There

were consistent difficulties with sequencing the repeat region of CT1299, with samples exceed-

ing 14Cs demonstrating evidence of polymerase slippage and PCR stutter [23]. Samples with

greater than 14Cs in a row were therefore sequenced in both the forward and reverse direc-

tions, however, 10 CT1299 samples with 15–18 repeat Cs were not able to be confidently iden-

tified, and were removed from the dataset.

VNTR and MLVA-ompA typeability

The typeability of each VNTR and ompA individually were above 80%, however due to a small

proportion of dissimilarity between the samples that were not successful for each round of

sequencing (Fig 2), the overall typeability of MLVA-ompA for this study was 64.6%. There was

a mix of serovars A, B and Ba across the entire Amhara region from samples collected between

2011–2015 (Fig 3). A total of 87 variants were found within this population (DP = 0.981).

WGS sequences from reference serovar STs deposited in NCBI matched our sample sequenc-

ing results for six out of eight reference genomes, with the repeat C region in CT1299 resulting

in a low quality read for C/TW-3 and a mismatch in CT1299 region for B/Tunis864 (Table 3).
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CT1299 and CT1291 had the highest number of STs with 12 and 8 respectively, with

CT1335 having 6 STs. Three new STs were recorded for CT1291, two new STs for CT1299 and

four new STs recorded in CT1335 (Table 4). The frequency of the STs for each VNTR are listed

in Table 4a–4c. Frequencies for both MLVA and MLVA-ompA show a relatively high propor-

tion of variant types are singletons since almost half of the MLVA-ompA variant types have a

frequency of one.

Minimum spanning trees

The MLVA-ompA MST (Fig 4) showed limited defined clustering when separated by year

of collection. There was a small cluster from 2013, however the most common variants,

represented by larger circles, were present in multiple years. There were also some defined

clusters by ompA serovar (S1 Fig), however the MSTs categorised by rounds of MDA (S2

Fig) and zone (S3 Fig) showed limited clusters of variants. There was a small (n = 10)

defined cluster of variants collected in East Gojam in 2013 that were all ompA serovar B/

Ba.

Fig 1. Workflow diagram showing the process of conjunctival swab samples collected between 2011–2017 from

the Amhara region of Ethiopia, and the proportion successfully sequenced for each VNTR and ompA. LSHTM:

London School of Hygiene and Tropical Medicine. VNTR: Variable number tandem repeat.

https://doi.org/10.1371/journal.pntd.0012143.g001

Table 2. Typeability and discriminatory power for each VNTR separately, the VNTRs collectively (MLVA), ompA and MLVA-ompA. Discriminatory power was

determined following Hunter and Gaston’s modified Simpson’s diversity index (Hunter and Gaston, 1987). Typeability is calculated by the number of successful sequenc-

ing reactions divided by the total number of samples available. The number of variants for the ompA sequencing refers to ompA serovars, as determined by homology of

each sequence within the BLAST-n NCBI database.

CT1291 CT1299 CT1335 MLVA ompA-genovar ompA- variant type MLVA-ompA
Total (300) 266 252 255 232 245 240 194

Typeability (%) 88.7 84.0 85.0 77.3 81.7 80.0 64.6

Number of sequence types 8 12 6 66 3 17 87

Discriminatory power 0.676 0.812 0.530 0.959 0.504 0.820 0.981

https://doi.org/10.1371/journal.pntd.0012143.t002
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Phylogenetic trees

A total of 45 samples provided complete VNTR sequences along with their flanking regions

through WGS, which were subsequently utilized to construct a Neighbor-Joining tree (Fig 5).

The remaining 44 samples that were unable to provide a complete VNTR sequence were miss-

ing loci due to insufficient sequencing quality in either WGS or sanger sequences or both (S2

Table). Simultaneously, the sequences obtained from Sanger sequencing for these samples

were employed for a parallel Neighbor-Joining tree construction (Fig 5). Through the tangle-

gram, a comparative analysis between the trees generated from Sanger sequencing and WGS

data revealed a more intricate structure in the Sanger data. In this context, Ethiopian

sequences corresponding to each variant clustered together, forming distinct branches sepa-

rate from other variants. Conversely, the WGS derived sequences from Ethiopia exhibited a

lack of differentiation based on assigned STs. Notably, 39 out of the 45 sequences grouped

closely with the reference strain A/HAR13, suggesting a higher degree of homogeneity within

this subset.

WGS derived and PCR amplicon VNTR sequence comparisons

The 99 samples that underwent WGS had fair consistency with Sanger sequencing results for

CT1335 (weighted kappa = 0.21), however poor consistency for CT1291 (weighted

kappa = 0.16). Only 3 CT1335 sequences were unable to be assigned using the WGS sequences,

which coincided with 3 samples where the VNTR type was 9T/8A, as opposed to the most fre-

quent 10T/8A. There was a discrepancy between the CT1335 flanking region between WGS

and Sanger sequences, with Sanger sequences identifying some samples carrying the ST with a

Fig 2. Venn diagram illustrating the overlap in successful Sanger sequencing of each conjunctival swab sample

collected from Amhara, Ethiopia between 2011–2017 for the 3 VNTRs and ompA. Nine samples were not able to be

sequenced for any of the VNTRs or ompA. VNTR: Variable number tandem repeat.

https://doi.org/10.1371/journal.pntd.0012143.g002
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flanking sequence of four repeated Adenosine bases (GAAAAGG) whereas WGS identified

them as having five (GAAAAAGG) (S2 Table).

CT1291 sequences were unable to be assigned in 19 of the WGS sequences (19%), and were

inconsistent with the VNTR type called by Sanger sequencing in 45 individuals (45%). For the

CT1291 flanking region nine samples were unable to be called (9%), with three mismatches

between Sanger and WGS.

Fig 3. Map of the Amhara region of Ethiopia showing the location and proportion of Chlamydia trachomatis
serovars A, B and Ba at the first sampling time points (2011–2015) from conjunctival eye swab samples collected

after the first five rounds of mass drug administration. The size of the pie chart is proportional to how many

samples are represented, with larger pie charts indicating more samples. Maps were sourced from the Trachoma Atlas

(https://atlas.trachomadata.org/) which uses Open Street Maps (Mapbox).

https://doi.org/10.1371/journal.pntd.0012143.g003

Table 3. Chlamydia trachomatis (Ct) reference strain sequencing results for each VNTR by Sanger sequencing (“this study”) in comparison to VNTRs extracted

from whole-genome sequences sourced from NCBI (“reference”). Reference strain DNA was extracted from cells inoculated with bacteria prior to the commencement

of this study.

Serovar ID CT1299 CT1291 CT1335 Reference Accession number

This study Reference This study Reference This study Reference

L2/434/Bu 6C 6C 9C 9C 11T/8A 11T/8A AM884176

B/Jali20 8C 8C 10C 10C 10T/8A 10T/8A FM872308

B/Tunis864 13C 12C 7C 7C 10T/8A 10T/8A ERR12253485

D/UW3/CX 12C 12C 10C 10C 10T/8A 10T/8A NC_000117

C/TW-3 >17C 14C 9C 9C 10T/8A 10T/8A NC_023060

A/HAR13 14C 14C 9C 9C 10T/8A 10T/8A NC_007429

A/2497 12C 12C 8C 8C 10T/8A 10T/8A FM872306

L3/404/LN 6C 6C 7C 7C 11T/8A 11T/8A HE601955

https://doi.org/10.1371/journal.pntd.0012143.t003
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CT1299 VNTR sequences were unable to be called in 35 of the WGS sequences (35%), and

in the remaining 64 sequences, 61 were inconsistent with the VNTR type called by Sanger

sequencing (95%). The CT1299 flanking region did not show any variation in STs in Sanger

sequences, however in WGS sequences there were 3 sequences that had the flanking sequence

“ATTCT” repeated twice, which was not present in the Sanger sequence of the same sample

(S2 Table).

Association analyses

In the dataset available for analysis, 159 people had TF, 85 had TI, and 2 had TS. A total of

176/194 people (91%) had active trachoma (TF and/or TI). There were no significant differ-

ences between the variant frequency groupings or serovar and either TI or TF clinical signs,

for both absence/presence analyses, village-level prevalence or Ct load (Table 5). There was a

significant difference in MLVA-ompA diversity between 5 years of MDA and 8–10 years of

MDA in South Gondar (p = 0.006), with less diversity after extra rounds of MDA (Fig 6).

There was an observable ompA serovar switch over time (Fig 7), with a higher proportion of

serovar A (91%) after the additional rounds of MDA (46%) (Fig 6).

Discussion

Understanding Ct transmission dynamics is an important part of trachoma control, as the

identification of Ct genotypes can provide information on the infection source, the presence of

Table 4. VNTR sequence types (ST) and frequency table with Pedersen et al., [26] and Wang al., [38] type codes for CT1335, CT1299 and CT1291. Flanking regions

forward and after the repeat nucleotide regions are included. Only sequence types found in this study are shown. Novel STs are identified with an asterisk *.
VNTR Pedersen VNTR STs Flanking region and repeat sequence Frequency

CT1335 1a* GAAAAGG-9T/8A-GCTTTTGT 5

2 GAAAAAGG-10T/7A-GCTTTTGT 17

2a* GAAAAGG-10T/7A-GCTTTTGT 11

3 GAAAAAGG-10T/8A-GCTTTTGT 35

3a* GAAAAGG-10T/8A-GCTTTTGT 125

14* GAAAAGG-9T/7A-GCTTTTGT 1

CT1299 2 TTATTCT-8C-ATCAAA 1

3 TTATTCT- 9C-ATCAAA 19

4 TTATTCT- 10C-ATCAAA 64

4b* TTATTCT- 10C- T5C-ATCAAA 1

5 TTATTCT-11C-ATCAAA 36

6 TTATTCT- 12C-ATCAAA 11

7 TTATTCT- 13C-ATCAAA 21

8 TTATTCT- 14C-ATCAAA 40

8b* TTATTCT- 14C-T5C-ATCAAA 1

CT1291 2 AAAATGGTCT-8C-TATTG 28

2c* AAAATGGT-8C-TATTG 14

3 AAAATGGTCT-9C-TATTG 99

3c* AAAATGGT-9C-TATTG 3

4 AAAATGGTCT-10C-TATTG 38

5 AAAATGGTCT-11C-TATTG 7

7 AAAATGGTCT-12C-TATTG 1

8* AAAATGGTCT-7C-TATTG 4

https://doi.org/10.1371/journal.pntd.0012143.t004
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repeat or persistent infections, and the impact of antibiotic treatment and other interventions

[49]. Different ocular genotypes of Ct may also elicit varying degrees of infection intensity and

disease severity [50]. The majority of epidemiological studies have primarily focused on ompA,

however, this has been shown to be limited in terms of discriminatory power [7]. The results

from this study have demonstrated that the use of MLVA-ompA can provide a sufficient reso-

lution for molecular epidemiology studies in trachoma since it exceeds the recommended

Fig 4. A minimum spanning tree showing the sequence-types identified in the Amhara region of Ethiopia between 2011–2017. Each MLVA-ompA sequence-

type (n = 87) is coloured by year of collection. Each circle represents a different sequence-type, with the size of circle being directly proportional to the number of

individuals who had that variant. Trees were generated using Phyloviz 2.0.

https://doi.org/10.1371/journal.pntd.0012143.g004
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guideline value of DP = 0.95 [16]. MLVA-ompA detected a reduction in Ct diversity with addi-

tional years of “AFE” interventions which may mean that while the prevalence of infection

remained high in this part of Amhara, the reduction in pathogen population diversity serves as

an indicator of programmatic impact, possibly indicating the start of a decline in overall infec-

tion prevalence.

Region-wide efforts have been made over time to monitor trachoma and its risk factors

within the Amhara region. These surveys have demonstrated that while WASH indicators

have increased over time, efforts are still needed to achieve high levels of water and latrine

availability and facial cleanliness regionwide [29,30]. It has been further demonstrated that in

some areas of Amhara, TF and Ct prevalence remain stubbornly high despite many years of

antibiotic MDA and F and E interventions [28–30,33]. A reduction in Ct diversity post-inter-

vention as observed in this study, however, may be a precursor of sustained reduction in infec-

tion prevalence and reduce the chance of recrudescence, as it is likely that higher diversity

affords the community of Ct variants more fitness in evasion [51]. A study in 2008 using sam-

ples from the Gambia investigated Ct diversity using ompA sequencing and suggested that

diversity within trachoma Ct variants is lower in hypoendemic trachoma regions and showed

that Ct diversity was lower post-MDA [11]. In a study based in the Gurage zone of Ethiopia

[52], ompA diversity was not shown to be reduced post-MDA, however the discriminatory

power of ompA alone is insufficient such that the diversity of the Ct community was not

revealed. A 2019 study demonstrated mixed range of Ct diversity after one round of MDA,

Fig 5. Tanglegram showing the relation of the sequences derived from whole-genome sequencing (A) and Sanger sequencing (B). Neighbor-

Joining tree construction encompasses three variable number tandem repeat (VNTR) regions and associated flanking regions resulted from whole-

genome sequencing (WGS) (A) and Sanger sequencing (B) of 45 Chlamydia trachomatis (Ct) positive samples collected in Ethiopia and seven Ct

reference strains. All reference strains are highlighted in blue.

https://doi.org/10.1371/journal.pntd.0012143.g005
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with a reduction in diversity in Senegal but not The Gambia [53]; the MLST DP used in this

study was not as high as MLVA-ompA, and was well below the recommended 0.95 threshold.

In our study MDA and other interventions appeared to have reduced Ct diversity, lending

weight to the hypothesis that an observed reduction of Ct diversity could be a marker of treat-

ment impact that precedes a reduction in overall prevalence. Further studies using samples

collected after additional years of interventions in Amhara would be useful to continue to test

this hypothesis.

Application of MLVA by Pedersen et al. [26] found DP = 0.94, which is consistent with

other MLVA-ompA studies on genital serovars [54,55]. For LGV serovars, analyses testing the

stability of VNTRs suggested MLVA to be a suitable typing method [36], however further test-

ing by the same group on a larger set of LGV clinical samples suggested that MLVA-ompA

could not reach the recommended 0.95 cut-off [15]. Other typing systems such as a combina-

tion of MLST and MLVA [22] and alternate MLVA targets [56] have been shown to have a DP

of between 0.6–0.99. The typing system with the highest DP of 0.99, MLST+MLVA, requires 8

individual loci to be sequenced, double the number of this study, for a relatively marginal gain

in DP. In addition, it is possible that when the mutation rate of a population is too high, a high

level of DP provides too much resolution, and epidemiological links may be obscured [22]. In

this study, the higher DP highlighted the difference between the diversity indices of the two

timepoints in South Gondar. The ompA serovar type suggests a loss of diversity after extra

rounds of MDA, with serovar A dominating in the second time point relative to the first, and

the enhanced resolution provided by MLVA-ompA typing confirmed that the number of vari-

ants is significantly lower after extra rounds of MDA. This would suggest that MDA has driven

purifying selection, however whether or not these STs persist in the population requires fur-

ther monitoring. Surveys continue to monitor trachoma in Amhara, and it is recommended

Table 5. Association analyses results comparing the frequency category of the variant with the absence or pres-

ence of TI or TF, the village level prevalence of TI or TF, and Ct load. All models were adjusted for age and sex,

with the “high” frequency group set as the reference level for all analyses. TI = Trachomatous inflammation-intense,

TF = Trachomatous inflammation-follicular.

Dependent variable Variant frequency category P value

Individual level TF and/or TI High Reference

Medium 0.20

Low 0.12

Village level TI High Reference

Medium 0.90

Low 0.91

Village level TF High Reference

Medium 0.66

Low 0.64

District level TI High Reference

Medium 0.43

Low 0.58

District level TF High Reference

Medium 0.92

Low 0.33

Individual Ct load High Reference

Medium 0.48

Low 0.37

https://doi.org/10.1371/journal.pntd.0012143.t005
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that these newly collected samples are MLVA-ompA typed to further understand the effect of

MDA on diversity and the decline in infection prevalence.

Studies have shown that particular Ct variants have greater virulence [57,58], with identifi-

cation of variants usually based on WGS. The relatively simpler and less expensive method of

Fig 6. Frequency plots for each Chlamydia trachomatis variant found in the South Gondar zone, Ethiopia, 2011–

2017. The data has been split into two time points- the first, after five rounds of MDA (n = 43, total number of

variants = 30), and the second after an additional three to five rounds of MDA (n = 44, total number of variants = 23).

Bars are coloured by each respective serovar. MDA = mass drug administration with azithromycin.

https://doi.org/10.1371/journal.pntd.0012143.g006

Fig 7. Map of the South Gondar zone samples only (Amhara, Ethiopia), showing the range of Chlamydia trachomatis serovars

identified from conjunctival swabs collected between 2011–2014 after five rounds of intervention (A) and eight to ten rounds of MDA

(B) collected between 2015–2017. The size of the pie chart is proportional to how many samples are represented, with larger pie charts

indicating more samples. Maps were sourced from the Trachoma Atlas (https://atlas.trachomadata.org/) which uses Open Street Maps

(Mapbox).

https://doi.org/10.1371/journal.pntd.0012143.g007
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MLVA-ompA can provide sufficient resolution, enabling the study of intervention effects at

the population level. We did not find significant associations between high, medium or low

frequency STs and the clinical signs of trachoma or Ct load at village or district level. It is possi-

ble that due to the restricted number of samples included, there was insufficient statistical

power to identify a relationship, however it is more likely that the regular rounds of MDA this

population underwent has limited the likelihood of a single or common variant to become

established and cause a significant increase in clinical signs of active trachoma. MSTs support

this proposition as they demonstrate a homogenous distribution of variants within zones and

across time (i.e. a lack of evidence for clustering of STs). While this study did not observe any

association between STs and trachoma prevalence intensity, using this method in partnership

with trachoma prevalence surveys would enable the detection of highly transmissible Ct strains

if they were present, and enhanced interventions such as additional or targeted rounds of

MDA along with improvements in facial cleanliness and environmental conditions could be

deployed [59].

There are limitations to the MLVA-ompA typing method and our study. Firstly, mixed

infections are not able to be identified since sequencing of a mixed product cannot be unequiv-

ocally interpreted, as mixed genotypes create mixed sequences [26]. Another possible limita-

tion is the potential bias introduced by choosing samples with a higher load for sequencing, as

this could affect the range of STs observed if some STs are associated with lower loads of infec-

tion. A final limitation was that some samples were not able to be assigned for CT1291 and

CT1299, due to the length of the repeat cytosine (C)-region. DNA polymerase slippage is a

well-known phenomenon where taq DNA polymerase disassociates from the template and re-

anneals at a matching base further along the strand, altering the original length of the repeat

region [60]. This is part of the reason VNTRs have such high variation, as this happens natu-

rally during DNA replication. CT1335, lacks repeat Cs and had a maximum number of 11 rep-

etitions of T nucleotides so was not susceptible to slippage. Whether or not this is due to the

number of C repeats or whether C itself drives polymerase slippage is unknown. In other stud-

ies, however, repeat regions of 21 Cs have been recorded [61], suggesting a methodological or

DNA template issue. Short-read WGS struggles with repeat regions, this is due to problems

with alignment of short read sequences and the algorithms used in next generation sequencing

(NGS)/WGS pipelines [62,63]. This is reflected in the CT1291 and CT1299 VNTR sequences

extracted from our WGS sequences from the samples in this study. In addition, the maximum

likelihood phylogenetic tree constructed through WGS-derived sequences support this state-

ment, wherein a significant portion of the sequences were indistinguishable and clustered

together, irrespective of their associated STs. We found a high proportion of non-assigned

bases within these two VNTR regions, as well as inconsistent results with the Sanger sequenc-

ing VNTR results. One possible reason is mapping ambiguity; When aligning short reads to a

reference genome, the presence of VNTRs can lead to mapping ambiguity. If the number of

repeats differs between the sample and the reference genome, it may be challenging to accu-

rately map the reads to the correct genomic location [64]. As Sanger sequencing is often used

to confirm the presence of single nucleotide polymorphisms found using WGS, it is assumed

that the Sanger derived VNTR sequences in this study are the likely the more accurate [65].

The data from this study has shown that MLVA-ompA is a suitable technique for identify-

ing ocular Ct variants on a local scale. While there were some issues surrounding long repeat

regions, the typeability for all 3 VNTRs was approximately 65%. While the typeability of ompA

variants was above 80%, this was after a second round of nested PCR in ~33% of samples,

which involved further manipulation, financial costs and increased the risk of contamination.

NGS techniques are associated with different issues, such as the requirement for more expen-

sive equipment, more complicated analysis pipelines and computing power. It is difficult to
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estimate the exact cost of WGS as genome size influences the number of samples that can be

run in parallel, and a bioinformatician is generally required to analyse the data, a substantial

part of overall costs [66]. The cost of performing WGS by Pickering et al., [27] was estimated

at £250 per sample without post sequencing analysis, whereas the average cost of Sanger

sequencing is estimated at ~£20 per sample for all four targets required for MLVA-ompA.

Sanger sequencing also requires more readily available technology than WGS (since PCR

amplicons can be simply posted to service providers). Additionally Sanger sequencing of a sin-

gle product generates less data that is simpler to interpret with minimal training required.

This dataset has provided a unique collection of samples in which to investigate the utility

of the MLVA-ompA method in a trachoma endemic region. Amhara is a region experiencing

persistently high levels of trachoma [30], and is one of few programs that has been regularly

monitoring Ct infection with ocular swabbing and PCR. The addition of Ct monitoring to tra-

choma programs not only allows for the tracking of Ct prevalence, but also allows for a deeper

understanding of variant diversity, and the efficacy of MDA and other interventions, and it is

recommended that other programs experiencing persistent or recrudescent trachoma include

ocular Ct testing. The application of this typing technique provides an accessible, affordable

and functional tool for tracking the spread and diversity of Ct variants over time and space,

which can provide important information on the efficacy of MDA, aiding trachoma elimina-

tion programmes in resource limited settings.
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vars and Chlamydia trachomatis infection loads in ocular samples from children in two distinct cohorts

in Sudan and Morocco. PLoS Negl Trop Dis. 2021; 15(8):e0009655. https://doi.org/10.1371/journal.

pntd.0009655 PMID: 34370735

51. Zhang J, Lietman T, Olinger L, Miao Y, Stephens RS. Genetic diversity of Chlamydia trachomatis and

the prevalence of trachoma. Pediatr Infect Dis J. 2004/03/12. 2004; 23(3):217–20. https://doi.org/10.

1097/01.inf.0000115501.60397.a6 PMID: 15014295

52. Chin SA, Morberg DP, Alemayehu W, Melese M, Lakew T, Chen MC, et al. Diversity of Chlamydia tra-

chomatis in Trachoma-Hyperendemic Communities Treated With Azithromycin. Am J Epidemiol

[Internet]. 2018 Sep 1; 187(9):1840–5. Available from: https://doi.org/10.1093/aje/kwy071 PMID:

29617922
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