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Abstract

The global shipping network (GSN) has been suggested as a pathway for the establishment

and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We

used historical maritime movement data in combination with an agent-based model to

understand invasion risk in the United States Gulf Coast and how the risk of these invasions

could be reduced. We found a strong correlation between the total number of cargo ship

arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Addi-

tionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports likely

occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Our

model results indicated that detection and removal of mosquitoes from containers when

they are unloaded effectively reduced the probability of mosquito populations establishment

even when the connectivity of ports increased. To reduce the risk of invasion and reintroduc-

tion of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed

when containers leave high risk locations and when they arrive in ports at high risk of

establishment.

Author summary

Our study investigates how the global shipping network inadvertently serves as a highway

for the spread of two mosquito species, Aedes aegypti and Aedes albopictus, both of which

are vectors for pathogens causing diseases like dengue and Zika. We analyzed maritime

movement data in the United States Gulf Coast and found that the more cargo ships that

dock at a port, the higher the chance these mosquitoes will be introduced; nearly all cargo

ships arriving at these ports had last visited regions where these mosquitoes thrive, signifi-

cantly raising the risk of spread of these mosquitoes. Our research also suggested that pro-

active detection and elimination of mosquitoes from shipping containers can dramatically
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lower the risk of these pests establishing new colonies, even as global shipping traffic

grows. Our work suggests that by enhancing surveillance and control measures at strategic

points in the shipping process, we can safeguard our communities from additional mos-

quito introductions.

Introduction

The globalization of trade and travel has allowed many invasive species to disperse and estab-

lish themselves in novel locations and at distances much farther than their natural dispersal

abilities should allow [1,2]. These dispersal events are fueled by our increasingly interconnec-

ted world [1]. The global shipping network, which currently accounts for>80% of interna-

tional trade, has expanded dramatically in the past 50 years and is expected to increase by at

least 240% by 2050 [2,3]. Notably, the global shipping network acts as a significant pathway for

the long-distance transport of organisms to novel locations [4,5]; aquatic species are often

transported in the ballast water or attached to the hulls of vessels [6,7] whereas terrestrial spe-

cies are often accidentally transported with the cargo [2,8].

International maritime trade and the global shipping network have been instrumental in

the global introduction of several medically important Aedes spp. Mosquitoes. Most notably

this includes Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) [9–11]

that are the primary vectors of globally significant arboviruses including the dengue fever, chi-

kungunya, Zika, and yellow fever viruses [12–15]. Although both species exhibit relatively

short flight ranges that constrain their natural dispersal capabilities [16], the combination of

their unique adaptations and long-range global shipping network enables their spread to dis-

tant locations, resulting in near-global distributions [17,18]. For example, the expansion of the

Ae. aegypti range lead to a shift in blood-feeding behavior [19]: the occurrence of anthropoph-

agy in Ae. aegypti is believed to have increased in frequency during long ship crossings in the

pre-industrial era, where selection against zoophagy would have removed individuals and line-

ages that relied on animal meals due to a lack of availability [10]. In addition, Ae. aegypti and

Ae. albopictus can oviposit in artificial containers allowing them to thrive in highly urban envi-

ronments [20,21]. Adaptations to anthropogenic environments, combined with the unique

ability of their eggs to survive desiccation for extended periods [20,22], have allowed these

mosquitoes to be transported globally through the global shipping network via movement of

potted plants and used tires [17,23,24].

While climate change alters global patterns of habitat suitability for both Ae. aegypti and

Ae. albopictus [25,26], both species continue to expand in most parts of the world via new mar-

itime introduction events and overland spread [19]. Because of widespread reductions in vec-

tor control efforts towards the end of the 20th century and continuous reintroductions, Ae.
aegypti has also reestablished itself in parts of its range from which it was once extirpated,

including parts of the southeastern US [27,28]. The most effective strategy in limiting the

spread of pest species, including Ae. aegypti and Ae. albopictus, is the implementation of effec-

tive biosecurity measures at points of entry [29] using early detection and rapid response to

prevent incursion and establishment [30]. Because resources available for effective early detec-

tion and rapid response networks are generally limited, the identification of high risk locations

for the importation and reintroduction of invasive species is critical for effective biosecurity

[8,29,30].

The Gulf Coast of the United States (Fig 1) has been identified as a region at risk for the

emergence and establishment of Zika virus and other arboviruses associated with Aedes spp.
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mosquitoes due to its warm and humid climate as well as the presence of many key transporta-

tion hubs (airports and seaports) within the region [31,32]. Although there have been out-

breaks of Zika, dengue, and chikungunya in the U.S. Gulf States, these outbreaks do not

compare in magnitude with those experienced in nearby Latin America [33–36]. This discrep-

ancy may be partially explained by varying vector control and public health efforts as well as

differences in housing style and lifestyle between affected countries, but is likely also partly due

to differences in vector competence between mosquito populations [37–40]. Variation in vec-

tor competence between populations can occur at relatively fine spatial scales [41], meaning

that continuous reintroduction of vectors into a region can influence local mosquito compe-

tency for various viruses. Thus, halting the genetic flow between disparate mosquito popula-

tions will aid in preventing the establishment of arboviral diseases in new locations.

Developing models that predict reinvasions by Ae. aegypti and Ae. albopictus and identify the

best strategies for targeted biosurveillance and vector control in ports could help to alert public

health officials to potential threats and support optimized biosecurity efforts to halt reinvasion.

The goal of this study was to first integrate available Aedes species distribution data and

maritime movement data to identify ports at high risk for importation of Ae. albopictus and

Ae. aegypti via the GSN. Following this, we sought to understand how invasion risk could be

minimized at high-risk ports and ports connected to these high-risk areas using biosurveil-

lance. To do this, we used an agent-based model to quantify how port detection and removal

protocols could be used to limit the establishment of mosquito vectors in new areas. This work

may help officials concentrate biosecurity efforts to prevent further mosquito invasion and

potential importation of vector-borne pathogens.

Methods

We obtained data from Informa (formerly Lloyd’s Maritime Intelligence Unit; Informa, Lon-

don, UK) detailing every fully cellular container ship that arrived at a major US port on the

Fig 1. The Global Shipping Network containing Gulf State ports included 213 ports located in 69 countries. Lines

are logarithmically weighted to demonstrate connectivity between ports and indicate a highly connected shipping

network. Inset map shows the U.S. Gulf of Mexico ports and is highlighted by the dotted-line box in the large map.

Map created in the R package ‘maps’ [42] using basemap data from Natural Earth (www.naturalearthdata.com).

https://doi.org/10.1371/journal.pntd.0012110.g001
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Gulf of Mexico in 2012 using automatic identification system transponders. We used these

data and pathway-based, first-order Markov models to determine which ports along the US

Gulf Coast were at the highest risk for importation of Ae. aegypti and Ae. albopictus along with

container cargo shipped via maritime trade routes during 2012. Given that a ship loads and

unloads cargo with each stop, our models also assume that some potential exists for infestation

of the ship by mosquitoes at each stop at a port occupied by these species. These models there-

fore assume that some transmission potential exists between each port occupied by these spe-

cies, and all ports visited subsequently. Thus, given a route A-B-C-D, where point D is the

final port of call in the Gulf of Mexico and B is a port where at least one species of mosquito is

present, we assume some potential for transmission from B to C and then from C to D.

Because there is also some probability of cargo containing the mosquitoes to be unloaded at

each port, we considered all points on a route together, running from i to j. This information

was then used to assemble a database of routes i to j and the number of trips made by vessels

along these routes.

Each route, i to j, had an associated number of stops ij. Each port occupied by either Ae.
aegypti or Ae. albopictus was assigned constant transmission potential (λ) which was used to

calculate the potential for importation (Pij) of each Ae. aegypti and Ae. albopictus into each one

of our seven target ports. We then estimated the total relative likelihood of arrival by each spe-

cies into each target port (φj) by summing Pij for all trips into each target port. Finally, we eval-

uated our model parameterization by generating multiple values for λ, and then generating a

correlation matrix for φij using Spearman rank correlation coefficients; models were robust to

changes in parameterization (rs> 0.964).

We also designed a simple agent-based model to explore how changes in probability of

detecting and eradicating mosquitos on container ships influenced new mosquito population

establishment. In our model, shipping containers aboard maritime ships were treated as

agents, and mosquitoes found in containers on maritime ships were potentially moved among

ports. Each container started its journey with an undefined number of mosquitos that was

modeled with the assumption that the number of mosquitos was sufficient to support estab-

lishment at new ports. These containers were then moved between ports, and simulated mos-

quito detection, removal, and establishment procedures were modeled, and outcomes

summarized across replicates.

For each iteration of the model, we moved ships and their containers between 1 to 10 ports

to focus on control and establishment probabilities for mosquitos within the U.S. Gulf of

Mexico ports (Table 1). Between each port of call, the mosquito population inside each con-

tainer had a ~90% chance of surviving at sufficient numbers to support establishing a new

land-side population; survival probability of mosquitos in each container was determined as a

random deviate from a normal distribution with an initial mean of 0.9 and standard deviation

of 0.035. For each container, the mean of the normal distribution was modified by adjusting a

randomly assigned trip length, and this was meant to mimic decreased survival probability

over for trips that took longer compared to trips that were quicker. Trip distance was ran-

domly selected from our empirical distribution of trip distances, and this distance value was

scaled by dividing it by the maximum trip length*10. The resulting survival penalty was then

subtracted from the initial mean of 0.9 to calculate the final survival probability estimate for

each container. These penalties had the potential to range from 0 to 0.1, with a mean survival

probability penalty due to trip length of 0.012. In our model, the final modified survival proba-

bility was bounded by 0 and 1. The overall survival probability was based on an observed 85%

survival rate using the optimal method for mailing mosquitos for research or management,

but was set slightly higher to be more conservative in our model outputs [43]. Because of the

uncertainty of the survival probability for mosquito populations in cargo containers
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specifically, we also assessed the sensitivity of these parameter choices on population establish-

ment probabilities.

Once a ship entered a port, each container on the ship was processed in one of two ways:

containers remained on the ship or were unloaded into the port. Containers remaining on

board, which constituted 50% of containers, remained in their current state until the next sur-

vival check. Containers moved to shore were subjected to inspections to facilitate a mosquito

search and removal procedure. In practice, containers are not inspected immediately upon

movement to shore, and so we included an additional survival check for unloaded containers

that occurred prior to any mosquito detection and removal operations. This was meant to

include the possibility that mosquito populations may not survive in the containers during the

port-side wait time. For this survival check, survival probability of mosquitos in each container

was determined as a random draw from a normal distribution with a base mean of 0.85 and

standard deviation of 0.035, again based on the observed 85% survival rate for mailing mosqui-

tos [43].

For containers with surviving mosquito populations, we instituted a detection/removal pro-

cedure. To understand how sensitive these processes need to be to be broadly effective at sig-

nificantly reducing new introductions, we considered efforts that ranged from ineffective (0%

probability of detecting and removing mosquitos when they are present) to perfectly effective

(100% probability of detecting and removing mosquitos when they are present), at 20% inter-

vals (S1 Table). Here, we do not define the specific detection or removal methods to allow flex-

ibility in applying our model outputs to many different mosquito targets, environments,

management goals, and port regulations. When mosquito-laden containers were moved to

shore and detection/control efforts failed, these populations were given the chance to establish

a land-side population. Mosquito population establishments were successful for approximately

90% of attempts, which we modeled as a random deviate from a normal distribution with a

mean of 0.9 and standard deviation of 0.05. We chose a 90% establishment probability based

on the suitability of environmental factors in the region and predicted range of Aedes spp. [18].

However, similar to the in-cargo survival uncertainty testing, we also assessed the influence of

this parameter value on the overall pattern of population establishment.

We ran each unique set of parameter combinations 100 times to generate estimates of the

probability of establishment or re-establishment of Aedes at each port. All of these simulations

were conducted entirely in the program R version 4.3.1 using base R packages [44].

Table 1. Ports along the Gulf Coast of the US with the highest relative likelihood of arrival (φj) by Ae. aegypti and Ae. albopictus via the international maritime

trade network given a constant transmission potential (λ) of 0.5. The total number of arrivals of fully cellular container ships at each port was strongly correlated with

relative likelihood of arrival by both Ae. aegypti (r2 = 0.999, P> 0.0001) and Ae. albopictus (r2 = 0.999, P> 0.0001) during this time frame. This was reflective of the high

connectivity between ports, which implies high risk for movement of Aedes spp. mosquitoes between these cities. While Houston seems to play a role as a hub for interna-

tional arrivals, New Orleans and Mobile receive a great number of shipments from domestic ports, including Houston. Count data represents arrivals by fully cellular con-

tainer ships from January 1st to December 31st, 2012.

U.S. Gulf of

Mexico Port

φj (Aedes
aegypti)

φj (Aedes
albopictus)

Total

arrivals

Number of trips from U.S. Gulf of Mexico Port:

Houston,

TX

New Orleans,

LA

Mobile,

AL

Gulfport,

MS

Freeport,

TX

Tampa,

FL

Galveston,

TX

Houston, TX 885.75 909.39 985 – 316 98 0 6 0 2

New Orleans, LA 422.34 420.3 435 89 – 50 0 0 0 0

Mobile, AL 236.73 240.07 252 32 39 – 0 0 7 0

Gulfport, MS 132.52 135.54 136 0 0 0 – 0 0 0

Freeport, TX 54.95 54.52 55 0 6 0 0 – 0 0

Tampa, FL 55.93 50.51 50 0 0 48 0 0 – 0

Galveston, TX 1.99 1.85 2 2 0 0 0 0 0 –

https://doi.org/10.1371/journal.pntd.0012110.t001
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Results

We analyzed data detailing every fully cellular container ship that arrived into major US ports

in the Gulf of Mexico between January 1st and December 31st, 2012. These data were recorded

by automatic identification system transponders, which are installed on every large ship and at

every port and canal in world and automatically report data on ship size, location. Our data

included the previous ten ports of call for each ship before arriving in one of seven US ports

(Fig 1). We documented 1,921 arrivals and departures of 204 container ships. Using Aedes
habitat suitability maps [18], we determined that only 39 (18.3%) of the 213 ports within our

network (distributed across 69 countries) were likely to be free of Ae. aegypti and Ae. albopictus
populations; for ports within our network, 140 (65.7%) were located in habitats that support

populations of Ae. aegypti, 148 (69.4%) were located in habitats that support populations of Ae.
albopictus, and 114 (53.5%) were located in habitats that support populations of both Ae.
aegypti and Ae. albopictus (S1 Fig).

Invasion risk assessment

We used pathway-based, first-order Markov models to determine which ports along the US

Gulf Coast were at the highest risk for importation of Ae. aegypti and Ae. albopictus along with

container cargo shipped via maritime trade routes during the year examined, 2012. Given that

a ship loads and unloads cargo with each stop, our models also assume that some potential

exists for infestation of the ship by mosquitoes at each stop at a port occupied by these species;

because there is also some probability of cargo containing the mosquitoes to be unloaded at

each port, we considered all points on a route together to fully understand invasion patterns.

We determined that port traffic is a strong indicator of probability of invasion; we found a

strong correlation between the total number of cargo ship arrivals at each port and likelihood

of arrival by Ae. aegypti (r2 = 0.999 P> 0.0001) and Ae. albopictus (r2 = 0.999, P> 0.0001)

(Table 1) Of the 1,921 arrivals into target ports, 99.2% of ships (n = 1,905) were moving from

ports occupied by both Ae. aegypti and Ae. albopictus populations and only one arrival was

coming from a port where neither species is commonly found (Table 2). Combined, these data

suggest high probability of invasion potential, including movement of mosquitoes from a pre-

viously invaded location to a new or other previously invaded location.

Invasion risk mitigation

We designed an agent-based model to understand how to effectively mitigate mosquito inva-

sion risk. In the model, shipping containers aboard maritime ships were treated as agents,

where mosquitoes found in these vessels could be moved between ports. Each container was

assumed to start its journey with enough mosquitoes that mosquito establishment at new ports

Table 2. Ports with the highest immediate connectivity to our seven target ports in the US Gulf States. Since nearly all maritime arrivals in the Gulf passed most

recently through ports on the Atlantic seaboard, in the Caribbean, or in other ports on the Gulf of Mexico, all of which host populations of both Ae. aegypti and Ae. albopic-
tus, mosquito populations from these ports must reasonably be assumed to be the most likely to arrive in target ports. Data represents arrivals by fully cellular container

ships from January 1st to December 31st, 2012.

International Ports or U.S. Ports Outside Gulf

of Mexico

Total trips to target

ports

Trips to

Houston

Trips to New

Orleans

Trips to

Mobile

Trips to

Gulfport

Trips to

Tampa

Altamira, Mexico 373 364 0 9 0 0

Santo Tomás de Castilla, Guatemala 160 130 29 0 1 0

Puerto Cortes, Honduras 105 3 5 0 96 0

Savannah, Georgia, USA 104 102 0 2 0 0

Kingston, Jamaica 102 17 18 18 0 49

https://doi.org/10.1371/journal.pntd.0012110.t002
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was theoretically possible. Containers moved between ports and could be moved to shore at

any port with varying probabilities.

To combat the establishment of new mosquito vector populations at these simulated ports,

we enacted port procedures for detecting and removing mosquitoes from shipping containers.

Containers were checked upon arrival to shore, with a probability of removing mosquitoes

ranging from 0 to 100% for each event. We found that detection and removal of mosquito

infestations after unloading at the destination reduced the probability of mosquito establish-

ment (Fig 2A). The overall pattern of these trends was not sensitive to the initial survival prob-

ability of mosquitos in containers or of survival of populations on the shore, although

decreased survival generally dampened the observed trends (S2 and S3 Figs). Thus, onshore

mosquito detection and control efforts in maritime goods is capable of preventing new intro-

ductions of mosquito populations at shipping ports.

We also compared the number of ports a ship visited to mosquito population establish-

ment probability. In our model and in reality, the number of stops a ship makes controls the

number of opportunities for transfer between ships and land and, therefore, the opportuni-

ties for mosquito detection, removal, and establishment. We found that the number of stops

generally did not interact with the effect of removing mosquitoes from unloaded containers

and that population establishment increased with decreasing removal probability (Fig 2B).

As before, the overall pattern of these trends was not sensitive to the initial survival proba-

bility of mosquitos in containers or of survival of populations on the shore (S2 and S3 Figs).

However, when detection rates were <40% and there were relatively few stops (<4), the

number of stops was approximately linearly and positively related to the proportion of mos-

quito populations established. Overall, this suggests that improvements in detection and

removal effectiveness will decrease introductions, even as global shipping networks con-

tinue to grow and incorporate new ports and routes, and that increasing detection and

removal effectiveness for the shortest routes may has the potential to decrease introduction

risks the fastest.

Fig 2. Effectiveness mosquito detection and removal programs displayed as the proportion of populations that

were established from containers that initially contained viable mosquito populations. A) As the effectiveness of

mosquito detection and removal increased, the proportion of mosquito populations decreased even when the

probability of a container being move to shore was as low as 20%. B) The number of stops at ports on a shipping route

generally did not interact with the probability of mosquito population detection and removal to influence mosquito

population establishment rate. However, when detection rates were low and there were relatively few stops, the

number of stops was positively related to the proportion of mosquito populations established.

https://doi.org/10.1371/journal.pntd.0012110.g002
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Discussion

In our models, connectivity as measured by frequency of ship arrivals and previous ports of

call, predicted likelihood of mosquito invasion and this has important ramifications for even-

tual invasion by Aedes species. For example, the Port of Houston, Texas represented by far the

greatest risk for the invasion of Ae. aegypti and Ae. albopictus to other US ports along the coast

of the Gulf of Mexico. In our 2012 dataset, the Port of Houston received more than double the

arrivals of container ships than the U.S. Gulf port with the next most arrivals, New Orleans. In

fact, Houston received more arrivals during this period than all six other major U.S. ports in

the Gulf combined (Table 1). While more than three-quarters of container ships arriving in

Houston had most recently come from a port outside the Gulf which hosted both Ae. aegypti
and Ae. albopictus, the majority of traffic into other Gulf ports was internal, with arrivals com-

ing from other Gulf ports (Tables 1 and 2). These data are in line with other historical data on

frequency of container ship arrivals and cargo tonnage, which show that Houston received

more arrivals and handled more tonnage than any other port in the Gulf from 2016–2018, and

that Houston handled a higher proportion of foreign arrivals and freight than did other Gulf

ports [45].

While the total number of arrivals by container ships may not always indicate the highest

likelihood of arrival by invasive species generally, the distributions and common occurrence of

Ae. aegypti and Ae. albopictus within our network (S1 Fig) led to a high correlation between

these variables. Thus, ports with the highest connectivity to our target ports along the U.S.

Gulf Coast are likely to play a disproportionate role in the dispersal of invasive mosquitoes to

our target ports. Because the probability of unloading infested cargo from a given port dimin-

ishes with each unloading visit along a cargo ship’s route, and because accompanying invasive

mosquitoes are most likely to survive and disperse given shorter travel times [22], we assumed

(and modeled because first order Markov models are inherently weighted by distance) that

ports most immediately visited by ships prior to arrival in US Gulf ports pose the greatest rela-

tive risk for importation of Ae. aegypti and Ae. albopictus.
While most ports on the US Gulf Coast have relatively little immediate connection to ports

outside the Gulf Coast region, the high level of connectivity among several US Gulf ports

(Tables 1 and 2) may provide a vehicle for dispersal of invasive species into ports with less out-

side connectivity. Because Ae. aegypti and Ae. albopictus are so widely distributed among port

cities, and especially those connected to ports in the US Gulf Coast, implementation of origin-

specific screening is unlikely to lead to increased efficiency in halting the dispersal of these spe-

cies into the US Gulf Coast region. Instead, preventing mosquitoes from entering the US Gulf

Coast network seems particularly critical. Since Houston serves as a hub for vessels entering

the US Gulf Coast network, implementation of an early alert and rapid response system for

screening ships entering the Port of Houston could disproportionately reduce the risk of mari-

time dispersal of invasive species, including Ae. aegypti and Ae. albopictus. The findings from

the agent-based model support the screening vessels upon arrival as a strong intervention to

reduce establishment of mosquito populations. Combined with the Markov model findings,

mosquito removal of container cargo upon arrival to the Port of Houston could serve as an

effective strategy at reducing invasive mosquito populations in the US Gulf Coast.

Our analysis underscores the critical role of global shipping networks, particularly through

hubs like the Port of Houston, in the potential dispersal of invasive mosquito species such as

Ae. aegypti and Ae. albopictus. This connectivity not only enhances the risk of invasion by

these vectors but also serves as a conduit for the diseases they carry, notably dengue and chi-

kungunya [46]. Fredericks and Fernandez-Sesma [44] argued for increased vigilance at ports

that serve as entry points for these vectors into new regions as a method for reducing the

PLOS NEGLECTED TROPICAL DISEASES Mosquito introduction via the global shipping network

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012110 April 10, 2024 8 / 14

https://doi.org/10.1371/journal.pntd.0012110


spread of arboviruses. This aligns with our suggestion for implementing an early alert and

rapid response system for ships entering the Port of Houston, as this could serve as a critical

preventative measure against the dispersal of Ae. aegypti and Ae. albopictus. Furthermore, his-

toric outbreaks of dengue in Texas [47,48] and the autochthonous transmissions that have

occurred in Texas in the last 15 years [49] support our findings that the highly connected

nature of the Port of Houston warrants increased vigilance to combat the spread of vector-

borne diseases. The interconnectedness of global shipping networks in combination with the

epidemiology of diseases such as dengue and chikungunya underscores the importance of inte-

grating port-based biosecurity measures with broader public health strategies aimed at vector

control and disease prevention [46].

While our results accurately reflect the movements of all fully cellular container ships that

arrived in the seven target ports along the US Gulf Coast, a number of potential routes of dis-

persal and potential vectors for dispersal were not considered in our study. First, our data did

not include information on the movements of non-containerized cargo along the GSN. How-

ever, container ships are often considered to be better than non-containerized cargo ship as

vectors for the dispersal of terrestrial invasive species because containers are rarely, if ever,

opened and examined between destinations [50]. In addition, it is likely that our agent-based

model conclusions, namely that screening at final destinations for mosquito infestations are

the best way to prevent new invasions, holds true for smaller ships as these ships also visit

ports within the Aedes spp. ranges.

Our models contained several assumptions and generalizations necessitated by data avail-

ability and the general lack of knowledge regarding transport of mosquitoes in cargo. Specifi-

cally, data collected by an automatic identification system does not include information on the

number of containers or the type of cargo carried by each ship, so we assumed that each ship

had the same capacity for infestation and transmission. Furthermore, these records do not

include information on whether cargo was loaded or unloaded at each port. Some port visits

are made for purposes of refueling, and involve no transfer of cargo to or from the vessel [51].

In addition, transmission potential is likely to vary with environmental conditions, and this

was not included in our model. As a result of these limitations to our data, we assumed a con-

stant probability for transmission from one port where a mosquito occurred to the next port,

while in reality this probability is certainly heterogenous. This assumption was also present in

our agent-based model, as was the feasibility of mosquito removal and screening of container-

ized cargo. Finally, the inherent complexities of modeling biological and environmental sys-

tems means that that model validation is an ongoing process, and here we emphasize that no

model, including ours, can perfectly predict real-world outcomes. This understanding under-

scores the importance of continuous refinement and validation of our models, particularly as

new data and insights become available, to improve their accuracy and relevance to public

health strategies against vector-borne diseases. More detailed information on containers and

cargo, as well as quantification of mosquito infestation of these cargo, would dramatically

improve our model and provide more insight into paths utilized by Ae. aegypti and Ae. albopic-
tus for dispersal.

Conclusions

This study represents the first pathway-based analysis of dispersal by Ae. aegypti and Ae. albo-
pictus into and among major ports on the US Gulf Coast via the global shipping network.

These mosquitoes, which are the primary vectors of numerous arboviruses that affect human

an animal health [13–15], are also some of the most invasive insects on earth [9,19]. Under-

standing long-distance dispersal of these species via maritime trade allows us to concentrate
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biosecurity and vector control efforts, thereby increasing management efficiency, and may

allow us to better understand gene flow and patterns of population genetics and phenotypic

traits that are important for mosquito control and public health [52]. For example, under-

standing how traits that convey resistance to insect control methods evolve and are spread

between populations and regions is critical to the long-term effectiveness of mosquito control

programs. We also show that port-based detection and control of potential mosquito invaders

can substantially reduce the risks of martime-based invasion. A number of highly invasive and

medically important mosquitoes, including Anopheles stephensi (Liston), Ae. (Hulecoeteo-

myia) koreicus and Ae. (Finlaya) japonicus japonicus (Theobald), are currently expanding their

global ranges both over land and through long-distance dispersal via the GSN [53–55]. By

understanding vector dispersal and its downstream effects, we may better understand and pre-

vent outbreaks of vector-borne pathogens.
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