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Abstract

Ebolavirus disease (EVD) outbreaks have intermittently occurred since the first documented

case in the 1970s. Due to its transmission characteristics, large outbreaks have not been

observed outside Africa. However, within the continent, significant outbreaks have been

attributed to factors such as endemic diseases with similar symptoms and inadequate medi-

cal infrastructure, which complicate timely diagnosis. In this study, we employed a stochas-

tic modeling approach to analyze the spread of EVD during the early stages of an outbreak,

with an emphasis on inherent risks. We developed a model that considers healthcare work-

ers and unreported cases, and assessed the effect of non-pharmaceutical interventions

(NPIs) using actual data. Our results indicate that the implementation of NPIs led to a

decrease in the transmission rate and infectious period by 30% and 40% respectively, fol-

lowing the declaration of the outbreak. We also investigated the risks associated with

delayed outbreak recognition. Our simulations suggest that, when accounting for NPIs and

recognition delays, prompt detection could have resulted in a similar outbreak scale, with

approximately 50% of the baseline NPIs effect. Finally, we discussed the potential effects of

a vaccination strategy as a follow-up measure after the outbreak declaration. Our findings

suggest that a vaccination strategy can reduce both the burden of NPIs and the scale of the

outbreak.

Author summary

Our research employs a stochastic model to analyze the early-stage spread of Ebolavirus

Disease. We incorporated factors such as healthcare workers and unreported cases, and

utilized real data to evaluate the impact of non-pharmaceutical interventions on disease

transmission. Our findings indicate that rapid outbreak recognition could effectively con-

trol disease spread with reduced efforts. For example, if outbreak recognition occurred

just one day after the first death, the level of non-pharmaceutical intervention required

would have been 45% less than the baseline scenario, causing the same outbreak scale. On
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the contrary, a one-week delay in outbreak recognition required 50% higher non-pharma-

ceutical interventions. Furthermore, we explored the potential implementation of a vacci-

nation strategy following an outbreak declaration. The vaccine administration, similar to

early outbreak recognition, could reduce the burden of non-pharmaceutical interventions.

In the model simulation, if 20% of the considered population (100,000) were vaccinated

within 50 days after outbreak recognition, the level of non-pharmaceutical intervention

required could be reduced by 40%. Our results suggest that such a strategy could mitigate

both the scale of the outbreak and the necessity for additional interventions.

Introduction

Ebolavirus Disease (EVD) was first identified in 1976 in Sudan and the Democratic Republic of

Congo [1, 2]. The scale and impact of EVD outbreaks have evolved over time. The 2013-2016

West Africa epidemic was notably the most severe outbreak, resulting in over 11,000 deaths

[3]. The most recent outbreak occurred in Uganda in 2022, with the first case identified on Sep-

tember 19, leading to an official outbreak declaration the following day. This outbreak lasted

approximately four months, with 164 confirmed cases and 77 deaths [4]. The management and

response to EVD outbreaks pose several challenges. For instance, cases may go unreported due

to the initial symptoms being easily mistaken for other diseases, leading to transmission to

healthcare workers (HCWs) during the early stages of an outbreak [5, 6]. This challenge is par-

ticularly prevalent in remote areas and regions with limited medical facilities [7].

As of January 2024, two vaccines have been approved by World Health Organization:

Ervebo and Zabdeno/Mvabea [8]. Ervebo, a single-dose vaccine, is primarily used for emer-

gency response and has demonstrated near 100% efficacy in preventing infection immediately

after vaccination [9]. However, it is only effective against Zaire ebolavirus and has poor storage

stability, requiring use within 4 hours at room temperature and temperatures below -60˚C for

long-term storage [10]. In contrast, Zabdeno/Mvabea, a two-dose vaccine administered to

healthcare workers in advance, is speculated to have a relatively lesser preventive effect than

Ervebo [10]. It requires an 8-week vaccination period for the two doses, making it unsuitable

for immediate outbreak response, but it has better storage stability, remaining viable for up to

a year while Ervebo lasts for 14 days at regular refrigerator temperatures (+2 to +8˚C) [10].

The application of these vaccines during outbreaks offers further insights. During the 2013-

2016 West Africa outbreak, ring vaccination commenced in April 2015, a period when the out-

break was subsiding. The vaccination was experimental, with a small number of approximately

3,000 individuals vaccinated compared to the overall scale of the outbreak, and the effective-

ness of the vaccine was measured during the same period [11]. In the 2018-2020 Kivu epi-

demic, vaccination started a week after the outbreak was declared, and approximately 300,000

individuals were vaccinated in total [12]. However, despite rapid recognition and the applica-

tion of both non-pharmaceutical interventions (NPIs) and vaccination, controlling the spread

was challenging due to conflict, insecurity, and misinformation [13–15].

NPIs are public health measures that aim to prevent or control the spread of infectious dis-

eases without the use of pharmaceutical drugs [16]. While pharmaceutical interventions are

crucial in the fight against EVD, their import and distribution processes can be time-consum-

ing and complex [17]. Therefore, the role of NPIs becomes paramount, especially in the early

stages of an outbreak or in regions where access to medical treatments is limited. These include

personal preventive measures (such as personal protective equipment) and community
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measures (such as contact tracing, social distancing, and travel restrictions), which reduce

both of transmissibility and the contagious period.

Utilizing mathematical modeling to study infectious diseases provides a systematic struc-

ture that is crucial for deciphering and forecasting disease transmission dynamics [18, 19]. A

significant advantage of such modeling is its ability to provide quantitative insights. Rather

than making decisions based on general observations, these models utilize detailed numerical

data. This precise data assists policymakers in understanding the outcomes of potential inter-

ventions, including vaccination campaigns, travel restrictions, and the enforcement of social

distancing measures [20–22]. There are studies which have primarily focused on the mathe-

matical modeling of transmission dynamics and control strategies related to EVD outbreaks.

Previous research has investigated the initial transmission patterns during the 2014 West Afri-

can EVD outbreak to quantify the disease’s transmissibility and the impact of NPIs [23, 24].

The potential risks associated with importing the pathogen into non-African countries and the

inherent threats of large-scale outbreaks were examined [25, 26]. Contact tracing have utilized

strategies to assess the effectiveness of various containment and intervention approaches

[27, 28].

There are studies which have concentrated on vaccination strategies for EVD outbreaks.

Masterson analyzed the required level of preventive vaccines based on the basic reproduction

number within a population and concluded that the ideal vaccination coverage is unrealistic

due to the high requirement [29]. Chowell used an individual-based model to evaluate the

impact of vaccine strategies on outbreak control and found that ring vaccination alone would

not be effective in controlling the epidemic in situations where there is a delay in vaccination

[30]. Wells conducted a spread analysis in Congo using a spatiotemporal model and observed

that the vaccine program reduced the risk areas by up to 70.4% and decreased the risk level

within those areas by up to 70.1% [31]. Potluri found that if preventive vaccine strategies are

applied to HCWs and the general population, the scale and mortality of EVD outbreaks can be

significantly reduced, even considering only imperfect vaccine effects [32]. Lastly, Bisanzio

conducted an individual based modeling study which shows that preventive vaccination,

including HCWs, frontline workers, and the general population, alongside NPIs, can signifi-

cantly reduce Ebola cases and deaths, and flatten epidemic curves [33].

In this study, we investigated the early stages of the EVD outbreak, considering various key

factors associated with potential risks. In modeling the EVD outbreak, we adopted a compre-

hensive approach by considering the roles of HCWs, unreported cases, and the lag between

the emergence and detection of the initial case while assessing the effect of NPIs, including vac-

cination strategies. While some of the factors we incorporated for EVD have been investigated

in previous research, our methodology is comprehensive, integrating various elements such as

unreported cases, HCWs, NPIs, and vaccines into a single detailed model. This approach

allows us to measure outcomes through scenario-based analysis, providing a thorough view of

the situation.

Materials and methods

Modeling of EVD outbreak

In the modeling of the EVD outbreak, we considered the following groups: susceptible (S),

exposed (before symptom onset, E), infectious (post-symptom onset, I), hospitalized (Q), and

recovered (R). We further divided the infectious group into I1 and I2 to differentiate between

reported and unreported cases. WWe incorporated homogeneous mixing disease transmission

into our model, which does not differentiate between local spread and nosocomial infection.

We hypothesized that hospitalized patients were effectively isolated and could not transmit the
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disease. Note that we did not reflect the phenomenon that reported cases can die before hospi-

talization. Still, there is a possibility of immediate death upon hospitalization. We incorporated

HCWs by adding groups with the subscript M, and assumed that there are no unreported

cases among the HCWs. Fig 1 outlines the entire progression of the disease. Solid arrows indi-

cate infection events characterized by non-delayed reactions (Markovian processes). In con-

trast, dashed arrows denote disease progression and delayed reactions, which are non-

Markovian processes. Considering both of delayed and non-delayed reactions, our model can

be formulated as delay differential equations:

dS
dt
¼ � bS

I1 þ I2 þ IM
N

;

dSM
dt

¼ � pMbSM
I1 þ I2 þ IM

N
;

dE
dt
¼ bS

I1 þ I2 þ IM
N

� E t � tE!Ið Þ;

dEM

dt
¼ pMbSM

I1 þ I2 þ IM
N

� EM t � tE!Ið Þ;

dI1

dt
¼ rEðt � tE!IÞ � I1ðt � tI1!HÞ;

dI2

dt
¼ ð1 � rÞEðt � tE!IÞ � ð1 � f ÞI2ðt � tI2!RÞ � fI2ðt � t0I2!RÞ;

dIM
dt

¼ EMðt � tE!IÞ � IMðt � tIM!HÞ;

dH
dt

¼ I1ðt � tI1!HÞ þ IMðt � tIM!HÞ � ð1 � f ÞHðt � tH!RÞ � fHðt � t0H!RÞ;

dR
dt
¼ ð1 � f ÞðI2ðt � tI2!RÞ þ Hðt � tH!RÞÞ;

ð1Þ

where N ¼ Sþ SM þ Eþ EM þ I1 þ I2 þ IM þ R:

Fig 1. Flow diagram of the Ebolavirus disease transmission model. Healthcare workers and unreported cases are considered. Solid-line arrows

signify nondelayed reactions, whereas dashed-line arrows denote delayed reactions.

https://doi.org/10.1371/journal.pntd.0011955.g001
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The parameter β is the transmission rate and pM represents the heightened risk factor asso-

ciated with HCWs. To parameterize pM, we used the case number ratio of non-HCWs to

HCWs (50:14) and the population size ratio (1000:1.1) in Mubende province where the study

was conducted. As a result, pM is determined to be 254.55. These data indicated that HCWs

poses a greater risk of infection by 254.55. We estimated the value of β without NPIs at 0.19,

assuming that the basic reproductive number is 2.5 and the average infectious period is 5.79

days [34–36]. We set the case fatality rate f to 0.44 [37]. The subsequent subsection discusses

the report rate, represented by ρ, which varies based on the outbreak detection. Time delays

are applied using τ where subscripts indicate the transition, and be listed in Table 1.

We used modified Gillespie algorithm to simulate our model and ran 10,000 runs per sce-

nario [38]. Table 1 offers a comprehensive breakdown of the propensities associated with non-

delayed events and the particulars of delayed events, which are aggregated from past epidemio-

logical investigations and described using time delay τ in Eq 1 [34–36, 39–45]. We assumed a

uniform distribution of delays, except for the incubation period, owing to a lack of data. Note

that we assumed lesser transmissibility of HCWs, due to their professional training and direct

involvement in treating patients, by setting short infectious period [41, 42]. We set the infec-

tious period of unreported cases to be identical to the duration of hospitalization for reported

cases, taking into account their outcomes (either recovery or death), i.e., tI2!R ¼ tH!R and

t0I2!R ¼ t
0
H!R.

Scenarios for model simulation

For a baseline scenario, we focused on the outbreak within the Mubende district, the epicenter

of the 2022 Ugandan EVD outbreak. The simulation encompassed two stages, accounting for

behavioral alterations and NPIs after the outbreak announcement: the phase before the decla-

ration (P1) and after the declaration (P2). Fig 2 graphically describes and clarifies this phase

division. A primary case refers to an individual introducing the infection into a population,

whereas an index case denotes the first identified case [46]. The primary case can be the index

case, but not necessarily. We set that the primary case is non-HCW in the unreported infec-

tious state (I2), and the population size is 100,110 (100,000 non-HCWs and 110 HCWs) [40].

Table 1. Characteristics of the propensity of nondelayed events and details of delayed events.

Event Type Description Reference

Infection of HCWs Nondelayed Propensity:

pMbSM
I1þI2þIM

N

[34–36]

Infection of non-HCWs Nondelayed Propensity:

bS I1þI2þIM
N

[34–36, 39, 40]

From exposure to onset (τE!I) Delayed Log-normal distribution,

Mean: 9, SD: 4.31

[43–45]

Symptom onset to hospitalization

(non-HCWs, tI1!Q)

Delayed Uniform distribution,

5.79 ± 3.30

[35, 36]

Symptom onset to hospitalization

(HCWs, tIM!Q)

Delayed Uniform distribution,

0.5 ± 0.5

Assumed, [41, 42]

From hospitalization to recovery (τH!R) Delayed Uniform distribution,

20.38 ± 7.58

[35, 36]

From hospitalization to death (t0H!R) Delayed Uniform distribution,

5.56 ± 6.11*
[35, 36]

*If the generated value is lesser than 0, then the value changes to 0. In real, this is the case when the patient dies before the hospitalization.

https://doi.org/10.1371/journal.pntd.0011955.t001
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To set the effect of NPIs for the baseline scenario, we assumed that the transmission rate

and duration from symptom onset to hospitalization decreased by 30% and 40%, respectively,

upon outbreak declaration. Note that these coupled values are chosen, as the values would be

most plausible among possible combinations, to simulate real incidence and described in sub-

sequent section. The criterion for this declaration was 19 days after the first death, which is

within the reported group and consistent with the situation in Uganda. In 2022, it was ascer-

tained in Mubende district that six deaths, later confirmed, had occurred before the official

outbreak declaration [47, 48]. Investigations indicated the potential for 17 more probable

deaths before this declaration [49]. Based on these data, the reporting rate in the pre-declara-

tion phase was estimated to be 7/24 (29.17%). In the post-declaration phase, with 22 confirmed

deaths and two probable deaths, the estimated rate was 22/24 (91.67%). The report rate also

shifted (from P1 to P2) when the outbreak was declared. Furthermore, based on the difference

between the two reporting rates, we assumed that individuals in group I2 transition to I1 at the

outbreak declaration and are be reported later.

To consider comparable scenarios, we explored the effects of varying the thresholds for out-

break declaration, the intensity of NPIs on the spread of the disease, and vaccination. Note

that there is no vaccination in the baseline scenario. In the scenario considering vaccination, it

reflects vaccine availability or the effectiveness of the vaccine. A insufficient supply of vaccines

(or low effectiveness) is explained by a low vaccination proportion and a long duration. Since

there is no vaccine against Sudan ebolavirus, we assumed hypothetical vaccine which has simi-

lar effectiveness as Ervebo. The key variations considered are as follows:

• Threshold for outbreak declaration: The delay from the first death to outbreak declaration

varied from 1 to 38 days.

• Effect of NPIs: The effect of NPIs on the transmission rate and infectious period varied. This

variation ranged from a 50% reduction (more stringent NPIs) to an increase of 50% (less

severe NPIs) relative to the baseline setting.

• Vaccination: To simply reflect the duration of vaccination and the time it takes to become

immune after vaccination, we assume that once a certain time has passed, vaccinated hosts

become immune. That is, hosts in state S transfer to R once the vaccination duration (mini-

mum 20 days, maximum 80 days) has passed after the outbreak declaration. The proportion

of vaccinated individuals ranges from 0.1 to 0.3, while all HCWs are vaccinated.

Fig 2. Division of phases considering outbreak declaration and setting for baseline model simulation scenario.

https://doi.org/10.1371/journal.pntd.0011955.g002
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Results

Baseline scenario simulation

Fig 3 shows the baseline simulation results for cumulative confirmed cases. The gray curves

depict the outcomes of each distinct simulation run, the dark curve signifies the mean, and the

red boxes show the trends of confirmed cases in Mubende district. Because of inherent ran-

domness, the timing of the outbreak declaration differs across runs; therefore, all simulation

outcomes were synchronized based on the timing of the outbreak declaration. The actual num-

ber of confirmed cases in Mubende District was 66. The simulation mean value was 66.84

(95% credible interval (CrI): 0-226).

In the baseline scenario simulation, the transmission rate and duration from symptom

onset to hospitalization (infection period) were reduced by 30% and 40%, respectively, follow-

ing the outbreak declaration. Thus, the real-world effect of NPIs closely mirrors these levels.

Nevertheless, the decline in the transmission rate might have been more pronounced, whereas

the reduction in the duration from symptom onset to hospitalization might have been less sig-

nificant or the inverse. Fig 4A shows the contour lines for pairs of values with an average

closely aligned with the actual data, spanning a range of the effect of NPIs. Red asterisk indi-

cates values for the baseline scenario (40% and 30% of reduction of infectious period and

transmissibility, respectively). When comparing the X- and Y-axis intercepts, scenarios with

no reduction in the infectious period but a 70% reduction in the transmission rate and those

with no decrease in the transmission rate but a 53% reduction in the infectious period showed

similar simulation results. Fig 4B shows the outbreak duration from the simulation runs when

NPIs follow the contour line in Fig 4A. When the impact of NPIs on the infectious period is at

its maximum (53%) or minimum (0%), the mean outbreak becomes 94 (95% CrI: 14-163) or

120 (95% CrI: 16-238), respectively.

Fig 5A presents the distribution of duration from primary case to outbreak declaration

(P1), which reveals a bimodal pattern. Outbreaks are typically declared within seven days, with

Fig 3. Cumulative confirmed cases from the baseline model simulation. The grey curves represent individual

simulation runs, the dark curve denotes the simulation mean, and the red boxes display actual data from the Mubende

district. Note that the vertical line, marking time 0, signifies the timing of the outbreak declaration in the simulation

runs.

https://doi.org/10.1371/journal.pntd.0011955.g003
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another cluster emerging at approximately 50 days. This distinct pattern arises in some simula-

tion scenarios where subsequent infections do not manifest, leading to the premature end of

the outbreak. The probability of an outbreak concluding prematurely within one week was

19%, which indicates the case where the disease dies out before the declaration. On average,

excluding instances where the disease ended early, the primary case manifested approximately

50 days prior (95% CrI: 32-82). Fig 5B shows the distribution of P2 duration and exhibits a

monomodal distribution, with a mean of 64 days (95% CrI: 9-147). In this study, we defined

the duration of P2 as the period from outbreak declaration to when there were no individuals

in stages E or I.
Addressing how many individuals were infected when the outbreak declaration was offi-

cially acknowledged is essential for planning and responding. Fig 6 illustrates the distribution

of prevalence by status at the outbreak declaration. Mean number (95% CrI) of E, EM, I1, I2,

and IM are 12.07, 3.04, 1.64, 7.34, and 0.16 (0-45, 0-11, 0-7, 0-27, and 0-1), respectively. When

Fig 4. Effect of NPIs on the simulation results. Impact of NPIs on confirmed cases, where the dashed cyan curve represents

the contour line with an mean value equivalent to the baseline scenario simulation outcome. (A), mean and 95% CrI of the

outbreak duration over of contour line in A (B).

https://doi.org/10.1371/journal.pntd.0011955.g004
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normalized by population size, the number of exposed HCWs is 27.62 per 1,000. This ratio is

229 times higher than the non-HCWs group, which registers at 0.12 per 1,000.

Sensitivity analysis for the baseline scenario

Sensitivity analysis is a powerful tool used in mathematical modeling and simulation studies

[50]. It allows us to understand how different input parameters influence the output of a

model. By varying the inputs within a certain range, we can observe how the output changes,

thereby identifying which inputs have the most significant impact on the model results. To

conduct the sensitivity analysis, we calculated the Partial Rank Correlation Coefficient (PRCC)

[50]. We examined four parameters as model inputs: the effect of NPIs on both transmission

rate and infectious period, the duration from the first death to the outbreak declaration, the

transmission rate, and the report rate before the outbreak declaration. We set uniform distri-

butions ranging ±50% based on the baseline scenario for these parameters, and set 200,000

parameter combinations for Latin Hypercube Sampling. The number of infections (transition

from susceptible to exposed) was set as the model output. Fig 7 displays the value of PRCC

Fig 5. Histogram representing the durations of phases. Duration from the occurrence of the primary case to the

outbreak declaration (A), and from the outbreak declaration to the end of outbreak (B).

https://doi.org/10.1371/journal.pntd.0011955.g005
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over time: Fig 7A shows the PRCC for each input, and Fig 7B shows the absolute PRCC values

changing over time. Note that we considered dummy input (dashed line in Fig 7B) to test the

robustness of the model, and the maximum absolute value of PRCC was lesser than 0.003. The

ranges of PRCC for the effect of NPIs on both transmission rate and infectious period, the

duration from the first death to the outbreak declaration, the transmission rate, and the report

rate before the outbreak declaration were measured as [-0.17, 0.00], [0.14, 0.34], [0.11, 0.64],

and [-0.10, -0.08], respectively. The report rate showed the smallest change in PRCC. The

input that had the most significant impact in the past has shifted from declaration delay to

transmission rate. The effect of NPIs on the transmission rate and the infectious period was 0

before the outbreak declaration and gradually increased afterwards, becoming more significant

than both declaration delay and report rate.

Scenarios considering NPIs and outbreak detection

We conducted an examination of the distribution of confirmed case numbers under a variety

of conditions. These conditions ranged from a span of 1 to 38 days between the first death and

the declaration of the outbreak. Additionally, we considered variations in the NPIs level,

which ranged from -50% to +50% relative to the baseline scenario. Fig 8A (Fig 8B) shows the

delay range (NPIs levels) on the x-axis against the number of confirmed cases on the y-axis. As

expected, with an increase in the delay, the number of infections also increased, exhibiting an

exponential rather than a linear growth pattern. Within the 95% CrI, the maximum outbreak

size surged from 111 individuals when declared a day after the first death to 523 after a 38-day

delay. On the other hand, the number of cases decreases as NPIs level increases, 43 in the mini-

mum (95% CrI: 0-161) once NPIs level is maximized. When the NPIs level is set as minimum

(-50%), the mean number of cases reaches 177 (95% CrI: 0-585).

Here, we present the outcomes of simulations that concurrently adjust for the previously

discussed factors: the timing of outbreak recognition and the intensity of NPIs. Fig 9 maps the

NPI intensity on the x-axis against the duration from the first death occurrence to the outbreak

declaration on the y-axis. The mean number of cases in each simulation setting is depicted

using a color map. For comparison with the baseline scenario outcomes, we integrated contour

curves corresponding to the average number of infections in the baseline scenario (white, 67)

and half (green) and double (red) that count into the graph.

After examining the baseline contour, if an outbreak is declared merely a day after the first

death, the intensity of the NPIs can be diminished by 45% to attain a similar outbreak

Fig 6. Distribution of infected individuals at the time of outbreak declaration.

https://doi.org/10.1371/journal.pntd.0011955.g006
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magnitude. By contrast, if the outbreak declaration occurs 26 days after the first death, the

NPIs must be augmented by 50% to match the baseline outbreak scale. Given a constant NPIs

level, outbreak recognition must be advanced by approximately two weeks to cut the infection

count by half. Conversely, even with increased NPIs at the baseline recognition juncture, halv-

ing the infection scale was impossible.

Scenarios considering vaccination

Let us examine the effect of the vaccination strategy. Fig 10 depicts the mean number of con-

firmed cases in relation to the timing of when the vaccination is completed. The color of the

curves (blue, red, and yellow) represents the proportion of the population that has been vacci-

nated (10, 20, and 30%). As the vaccination process is expedited or a larger proportion of the

population is vaccinated, the number of cases decreases. Conversely, if the vaccination is

delayed, the number of cases converges to the number in the baseline scenario (approximately

Fig 7. Parameter sensitivity analysis results. Time dependent PRCC by parameters (A), Absolute value of PRCC over

time (B).

https://doi.org/10.1371/journal.pntd.0011955.g007
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67). Additionally, we verified whether there were significant changes in the simulation results

indicated in Fig 10 as the vaccination period changed, using the Wilcoxon signed-rank test.

We conducted a verification to see if the distribution of simulation runs varied depending on

the vaccination duration for each vaccination proportion, and the Wilcoxon signed-rank test

was applied to a total of 63 combinations. As a result of the verification, when the vaccination

proportion was 10%, there was no significant difference when the vaccination duration was 60

days or more. When the vaccination proportion was 20%, there was no significant difference

between the cases of 60 and 70 days. When the vaccination proportion reached 30%, there was

always a significant difference when the vaccination duration was different. Table 2 lists simu-

lation results. Note that the duration from primary case occurrence to outbreak declaration

(P1) was not considered in this table, because NPIs and vaccines are post-outbreak measures.

Fig 8. Mean and 95% CrI of confirmed cases considering different factors. Periods leading to outbreak declaration (A),

relative intensity of NPIs (B).

https://doi.org/10.1371/journal.pntd.0011955.g008
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Similar to what Fig 9 represents, Fig 11 displays mean number of confirmed cases consider-

ing vaccination timing and the intensity of NPIs simultaneously. Fig 11A to 11C contain dif-

ferent simulation results considering various vaccinated proportion of individuals. Fig 11D

displays contour curves aggregated from results in Fig 11A to 11C. Solid (dashed) curves indi-

cate the mean (half mean) number of confirmed cases from the baseline scenario. If the vacci-

nation proportion is set to be 20% and is finalized 50 days after the outbreak declaration, the

intensity of NPIs that result in the same number of infections as the baseline scenario was

Fig 9. Outbreak scale determined by the intensity of NPIs and the timing of outbreak recognition. Dashed curves

represent contours: white denotes the outbreak scale from the baseline, whereas green and red indicate half and double

the size of the baseline simulation, respectively.

https://doi.org/10.1371/journal.pntd.0011955.g009

Fig 10. Mean number of confirmed cases considering vaccination strategy. X- and y- axis indicate the duration

from outbreak declaration to the vaccination finalizing time and mean number of confirmed cases, respectively.

https://doi.org/10.1371/journal.pntd.0011955.g010
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reduced by 40%. Intersection of the blue solid curve and yellow dashed curve indicates the sce-

nario where the confirmed cases could be reduced by half if vaccines can be administered

three folds in the same 35 days with 40% eased NPIs.

Discussion

Our study introduces an investigation of EVD outbreak in Mubende province of Uganda,

from the occurrence of the primary case to the detection of the index case and the end of the

local outbreak, using a stochastic model. Instead of a national-scale outbreak, we observed the

course of an outbreak that could occur in a single community and the associated detection

delays. This allowed us to demonstrate the potential risk of spread to surrounding areas and

the effectiveness of vaccination interventions (which could be considered a broad-scale ring

vaccination) for smaller areas, in conjunction with NPIs.

Our model structure, which distinguishes between HCWs and non-HCWs as well as

reported and unreported cases, provides a detailed understanding of the transmission dynam-

ics. A simple observation of the data reveals a high risk of HCWs exposure, given the propor-

tion of HCWs to the total population and the number of infected individuals. This

underscores the need for enhanced protective measures and training [6]. As Fig 6 indicates,

numerous HCWs could be exposed to the disease, necessitating early and aggressive interven-

tions to identify cases targeting HCWs. Our model shows that an outbreak outcome can be

highly uncertain. This is because it starts with a primary case and the disease progression,

including the infectious period, can vary significantly. As results, our simulations show that

the number of confirmed cases could range from 0 to 266 in 95% CrI. In the event of an actual

Table 2. Simulation results considering different vaccination rate and duration after outbreak declaration.

vaccination rate ddd Confirmed cases Outbreak duration (P2)

mean 95% CrI mean 95% CrI

10 20 42 [1, 157] 99 [15, 194]

30 42 [1, 150] 98 [15, 192]

40 47 [1, 154] 99 [15, 182]

50 55 [1, 177] 103 [16, 186]

60 63 [1, 214] 105 [15, 185]

70 66 [1, 222] 107 [16, 193]

80 67 [1, 236] 108 [15, 191]

20 20 29 [1, 108] 89 [14, 178]

30 32 [1, 107] 89 [14, 173]

40 40 [1, 123] 94 [14, 170]

50 51 [1, 162] 98 [14, 171]

60 59 [1, 193] 103 [15, 176]

70 65 [1, 221] 106 [15, 182]

80 67 [1, 231] 107 [14, 189]

30 20 19 [0, 69] 75 [7, 159]

30 23 [0, 76] 76 [7, 153]

40 32 [0, 101] 82 [7, 151]

50 43 [0, 145] 88 [7, 159]

60 53 [0, 190] 93 [7, 165]

70 60 [0, 215] 97 [7, 172]

80 61 [0, 225] 98 [7, 183]

https://doi.org/10.1371/journal.pntd.0011955.t002
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outbreak, symptomatic infections can be distinguished. However, without precise testing, it is

challenging to know how many individuals are in the incubation period. Fig 6 is expected to

be able to present the level of risk that frontline workers should consider by showing how

many individuals are actually in the incubation state. The sensitivity analysis of parameters, as

depicted in Fig 7, further elucidates the key parameters that significantly influence the scale of

the outbreak. While the results were intuitively perceived, they emphasized the factors influ-

encing the situation quantitatively. The high sensitivity of the declaration delay (maximum

PRCC: 0.34) just before the outbreak emphasized the importance of early detection. The sensi-

tivity of the effect of NPIs (minimum PRCC: -0.17), which continues to increase after the out-

break declaration, emphasized the importance of interventions to reduce infections after the

outbreak is recognized.

Fig 11. Impact of NPIs and vaccination application. Mean number of confirmed cases where 10%, 20%, 30% of individuals are

vaccinated (A-C), contour lines representing the mean number of confirmed cases occurred in the baseline scenario (solid) and half of it

(dashed) where the vertical dashed grey line indicates the baseline NPIs intensity (D).

https://doi.org/10.1371/journal.pntd.0011955.g011
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The simulation based on the baseline scenario indicates the potential range of real-world

effects that NPIs could have on reducing both the transmission rate and the infectious period.

The simulation of the baseline scenario suggests that the real-world impact of NPIs closely

reflects the reduction in the transmission rate and the duration from symptom onset to hospi-

talization. Furthermore, our simulation results proposed a variety of NPIs that could have

been implemented in real-world scenarios.

For example, we estimated the effects of NPIs on the transmission rate and infectious

period to be 30% and 40%, respectively. However, as Fig 4 demonstrates, these could have

been a combination of different values. This result also suggests the need for estimating the

infectious period through epidemiological investigations. If a reduction in the infectious

period due to NPIs can be estimated, then the effect of reducing the transmission rate could be

measured immediately. Our simulation results show the potential to decrease the scale of an

outbreak by shortening the infectious period or reducing the transmission rate.

The patterns observed in past EVD outbreaks are evident: late detection, inadequate inter-

vention, misinformation, and larger, interconnected populations exacerbate the situation. The

West Africa and Kivu epidemics, two significant EVD outbreaks, were the result of these fac-

tors. Our model simulation, which did not account for nationwide populations, could not pre-

dict an epidemic of that magnitude. However, our simulation still demonstrated exponential

growth in the number of confirmed cases as detection was delayed (Fig 8A). On the other

hand, in regions with low inter-regional connectivity and population density, small-scale out-

breaks could occur even with misdiagnosis/diagnostic delays, as evidenced by the Gabon out-

break in 1994 [51].

Our scenario-based study, which varied the timing of the outbreak declaration and the

intensity of NPIs (Fig 9), provides valuable insights for policymakers. In the two extreme cases,

when an outbreak is detected a day after the first death, the same outbreak scale as the baseline

scenario was observed even if the intensity of NPIs decreased by 45%. On the other hand, if

there is a 7-day extra delay in detection compared to the baseline scenario, a 50% stronger

intervention intensity needs to be applied to achieve the same outbreak scale. The results sug-

gest that early recognition and declaration of an outbreak can significantly mitigate the inten-

sity of NPIs required to control the outbreak similarly. In contrast, delays in outbreak

recognition necessitate more aggressive NPIs to control outbreak. Localized interventions

aimed at identifying confirmed cases among patients with EVD-like symptoms are less bur-

densome in terms of cost, effort, and human resource requirements than regional lockdowns

and nationwide interventions. These findings underscore the importance of early detection.

Vaccine intervention has been observed to significantly reduce the outbreak size, duration,

and the burden of NPIs. However, given the storage characteristics of vaccines and the state of

medical infrastructure, it is inevitable that the introduction of vaccines will take time. This par-

adoxically emphasizes the importance of NPIs (Fig 11). If the targeted scale of the outbreak is

similar, even if the same amount of vaccination is planned, a stronger intervention may be

needed if it is delayed. As shown in Fig 11D, the scale of the outbreak can vary depending on

the intervention environment (NPIs or vaccination). The simulation demonstrated the need to

consider all these factors simultaneously for appropriate control below the risk level. As the

reactive vaccination strategy we demonstrated was highly effective, the effects of proactive vac-

cination would be even stronger as previous studies showed [29–31]. In other words, if we can

reflect the risk areas, we may see the highest vaccine effects shown in the past studies. More-

over, even with rapid vaccination, there may be limitations to the vaccine supply. As observed

during the Kivu epidemic, when rapid vaccination was implemented, NPIs remained neces-

sary and effective measures. The simulation was conducted based on the Everbo vaccine,

which is highly effective with a single dose. However, the Everbo vaccine is effective against the
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Zaire ebolavirus, and the case in Uganda involved the Sudan ebolavirus, not the Zaire ebola-

virus. This highlights the need for vaccine development, as simulations have shown that the

burden of NPIs in future outbreak situations would decrease if a vaccine is available.

This study had several limitations. Firstly, although the HCWs group was considered sepa-

rately in the population, the locations where they stay (hospitals or clinics) were not distin-

guished. Because of the assumption of homogeneous mixing, the model could not consider

close contact transmission routes such as households that can become places of infection out-

side of hospitals. Additionally, the vaccination did not reflect the target age of the vaccine. For

instance, in the case of Eberbo, the target age was 17 years and older, but this study did not

reflect the target age and only used a certain percentage of the total population [52]. Further-

more, the risk of transmission due to the EVD-transmissible semen of recovered patients,

found in several cases during past EVD outbreaks, was not reflected [53]. Since we considered

a model considering homogeneous mixing in a small community, our model could not simu-

late ring vaccination corresponding to individual contact networks. These limitations will be

investigated using individual-based models in future work.
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