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Abstract

Expanding geographic distribution and increased populations of ticks has resulted in an
upsurge of human-tick encounters in the United States (US), leading to an increase in tick-
borne disease reporting. Limited knowledge of the broadscale spatial range of tick species
is heightened by a rapidly changing environment. Therefore, we partnered with the Forest
Inventory and Analysis (FIA) program of the Forest Service, U.S. Department of Agriculture
and used passive tick surveillance to better understand spatiotemporal variables associated
with foresters encountering three tick species (Amblyomma americanum L., Dermacentor
variabilis Say, and Ixodes scapularis L.) in the southeastern US. Eight years (2014—2021) of
tick encounter data were used to fit environmental niche and generalized linear models to
predict where and when ticks are likely to be encountered. Our results indicate temporal and
environmental partitioning of the three species. Ixodes scapularis were more likely to be
encountered in the autumn and winter seasons and associated with soil organic matter, veg-
etation indices, evapotranspiration, temperature, and gross primary productivity. By con-
trast, A. americanum and D. variabilis were more likely to be encountered in spring and
summer seasons and associated with elevation, landcover, temperature, dead belowground
biomass, vapor pressure, and precipitation. Regions in the southeast least suitable for
encountering ticks included the Blue Ridge, Mississippi Alluvial Plain, and the Southern Flor-
ida Coastal Plain, whereas suitable regions included the Interior Plateau, Central Appala-
chians, Ozark Highlands, Boston Mountains, and the Ouachita Mountains. Spatial and
temporal patterns of different tick species can inform outdoorsmen and the public on tick
avoidance measures, reduce tick populations by managing suitable tick habitats, and moni-
toring areas with unsuitable tick habitat for potential missed encounters.
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Author summary

The study highlights the significance of passive tick surveillance data collected by Forest
Inventory and Analysis crews in providing valuable information into the presence and
distribution of ticks in the southeastern United States. We used ecological niche modeling
and generalized linear models to assess the geographic regions and temporal periods asso-
ciated with where and when ticks are likely to be encountered. In the region, ticks remain
active throughout the year with their distribution influenced by climatic and topographi-
cal factors. Of interest, maximum temperature was a significant environmental variable
for all three species suggesting that distributions may be altered as the climate warms. Ele-
vation and landcover were important variables for both Amblyomma americanum and
Dermacentor variabilis, whereas Ixodes scapularis populations were correlated with evapo-
transpiration, vegetation indices, and soil organic matter. The research also identified new
tick occurrence records providing data in a region with minimal infrastructure for tick
surveillance, but with many ticks and tick-borne diseases. Continued long-term passive
surveillance with collaborations with academic and government partnerships will help
monitor tick distribution changes resulting from landscape and temperature changes
which affect public health risks.

Introduction

The geographic distribution of human-tick encounters for medically important tick species is
rapidly increasing in the United States (US) [1,2]. Range expansion for commonly encoun-
tered tick species (Amblyomma americanum L., Dermacentor variabilis Say, and Ixodes scapu-
laris L.) has resulted in an upsurge of tick-borne disease cases in the last two decades including
spotted fever group rickettsiosis, anaplasmosis, ehrlichiosis, alpha-gal syndrome, Powassan
virus, and Lyme disease [3-7].

Current distribution range maps for these tick species are commonly based on known
occurrences at the continental or county level which is important for surveillance and manage-
ment of ticks for regional and county health departments [8,9]. These range maps or distribu-
tion maps are often based on administrative landmarks (county boundaries) rather than tick
and host biological patterns because these maps encompass large spatial areas with environ-
mental factors imprecise for the species’ distribution [10]. Environmental or ecological niche
models (ENMs) create maps with estimated distributions based on interactions of the species
with environmental variables in time and space [11]. Recent ENMs for A. americanum pre-
dicted this species to inhabit regions in the northern, southeastern, and western regions of the
US and Mexico, as well as in the Midwest from eastern Texas to Kansas, Oklahoma, and Mis-
souri [12-14]. Similarly, D. variabilis was predicted to occur in parts of Canada and Mexico, as
well as northern, southern, and midwestern regions of the US including regions in California
[15]. Predictions for I. scapularis were distributed throughout regions in the eastern and mid-
western US [16]. Understanding the effects that environmental variables have on each tick spe-
cies distribution is vital because of the recent and predicted impacts of climate and land-use
change on their population dynamics [17-20].

Ticks spend the majority of their lives in the environment compared to time spent on hosts;
thus, understanding how the environment influences tick populations will lead to increased
understanding of ticks and their associated pathogens which can lead to effective management
strategies [21]. For example, soil properties such as percent litter coverage and soil moisture
are associated with A. americanum abundance [22,23]. Additionally, land management
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decisions (e.g., burning) were associated with decreased immature I. scapularis [24] and A.
americanum populations [25,26]. Specifically prescribed burns reduce tick abundance by fac-
tors such as heat exposure or decrease in soil moisture [26]. Climatic variables (e.g., tempera-
ture, vapor pressure, and precipitation) have also been associated with A. americanum, D.
variabilis, and I. scapularis (e.g., [27,28]. Landscape variables associated with forests (e.g., land
cover, primary productivity) are important for host populations and likely regulate infesting
tick populations [e.g., 29,30]. For example, normalized difference vegetation index (NDVI), a
measure of greenness, has been associated with the abundance of A. americanum [31]. Know-
ing if an environmental variable is associated with human-tick encounters can be an important
surveillance tool for monitoring and a potential management tool for controlling host species.

As tick populations are expanding in a rapidly changing environment, we collaborated with
the Southern Research Station’s Forest Inventory and Analysis (FIA) Program of the Forest
Service, U.S. Department of Agriculture (USDA) to evaluate the environmental conditions
that could increase likelihood of encountering ticks. We chose to work with FIA because for-
esters are known to collect data at a variety of sites with varying environmental conditions and
their forest crews are consistently exposed to ticks in the environment. Specifically, foresters
collected encountered ticks while working on sites around the southeastern US. We used eight
years (2014-2021) of tick encounter data to create environmental niche and generalized linear
models to understand where and when ticks are likely to be encountered. Here we test the
hypothesis that temporal, climatic, physiographic, and soil variables are reliable predictors of
human-tick encounters for A. americanum, D. variabilis, and I. scapularis in the southeastern
U.S.

Materials and methods
Tick encounter data

Ticks were collected from forest crews employed by FIA. Passive tick collections were
opportunistic and occurred when crews worked at plots in the southeastern U.S. between
2014 and 2021. Every year 1/5, 1/7, or 1/10 of the total plots, which are spatially distributed
throughout each state (2,000 to 4,800 forest plots per state), are sampled. Crew members
visit a single plot each day to inventory each site which takes an entire day. Ticks encoun-
tered that day were placed into a single vial containing 80% ethanol and labeled with the
date, forestry crew identification number, and GPS coordinates where the crew was work-
ing [32]. Encountered ticks were sent to the University of Tennessee, Knoxville Medical and
Veterinary Entomology laboratory where they were identified to species and life stage using
taxonomic keys [33-36].

Statistical analysis

Generalized linear models were created from (PROC GLIMMIX) in Statistical Analysis Soft-
ware (SAS, ver. 9.4, Cary, North Carolina) with two-tailed hypotheses (o = 0.05) to analyze
how season affects the presence of each tick species together and by life stage. Date of tick col-
lection was transformed into a categorical season variable (winter, spring, summer, and
autumn) based on solstice or equinox to account for daylength. Season was used to determine
the probability to detect tick presence for each species separately in the binary logit models.
Odds ratios and their 95% confidence intervals were calculated for independent variables that
were successful at predicting the presence of each tick species. Relative tick encounters, similar
to human-tick encounter phenology, were graphed by summing tick abundance for each
month per years collected and transformed as a percentage.
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Environmental niche modeling of potential suitability for ticks

FIA crews used hand-held GPS receivers to record the latitude and longitude of each FIA plot.
The coordinates used for niche modeling are within 1.6 km (1 mile) of the actual encounter
sites because (1) many of the plots are located on private lands and these exact locations are
kept confidential (https://www.fia.fs.usda.gov/tools-data/spatial/Policy/default.asp) and (2)
ticks may have been encountered traveling to or from plots or while working at the plot. We
coarsened the spatial resolution of the model to account for differences between plots and
uncertainty of collecting locations. We used these approximate locations as human-tick
encounter data to train environmental niche models from 258 sites where A. americanum
were encountered, 90 sites where D. variabilis were encountered, and 36 sites where I. scapu-
laris were encountered.

We used 20 environmental rasters (gridded data) as predictor variables in niche models
acquired from EarthData (https://earthdata.nasa.gov/) or EarthExplorer (http://earthexplorer.
usgs.gov) using NAD 1983 geographic coordinate system (Table 1). Each encounter was
matched temporally to raster values with the same or nearest date available. We averaged ras-
ters from every date each tick was collected from human hosts to encompass all environmental
conditions when tick species were active on human hosts (FIA crews). To compensate for
potential spatial sampling errors of ticks, for ticks collected while walking to and from plots
and GPS recorded outside property boundaries, we aggregated (coarsened) the original spatial

Table 1. Spatial variables used in environmental niche modeling for common ticks in the southeastern US.

Environmental Variable Definition Reference
Elevation® Height above sea level [37]
Gross primary productivity” Total amount of carbon produced by plants during photosynthesis [38]
Net primary productivity ® The difference between carbon dioxide vegetation intakes during photosynthesis and the amount released during
respiration
Leaf area index” Quantification of total canopy greenness [39]
Land cover® Surface contents of within the visible landscape [40]
Land surface temperature® Earth surface temperature at a particular location [41]
Evapotranspiration” All forms of evaporation and transpiration [42]
Vegetation indices A measure of greenness [39]
Precipitation” Condensation of atmospheric water vapor affected by gravitational pull [43]
Vapor pressure” Point at which equilibrium pressure is acquired in a closed container
Minimum '[empelratureb Lowest temperature recorded over a given amount of time
Maximum temperature” Highest temperature recorded over a given amount of time
Burned area® Surfaces which have been affected by burn scar from fire [44]
Living aboveground Living vegetation above the soil [45]
biomass®
Living belowground Living vegetation above below the soil
biomass®
Leaf Litter” Decomposing plant material on the forest floor surface
Soil organic matter” Portion of the soil consisting of decomposing plant or animal tissue

b

Dead aboveground biomass Dead vegetation above the soil

b

Dead belowground biomass Dead vegetation below the soil

Hydrologic soil group” Index of the rate that water infiltrates a soil [46]

* Data were collected from http://earthexplorer.usgs.gov

® Data were collected from http://earthdata.nasa.gov/

https://doi.org/10.1371/journal.pntd.0011919.t001
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resolution of rasters from 500 meters to 4.8 km. All raster processing steps were completed in
ESRI ArcMap 10.7.

Environmental niche models were fitted using human-tick encounter data and environ-
mental variables in the maximum entropy algorithm Maxent (Version 3.4.0) that estimates
species’ potential geographic distributions [47]. Maxent was selected due to its robustness in
handling presence-only model fitting with limited occurrences [48]. We removed duplicate
presence records and ran independent models for each tick species with cross-validation and
five replicates, each based on a maximum of 5,000 iterations. For each model, the algorithm
selected 10,000 random background samples (or pseudo-absences) to contrast their environ-
mental conditions to those at presence locations. A 10% training presence threshold (allowing
10% of training presence data to be predicted unsuitable) was applied to convert the model
outputs of continuous probability of suitability to binary maps of suitable-unsuitable values.
Because Maxent is a stable machine-learning platform for controlling correlated variables,
environmental raster images were not assessed for autocorrelation beforehand but left to the
algorithm to discern [49] (S1 Table). Highly correlated environmental variables do not impact
model performance when model transfer is not being used in Maxent [50]. Due to lower sam-
ple size for I. scapularis only the linear, quadratic, and product features were used in Maxent.
Additionally, categorical variables (land cover) were removed from the environmental niche
model for I. scapularis because the variable contribution was not balanced. For A. americanum
and D. variabilis an addition of the hinge feature was used to build a piecewise linear exponent
because there were more encounters (i.e., larger presence dataset) available for model training
[47].

To quantify model performance we used area under the curve (AUC) of the receiver operat-
ing characteristics; AUC > 0.9 indicate excellent models, 0.8-0.9 good, 0.7-0.8 fair, 0.6-0.7
poor, and < 0.6 failed models [51]. We also observed the omission error for each model at a
10% training threshold. In addition, we overlaid an U.S. ecoregions boundaries shapefile to
evaluate risk based on regional similarities or differences (e.g., geology, soils, climate, vegeta-
tion) of distinct geographic areas [52-56].

Independent model testing

To test each species niche model in addition to the internal cross-validation of Maxent algo-
rithm, we used targeted field work and an independent dataset of previously reported tick rec-
ords for each tick species by county. We selected three USDA Southern Research Station
Experimental Research Forests near the University of Tennessee, Knoxville to confirm the
presence or absence of human-tick encounters in this area in 2021. The three experimental for-
ests included Coweeta, Blue Valley, and Bent Creek in western North Carolina and northern
Georgia in southern Appalachian Mountains. Each collection site in western North Carolina is
representative of forests previously disturbed by logging and mining [57-59]. The Coweeta
Hydrologic Laboratory has an area of 1,600 ha and is dominated by mixed-oak forests with
understories of noncontinuous mountain laurel and rhododendron [60]. Soils in this region
are comprised of Inceptosols and Ultisols [58]. The Blue Valley experimental forest has an area
of 526 ha dominated by eastern white pine and stand of oak-hickory in the Blue Ridge Moun-
tains [58]. This area contains acidic, infertile, well drained soils with vegetation primarily con-
sisting of buckberry shrubs [58]. Bent Creek experimental station is comprised of 2,550-ha of
upland hardwood forests primarily dominated by oak-hickory stands and understory vegeta-
tion of rhododendron [58]. The Asheville Basin region contains soils with low organic matter
contents, clay layers, and reduced fertility whereas the Mountain Highland are Inceptisols and
acidic [58].
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We provided vials to crews to collect encountered ticks, but we also conducted active sur-
veillance in these forests. We set dry ice traps for overnight trapping once monthly (March-
June 2021) at five different sites within each forest [61]. The use of dry ice traps were deter-
mined by rough terrain at the collection site and limited funding, and the timing of our sur-
veillance was informed by prior knowledge that most ticks are active March through June in
the region. Collected ticks were stored in ethanol filled vials, then identified to species and sex
as described above.

Additionally, we compared county level records with our predicted distributions. County
level records for I. scapularis, A. americanum, and D. variabilis were downloaded on May 14,
2022, from the Center for Disease Control (https://www.cdc.gov/ticks/surveillance/
TickSurveillanceData.html). True positives, used to calculate sensitivity, were identified as
counties with available tick records and predicted suitable by the niche models. Here, we con-
sidered the CDC datasets to be the standard, so false positive counties were those predicted
suitable but lacking tick presences, indicating model commission error, and false negative
counties were those with known tick presences but predicted unsuitable by the niche models,
representing omission error. Although the true distribution for each tick species may not be
fully represented due to differences in collection, the CDC datasets represent the most compre-
hensive comparison for our models because they include surveillance by ArboNET or litera-
ture published each year throughout the Southeast. Sensitivity tests were used to determine the
proportion of true positives and were calculated in SAS using PROC FREQ. County-level vali-
dation of models calibrated with environmental variables with 4.8 km resolution and GPS rec-
ords of ticks represents a compromise between the need to validate the models and the lack of
higher resolution presence data readily available for each species.

Results

A total of 1,901 ticks were collected and submitted to us during the study period from 384
sites: 1,720 (90.5%) A. americanum from 258 sites, 136 (7.2%) D. variabilis from 90 sites, and 45
(2.3%) I. scapularis from 36 sites. Of the A. americanum records, 669 were adults, 851 were
nymphs, and 200 were larvae. There were 135 D. variabilis adults and one D. variabilis nymph.
Finally, there were 45 I. scapularis adults. Ticks were primarily collected and submitted by
crews in Kentucky, South Carolina, and Tennessee (Table 2).

Table 2. Total number of ticks encountered and submitted by Forest Inventory and Analysis Program crews of the Forest Service, US Department of Agriculture.
Total number of tick-encounter sites are separated by state in the southeastern United States (2014-2021). In total there were 1720 Amblyomma americanum (200 larvae,
851 nymph, 310 males, and 359 females), 136 Dermacentor variabilis (1 nymph, 73 females, and 62 males) and 45 Ixodes scapularis (27 females and 18 males).

State Amblyomma americanum Dermacentor variabilis Ixodes scapularis
Alabama 35 (1 site) 17 (1 site) 1 (1 site)
Arkansas 15 (13 sites) 5 (5 sites) 2 (1 site)

Florida 160 (31 sites) 3 (3 sites) 15 (13 sites)
Georgia 4 (3 sites) 0 (0 sites) 1 (1 site)
Kentucky 1,030 (121 sites) 1 (40 sites) 12 (7 sites)
Louisiana 3 (3 sites) 3 (3 sites) 3 (3 sites)
Virginia 7 (4 sites) 0 (0 sites) 0 (0 sites)
Mississippi 1 (1 site) 0 (0 sites) 0 (0 sites)
North Carolina 9 (3 sites) 0 (0 sites) 0 (0 sites)
South Carolina 35 (26 sites) 13 (11 sites) 8 (7 sites)
Tennessee 421 (52 sites) 34 (27 sites) 3 (3 sites)

Total 1,720 (258 sites) 136 (90 sites) 45 (36 sites)

https://doi.org/10.1371/journal.pntd.0011919.t002
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Statistical analysis

Season was significantly associated with presence for all three species: A. americanum (F3, 349 =
13.69; p < 0.0001), D. variabilis (Fs, 349 = 6.07; p = 0.0005), and I. scapularis (F3, 349 = 22.14;

p < 0.0001). The likelihood of A. americanum being present was highest in spring compared
to any other season, and higher in summer compared to autumn and winter. Amblyomma
americanum larvae were most likely to be present on human hosts in summer months,
nymphs were more likely to be present in spring compared to autumn months, and adults
were more likely to be present in the spring compared to any other season. Dermacentor varia-
bilis adult encounters were greater in summer months compared to spring and winter months;
a single nymph was collected in the spring. Finally, encounters of adult I. scapularis were more
likely to occur in autumn and winter months compared to spring and summer months. A
detailed breakdown of each species monthly percent encounter throughout the eight-year
study period is shown in Fig 1.
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Fig 1. Relative activity of three species of ticks in southeastern United States. Percent monthly encounter for
Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis encountered by Forestry Inventory and
Analysis crews in the southeastern United States between 2014 and 2021.

https://doi.org/10.1371/journal.pntd.0011919.9001
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Table 3. Model evaluation and variable contribution to environmental niche models generated with Maxent maximum entropy algorithm for ticks encountered by
Forestry Inventory and Analysis (FIA) foresters from 2014-2021. Values for each variable represent that variables percent contribution to each model, bolded values
were those identified as significant contributing variables to the model (greater than 0.1 or 10%).

Variable

AUC values

Elevation
Landcover
Vapor pressure
Precipitation
Maximum temperature
Minimum temperature
Dead belowground biomass
Evapotranspiration
Gross primary productivity
Soil organic matter

Vegetation indices

Net primary productivity
Hydrologic soil group
Land surface temperature
Litter
Living belowground biomass
Living aboveground biomass
Leaf area index
Burned area

Dead aboveground biomass

Amblyomma americanum Dermacentor variabilis Ixodes scapularis

model 1 model 2 model 3 model 1 model 2 model 3 model 1
0.83 0.85 0.80 0.87 0.85 0.86 0.82
Variables Contributing to One or More Model
16.7 20.2 15.3 24.9 21 16 7.7
19.6 16.4 16.7 21 19.2 28.8 -
154 15.4 13 10.2 11.6 9 0
6.7 5.7 6.2 114 9.7 10.5 0
14.5 7 14.7 16.2 17.8 10.5 11.1
4.5 11.2 6.9 1.3 1 1.5 9.3
1.8 0.4 0.4 3.5 7.2 11.7 2.4
0.9 2.4 1 3.3 1.8 3.2 11.9
1.2 0.1 0.4 1.5 1.7 1.9 11.9
3.1 2.5 4.4 0.3 0 0.2 24.2
0 0 0 0.8 0.5 0.1 11.6
Variables Assessed, but Not Contributing to a Model
5.1 2.6 6.4 2.4 1.6 1.4 2
5.8 7.4 8.5 2.6 5 4.1 -
4.1 7.4 55 0 0.5 0.1 2
0.2 0.6 0.2 0.2 0.3 0.1 3
0.1 0.6 0.4 0.4 1 0.9 0
0.1 0 0 0 0 0 0.1
0 0 0.1 0 0 0 2.8
0 0 0 0 0 0
0 0 0 0 0 0

https://doi.org/10.1371/journal.pntd.0011919.t003

Environmental niche modeling of potential suitability for ticks

Lambda file results for all environmental variables in our ENM’s can be found in (S2 Table).
Three of the five replicate niche models for A. americanum had AUC values greater than 0.8
(Table 3). We averaged the raster outputs (probability of suitability) of the three Maxent mod-
els to create a single map of potential suitability for A. americanum (Fig 2). Model 2 had the
highest AUC and elevation, landcover, minimum temperature, and vapor pressure were the
best predictors of habitat suitability (Table 3). In models 1 and 3, the same three contributing
variables as for model 1 predicted environmental suitability except maximum temperature
that had a higher contribution than minimum temperature in these two models. Resulting
models indicate potential suitable environments where A. americanum are likely to be encoun-
tered; thus, crews working in forests throughout Tennessee, Kentucky, northern Florida,
Arkansas, North Carolina, and eastern Virginia have an increased likelihood of encountering
A. americanum (Fig 2).

Three D. variabilis models had AUC values greater than 0.8 (Table 2) so we averaged the
outputs of the three models to generate the predicted suitability map for D. variabilis (Fig 3).
High contribution variables to all three models included elevation, landcover, and maximum
temperature. Differences between models were represented by precipitation and vapor pres-
sure in the first model, vapor pressure in the second model, and dead belowground biomass
and precipitation in the third model (Table 2). Areas of potential suitability and thus concern
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Fig 2. Potential distribution estimated with an environmental niche model for Amblyomma americanum. The
model was based on tick encounters collected by Forest Inventory and Analysis Program of the Forest Service, US
Department of Agriculture foresters in the southeastern United States (2014-2021). Landcover, elevation, maximum
temperature, minimum temperature, and vapor pressure contributed the most to predicting this tick’s geographic
suitability. The following publically available link was used as the base layer of the map (https://www.census.gov/
geographies/mapping-files/time-series/geo/carto-boundary-file.html).

https://doi.org/10.1371/journal.pntd.0011919.g002

for crews encountering D. variabilis included regions throughout Tennessee and Kentucky,
northern North Carolina, Alabama, Arkansas, and eastern Virginia (Fig 3).

Only one model for I. scapularis had an AUC value greater than 0.8 (Table 2). The high
contribution environmental variables were evapotranspiration, gross primary productivity,
maximum temperature, vegetation indices, and soil organic matter (Table 3). The area of
potential suitability for I. scapularis included all ecoregions in the southeastern US; however,
there was a reduced risk to encounter I. scapularis ticks in southern Florida, eastern Tennessee
and Mississippi, and western Arkansas (Fig 4).

Independent model testing

We tested each resulting niche model with data from passive and active surveillance at three
Experimental Research Forests and by comparing predicted suitability maps with published or
available county-level tick records. Passive and active tick collections at these targeted forests
resulted in a total of five D. variabilis provided by a camper in the area, but the location of
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Fig 3. Potential distribution estimated with an environmental niche model for Dermacentor variabilis. The model
was based on tick encounters collected by Forest Inventory and Analysis Program of the Forest Service, US
Department of Agriculture foresters in the southeastern United States (2014-2021). Variables landcover, elevation,
precipitation, vapor pressure, and dead belowground biomass contributed the most to predicting this tick’s geographic
suitability. The following publically available link was used as the base layer of the map (https://www.census.gov/
geographies/mapping-files/time-series/geo/carto-boundary-file.html).

https://doi.org/10.1371/journal.pntd.0011919.g003

encounter was not recorded. There were no ticks collected in any of the 15 traps that were
placed in the three experimental research forests, nor were ticks encountered on the individual
walking to and from each site. The CDC tick surveillance datasets indicated D. variabilis to be
reported but there were no county records for A. americanum and I. scapularis in Macon
County North Carolina where The Coweeta and Blue Valley Experimental Forests are located.
Similarly, CDC surveillance data showed that D. variabilis was established but there were no
county records for A. americanum and I. scapularis in Buncombe County North Carolina
where The Bent Creek Experimental Forest is located. For all three tick species, our potential
distribution maps suggested suitable habitats were present in regions scattered throughout
Macon County; however, suitable habitats were found scattered throughout Buncombe
County for D. variabilis and I. scapularis but not for A. americanum. Our models correctly pre-
dicted sites where dry ice traps were located to be environmentally unsuitable for all three tick
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Fig 4. Potential distribution estimated with an environmental niche model for Ixodes scapularis. The model was
based on tick encounters collected by Forest Inventory and Analysis Program of the Forest Service, US Department of
Agriculture foresters in the southeastern United States (2014-2021). Variables soil organic matter, vegetation indices,
maximum temperature, gross primary productivity, and evapotranspiration contributed the most to predicting this
tick’s geographic suitability. The following publically available link was used as the base layer of the map (https://www.
census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html).

https://doi.org/10.1371/journal.pntd.0011919.g004

species; these absences and unsuitable sites were found in a landscape of predicted suitability
by ENMs (Fig 5).

Overall, the CDC website identified 390 I. scapularis-positive counties and 674 no county
records, 718 D. variabilis-positive counties and 346 no county records, and 561 A. americanum
-positive counties and 503 no county records. When we compared our resulting maps at the
county level to the previously recorded data, sensitivity values and associated confidence inter-
vals for A. americanum were 0.9465 (0.9279-0.9651), for D. variabilis were 0.8175 (0.7893—
0.8458), and for L. scapularis were 0.9956 (0.9905-1.00). This indicates that the models pre-
dicted suitable habitats (~encounter areas) similar to those reported by others. There was no
observed difference between county status (established, reported, or new county record) and
the number of A. americanum or D. variabilis collected from foresters. Counties noted as
established in the CDC database for I. scapularis were found to have multiple ticks collected
compared to reported or new county records.
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Fig 5. Maps indicating unsuitable habitat for sites used as active surveillance with dry ice traps for tick species (a)
Amblyomma americanum, (b) Dermacentor variabilis, and (c) Ixodes scapularis in Coweeta, Blue Valley, and Bent
Creek experimental forests in western North Carolina and northern Georgia in southern Appalachian Mountains
(2021). Eco regions included Piedmont (45), Blue ridge (66), Ridge and Valley (67), Southwestern Appalachians (68),
and Central Appalachians (69). The following publically available link was used as the base layer of the map (https://

www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html).

https://doi.org/10.1371/journal.pntd.0011919.g005

Additionally, as a part of the project, we report several new county records for each species.
New county records for A. americanum included: Kemper (MS), Madison (FL), Taylor (FL),
Gilchrist (FL), Williamsburg (SC), Clarendon (SC), Lexington (SC), Edgefield (SC), Saluda
(SC), Newberry (SC), Fairfield (SC), York (SC), Cherokee (SC), Anderson (SC), Halifax (NC),
Franklin (NC), Amherst (VA), Henderson (KY), Hancock (KY), Trimble (KY), Kenton (KY),
Scott (KY), Carter (KY), Johnson (KY), Perry (KY), Knox (KY), Jackson (KY), Lincoln (KY),
Marion (KY), Casey (KY), Adair (KY), Russell (KY), Cumberland (KY), Monroe (KY), Pike
(KY) (Fig 6). New county records for D. variabilis included: Pickens (SC), Wayne (TN), Law-
rence (TN), Polk (TN), Daviess (KY), Hancock (KY), Butler (KY), Larue (KY), Green (KY),
Taylor (KY), Cumberland (KY), Anderson (KY), Knox (KY), Clay (KY), Anderson (KY),
Trimble (KY), Carter (KY), and Johnson (KY) (Fig 6). New county records for I. scapularis
included: West Feliciana (LA), Dade (GA), Union (TN), Simpson (KY), Nelson (KY), Rock-
castle (KY), Leslie (KY) (Fig 6).
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Fig 6. Sites of tick species collected by foresters in the Forest Inventory and Analysis Program of the Forest
Service, US Department of Agriculture foresters in the southeastern United States (2014-2021). The following
publically available link was used as the base layer of the map (https://www.census.gov/geographies/mapping-files/
time-series/geo/carto-boundary-file html).

https://doi.org/10.1371/journal.pntd.0011919.9g006

Discussion

Three-host ticks reside in the environment for the majority of their two- to three-year life
cycle, leaving them susceptible to biotic and abiotic factors [62]. Consequently, ecological
niches and habitat suitability often differ for each species spatially and temporally in a rapidly
changing environment [63]. In this study, we used ecological niche and generalized linear
models to describe geographic regions (where) and temporal periods (when) that represent a
risk for humans to tick encounters in the southeastern US. We identified environmental vari-
ables associated with the human-tick encounters of three common human biting tick species,
which are important indicators for tick encounters and could be targeted for management.
The only common environmental variable significantly contributing to the human-tick
encounters of all three species was maximum temperature, which supports the expectation
that tick distributions will change in warming climates [64-66]. Additionally, long-term pas-
sive surveillance is an important tool for obtaining broad-extent occurrence records which can
be used to monitor geographic distribution shifts of ticks and public health risk [67,68]. This
dataset highlights the potential power of passive tick surveillance by trained scientists from fed-
eral agencies to generate accurate distributional information.

Amblyomma americanum

According to many published papers and citizen scientist reports, the most abundant and
encountered tick in the southeastern US is A. americanum and the species is most likely to be
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encountered in the spring [69,70]. The likelihood of encountering A. americanum at a site was
determined by five environmental variables (elevation, landcover, maximum temperature or
minimum temperature, and vapor pressure). Previously, others reported variables such as pre-
cipitation, vapor pressure, diurnal range, and temperature as important contributors to pre-
dicting A. americanum suitability and potential range [17,12,14]. Our environmental niche
model highlighted regions at higher risk of encountering A. americanum (Fig 2) that align
with the Interior Plateau, Interior River Valleys and Hills, Ozark Highlands, Boston Moun-
tains, Arkansas Valley, Ouachita Mountains, northern region of the Southeastern Plains,
northeastern Piedmont, Northern Southern Coastal Plain, Southwestern Appalachians, and
western regions of the Central Appalachian ecoregions. These ecoregions suitable for A. ameri-
canum contain upland hardwood forests, grassy plateaus, and low elevations in between the
Appalachian Mountains and regions in the Southern Plains [71]. A similar pattern to our
results was observed based on ticks collected from wildlife hosts in Florida where A. ameri-
canum was more likely to be present in the northern region of the Southern Coastal Plain [72].

Importantly, our results also predicted when and where A. americanum may not be
encountered: fall and winter months and locations typically thought to have standing water.
Less suitable areas were comprised of wetlands and bottomland hardwoods (e.g., Mississippi
Alluvial plain, Southern Florida Coastal Plain), in agreement with previous reports [14,73].
These areas have flat plains with wet soils, marshlands, and swampy land cover [74]. Ticks
were less likely to be found in the Southeastern Plains, a region that has historically experi-
enced various land use changes such as plantation forestry and agriculture; these land manage-
ment decisions could have impacts on tick abundance [75,76]. The Southeastern Plains in
Tennessee are known to be occupied by A. americanum and their associated tickborne diseases
such as human ehrlichiosis and spotted fever group Rickettsioses [77,78].

Similar to our ENM, A. americanum populations are less likely to occur in regions with
high elevations such as in the Smoky Mountains [17]. Importantly, because A. americanum
was associated with both elevation and temperature variables, it is possible to investigate these
relationships in more detail as higher elevations begin to warm. Future models could predict
that, as areas become warmer, more tick encounters will occur at higher elevations where this
species was previously absent [17].

Dermacentor variabilis

Foresters frequently encountered D. variabilis adults in summer months, as previously
reported [79]. Six environmental variables contributed to the environmental niche models
with consistent variables including elevation and landcover; and the remaining four variables
(maximum temperature, precipitation, vapor pressure, and dead belowground biomass) varied
in contribution for each model. Similarly, previous research found precipitation, temperature,
and elevation associated with D. variabilis [15]. Ticks were most likely to be present through-
out Kentucky and Tennessee, and the predicted suitability was fragmented in northern Arkan-
sas, North Carolina, and Virginia. Like our A. americanum model, the model for D. variabilis
predicted suitable areas in ecoregions with upland hardwood forests and fewer extreme eleva-
tion changes (e.g., Ozark Highlands, Boston Mountains, Arkansas Valley, Interior Plateau,
Interior River Valleys and Hills, Southwestern Appalachians, Piedmont, Mississippi Valley
Loess Plain, Ridge and Valley, and the Central Appalachians) [71].

Prior to the range expansion of A. americanum, D. variabilis was the most commonly
encountered tick in southeastern US [14,80-82]. Areas where D. variabilis was least likely to be
encountered included more southern areas of the study region such as the Southern Coastal
Plain and Southeastern Plains, typically characterized as subtropical, low-elevation, sandy, and
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areas with marshlands in Florida [71]. Historically D. variabilis were reported throughout the
Midwest and Southeast but not regions in the upper Northeast and Southwest [83]. Recently,

D. variabilis encounters were predicted by warm temperatures and low precipitation, thus cli-
mate change could improve environmental conditions for this species, increasing their range

into the upper Northeast US [15].

The Southeastern Plains region is characterized by drought-prone and nutrient-poor soils,
with most land use practices reversing to industrial forests which has resulted in extreme clear
cutting [84]. These conditions could lead to unsuitable environmental conditions for this tick
species due to its association with precipitation, landcover, and vapor pressure. Of interest is
the potential role that dead belowground biomass has on D. variabilis because this variable can
be manipulated with land and forest management decisions. Intense forest harvesting methods
could increase dead belowground biomass due to remaining root structures underground
[85]. Dead belowground biomass in the form of dead roots has the ability to hold large
amounts of moisture [86] for water storage [87]; which could be important for adult D. varia-
bilis survival because they possess greater survival in dry environments compared to other ixo-
did tick species [88]. Immature D. variabilis often quest below leaf litter [89] making them
difficult to collect with active surveillance and easier to collect with passive surveillance, from
small sized hosts [59,69,77,90].

Ixodes scapularis

Historical encounters of I. scapularis in the Southeast are receiving more attention as recent
reports are confirming more I. scapularis in the region [91]. This study confirms these more
recent publications, with adult I. scapularis being encountered in the fall and winter and nearly
the entire environmentally suitable region [16,92,93]. Although adult I. scapularis were
encountered less frequently than D. variabilis and A. americanum, their predicted geographic
range was larger. Specifically, I. scapularis was predicted to be present in all southeastern states
and all ecoregions except the floodplains around the Mississippi River (Mississippi Alluvial
Plains and Mississippi Valley Loess Plains). The environmental variable landcover was
removed from our I. scapularis model because the available presence records did not represent
well the variation in landcover categories within the model. Environmental variables that con-
tributed to this ENM included evapotranspiration, gross primary productivity, maximum tem-
perature, vegetation indices, and soil organic matter. Interestingly, the antagonistic effects of
transpiration and relative humidity indicate that I. scapularis could withstand questing when
evapotranspiration is high because it is buffered by drastic changes in relative humidity in for-
ests [94]. Vegetation indices contributing to adult I. scapularis populations when they quest in
colder months is likely associated with plant dormancy traits [95]. Previous research found
variables vapor pressure, elevation, forest cover, isothermality, and temperature associated
with their ENMs [16,96]. Similar to our I. scapularis model, ticks were less likely to be found at
high elevations in the Appalachian Mountains or the Blue Ridge, or southern Florida or the
Southern Florida Coastal Plain, and the Louisiana Coast or the Mississippi Alluvial Plain ecor-
egions [16,71]. In these ecoregions it could be difficult for I. scapularis to survive off host
because they are dominated by wetland habitats [71].

Studies of immature I. scapularis reported southern populations questing in leaf litter while
genetically distinct northern populations questing higher on the vegetation, out of leaf litter
[91,97]. These behavioral and genetic differences might also be reflected in our ecological
niches because variables associated with questing and surviving in an environment (e.g., tem-
perature, evapotranspiration, vegetation indices, etc.) contributed to model calibration.
Importantly, the I. scapularis submitted by foresters in this study were adults and were not
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genotyped. Follow up studies should compare the ecological niches of these genetically and
behaviorally distinct populations.

Model testing

Our models could predict the presence of each tick species but had difficulties predicting the
absence of each tick species. This was confirmed with sensitivity and specificity testing as well
as conducting targeted surveillance. These results are to be expected because the Maxent algo-
rithm was only trained with presence records that had latitude and longitude coordinates
(GPS records). Presence records are readily available for this study because some crews were
more vigilant tick collectors and absences could be due to lack of reporting and/or submitting.
Nevertheless, our models were able to sufficiently predict tick absence when compared to cur-
rent literature and active surveillance. Here, few encounters occurred in areas near the foothills
of the Appalachian Mountains and our active surveillance supported that as well. Campers in
the Bent Creek area helped us confirm D. variabilis, indicating ticks may be present in the
region, but the likelihood of encounters at these sites is rare compared to other locations, a
finding that is similar to other studies in the area [98]. These data support the overall findings
that higher elevation areas are often unsuitable tick habitat, which could explain the decreased
number of human-tick encounters in high elevation areas like Appalachia [99-101]. Previous
research documented that air temperature and density decrease as elevation increases [102]. A
possible future research direction could be to monitor these sites as temperature and precipita-
tion change in response to climate change [103], because all three tick species in this study
were associated with temperature and none were solely dependent on elevation. Utilizing com-
munity science and passive surveillance, this study identified 60 new county records for tick
occurrence in eight states. Data generated from this research could be an important tool for
raising awareness of increased tick species distributions and used for tick avoidance and man-
agement regimes.

Potential for sampling bias

All three species were absent on human hosts in areas bordering the Mississippi river, coast-
lines around Louisiana, and southern Florida. This resulted in us reporting that ticks were
absent from areas comprising wetlands, analogous to previous studies [99,104]. The absence of
ticks on human hosts in these areas could also indicate sampling bias because fewer records
were submitted by forest crews working in these areas. This is a known sampling limitation of
this study: all data presented here are dependent on forestry crews submitting ticks. Future
research should focus on confirming these findings by monitoring ticks in wetland habitats of
these regions. Sensitivity and specificity tests indicated our niche models were efficient in their
ability to detect known presences of all three species but had poor abilities in detecting a tick
absence. Regardless, our relative activity and niche models can be used as a first approximation
of risk for encountering ticks and their pathogens, as well as helping with tick management by
forestry personnel.

Land management

Our results indicated that the burned area variable was not a good predictor of human-tick
encounters; which suggests that burned locations are not a suitable habitat for tick encounters.
Prescribed burning may remove tick and mammal habitats that promote the abundance of
tick populations [105], but there are several studies in the Southeast that both support and
reject these findings. Previously, prescribed burns reduced the abundance of ticks and the
prevalence of tickborne pathogens in an area [106,107] which may be due to increased soil
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temperatures, decreased soil moisture, or destruction of tick habitats [108,109]. Conversely, a
weak negative association between prescribed burns and the number of ticks in an area could
be due to increased host use of burned areas [110] or little impact on tick species that quest
and dwell within the soil [111]. Others propose that the methods for controlled burns, such as
season, burning intensity, and frequency could be important factors for managing ticks in pre-
scribed burns [112]. Future research to address the potential of controlled burns in large land
management areas to reduce recreational and work-related tick encounters is warranted. Tick
encounter data can be accessed at Dryad (https://doi.org/10.5061/dryad.v41ns1s3n). [113].

Conclusions

Passive tick surveillance data provided by FIA crews were valuable in delivering descriptions
for when and where ticks were likely to be encountered and contributed to supporting our
hypothesis. Data confirmed that ticks are active year-round in the southern US and habitats
suitable for encounters can be explained by climatic and topographical features. Regions in the
Southeast that were least suitable for all three tick species included the Blue Ridge, Mississippi
Alluvial Plain, and the Southern Florida Coastal Plain, whereas suitable regions for all tick spe-
cies included the Interior Plateau, Central Appalachians, Ozark Highlands, Boston Mountains,
and the Ouachita Mountains. Temporal periods associated with encountering each tick species
varied; for example, I. scapularis was associated with cold seasons (autumn and winter)
whereas D. variabilis and A. americanum were associated with warm seasons (spring and sum-
mer). This research provides important information for isolating regions for management of
ticks when they are more seasonally active. This study also helps forestry managers alert field
crews about tick activity and new county records of tick species. Additionally, this study pro-
vides crews with the opportunity to test management decisions against tick encounters. Future
studies will aim to combine forest management strategies at high-risk geographic regions to
understand associations on human-tick encounters.
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