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Abstract

Mayaro virus (MAYV) is a mosquito-borne Alphavirus that is widespread in South America.

MAYV infection often presents with non-specific febrile symptoms but may progress to debil-

itating chronic arthritis or arthralgia. Despite the pandemic threat of MAYV, its true distribu-

tion remains unknown. The objective of this study was to clarify the geographic distribution

of MAYV using an established risk mapping framework. This consisted of generating evi-

dence consensus scores for MAYV presence, modeling the potential distribution of MAYV

in select countries across Central and South America, and estimating the population resid-

ing in areas suitable for MAYV transmission. We compiled a georeferenced compendium of

MAYV occurrence in humans, animals, and arthropods. Based on an established evidence

consensus framework, we integrated multiple information sources to assess the total evi-

dence supporting ongoing transmission of MAYV within each country in our study region.

We then developed high resolution maps of the disease’s estimated distribution using a

boosted regression tree approach. Models were developed using nine climatic and environ-

mental covariates that are related to the MAYV transmission cycle. Using the output of our

boosted regression tree models, we estimated the total population living in regions suitable

for MAYV transmission. The evidence consensus scores revealed high or very high evi-

dence of MAYV transmission in several countries including Brazil (especially the states of

Mato Grosso and Goiás), Venezuela, Peru, Trinidad and Tobago, and French Guiana.

According to the boosted regression tree models, a substantial region of South America is

suitable for MAYV transmission, including north and central Brazil, French Guiana, and Suri-

name. Some regions (e.g., Guyana) with only moderate evidence of known transmission

were identified as highly suitable for MAYV. We estimate that approximately 58.9 million

people (95% CI: 21.4–100.4) in Central and South America live in areas that may be suitable
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for MAYV transmission, including 46.2 million people (95% CI: 17.6–68.9) in Brazil. Our

results may assist in prioritizing high-risk areas for vector control, human disease surveil-

lance and ecological studies.

Author summary

We used a comprehensive, georeferenced compendium of Mayaro virus (MAYV) occur-

rence to model the suitability for MAYV in Central and South America. Our boosted

regression tree model incorporated 195 MAYV occurrence locations and 9 gridded envi-

ronmental covariates to generate a 5 x 5 km continuous surface of MAYV suitability

across Central and South America. Using this distribution model, we estimated the total

population residing in areas that are suitable for MAYV transmission. Furthermore, we

developed evidence consensus scores for each country in our study region that synthe-

sized a variety of sources to assess the overall evidence of known MAYV transmission.

Our study provides a contemporary estimate of MAYV distribution using a well-estab-

lished disease mapping framework. This information provides an evidence base that can

guide disease surveillance (including human cases and ecological studies) and vector con-

trol efforts in Central and South America. This is especially useful in regions with high

predicted MAYV suitability but only moderate evidence of current MAYV transmission

(e.g., Guyana and Suriname).

Introduction

Mayaro virus (MAYV) is a mosquito-borne Alphavirus that was first detected in Trinidad in

1954 [1]. MAYV has caused periodic outbreaks throughout Latin America [2] and serological

surveys and syndromic surveillance studies suggest widespread circulation in the region [3].

Some researchers have hypothesized that MAYV has broader epidemic potential and raised

alarm about its apparent increased geographic spread [4, 5].

MAYV can cause debilitating arthralgia or arthritis that can persist for months after initial

infection [6]. However, MAYV often results in non-specific febrile symptoms that are similar

to other vector borne diseases such as dengue or Zika [7]. Therefore, clinical diagnosis is often

difficult and accurate estimates of disease burden remain elusive. This is further complicated

by the many limitations of serological diagnostics including the cross-reactivity of antigenically

similar viruses [8]. Supportive care remains the current standard of clinical treatment for

MAYV as no licensed vaccine or antiviral treatment currently exists.

Limited studies on MAYV ecology suggest that this virus is maintained in a sylvatic trans-

mission cycle involving arboreal mosquito vectors and non-human animal reservoirs. High

seroprevalence among non-human primates (NHPs) [9] suggests they may be involved in the

MAYV transmission cycle, although their precise role is inconclusive. In addition, MAYV

antibodies have been detected in other mammals including rodents and marsupials [10]. Risk

factors, such as living in close proximity to forested areas [11] and hunting in the rainforest

[12] have been linked to MAYV infection in humans. This underscores the significance of the

sylvatic transmission cycle and the potential for spillover events. However, MAYV occurrence

in urban environments such as Manaus, Brazil has led to concerns about an urban transmis-

sion cycle driven by Aedes aegypti mosquitoes [13]. Though studies of wild-caught mosquito

populations implicated the canopy-dwelling Haemagogus (Hag.) janthinomys mosquito as the
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primary vector during a major outbreak in Brazil [9], Aedes aegypti and Aedes albopictus have

demonstrated the potential to transmit MAYV in laboratory settings [14].

A prior epidemiological alert by the Pan American Health Association (PAHO) stressed the

importance of heightened awareness and expanded surveillance of MAYV in Central and

South America [15]. Ideally, MAYV spillover and outbreak prevention would be guided by

granular maps of MAYV risk enabling targeted febrile surveillance and ecological surveillance

efforts and better tailored risk communications to endemic populations and travelers. How-

ever, the precise areas of risk from MAYV remain unclear due to limited data on MAYV

occurrence [16], underscoring a fundamental need for a more comprehensive and georefer-

enced dataset on MAYV occurrence.

Here, we provide a significant update to the current state of knowledge on MAYV transmis-

sion risk across Central and South America. We adopted a well-established machine-learning

based disease mapping approach originally developed by ecologists to model species distribu-

tions but has since been successfully applied to several medically-relevant vector-borne patho-

gens [17–19]. These methods are particularly powerful for leveraging biological and ecological

information underpinning a sylvatic disease system to generate biologically realistic and spa-

tially explicit predictions when epidemiological data are still sparse. Many of these models rely

on machine learning techniques including boosted regression trees (BRT) [20] to develop a

multivariate relationship between disease occurrence locations and relevant climatic or envi-

ronmental covariates that impact disease transmission.

In order to develop a contemporary estimate of MAYV risk in Central and South America,

we applied a predictive mapping approach with three components: (1) scoring the total evi-

dence supporting ongoing MAYV transmission within each country (i.e., evidence consensus

scores); (2) modeling the likely distribution of MAYV suitability throughout Central and

South America; (3) estimating the total population residing in areas with a high suitability for

MAYV transmission. Compared to previous estimates, these updated datasets and analyses

suggest that MAYV poses a substantial and possibly underestimated threat to Central and

South America.

Methods

Evidence consensus

Collating published reports of MAYV is an important first step in clarifying its distribution.

However, heterogeneous surveillance across countries and incomplete or unclear reporting of

epidemiological data may impact our ability to definitively say that MAYV is present in a cer-

tain location. An evidence consensus approach takes several information sources into account

in order to score the total available evidence supporting the presence or absence of a disease in

a given country. This approach has been used previously to provide a refined description of

the spatial limits of several pathogens including dengue [21], leishmaniasis [22], podoconiosis

[23], and Lassa fever [24]. These studies considered multiple data sources to develop an evi-

dence consensus score for disease presence or absence, including health organization status,

peer reviewed evidence, case data, animal infection, economic status, and other supplementary

evidence. We followed a similar procedure to generate a consensus score for each country in

Latin America that quantifies the evidence supporting MAYV presence. This score ranged

from 0 (“No evidence of MAYV presence”) to 21 (“Complete evidence of MAYV presence”)

based on the categories described below (see Table 1 for a summary of categories and possible

scores).

Health organization reports (max 3 points). International health organizations have

been used previously to support evidence of pathogen presence or absence in specific countries
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[21]. We followed a similar procedure, using health reports from two sources: Pan American

Health Organization (PAHO)/World Health Organization (WHO) and the Global Infectious

Diseases and Epidemiology Online Network (GIDEON). The PAHO issues weekly epidemio-

logical alerts to update the public on the occurrence of significant health events. Similarly, the

WHO issues Disease Outbreak News (DONs) related to public health issues of international

importance. We searched these PAHO/WHO bulletins for relevant alerts related to MAYV in

a given country. Countries were assigned a score of 1 if WHO/PAHO had issued an epidemio-

logical alert for MAYV in that country.

Table 1. Evidence Categories and Possible Scores.

Evidence Category Score

Health organization status

Both GIDEON and PAHO/WHO 3

Either GIDEON or PAHO/WHO 1

Peer reviewed evidence

Date of MAYV human occurrence

2011–2021 3

2000–2010 2

1999 and earlier 1

Diagnostic procedure

PCR or viral culture or PRNT 3

Serological methods (not including PRNT) 2

Presumptive diagnosis or not specified 1

Outbreaks and clinical cases

20+ cases from 2011–2021 6

20+ cases from 2000–2010 5

20+ cases 1999 and earlier 4

<20 cases from 2011–2021 3

<20 cases from 2000–2010 2

<20 cases 1999 and earlier 1

If no case data: health expenditure in 2017 and adjacency

HE <100 USD and 2 or more neighbors 6

100 USD�HE <500 USD and 2 or more neighbors 5

HE �500 USD and 2 or more neighbors 4

HE <100 USD and 1 neighbor 3

100 USD�HE <500 USD and 1 neighbor 2

HE �500 USD and 1 neighbor 1

Animal data

Infected animal from 2011–2021 3

Infected animal from 2000–2010 2

Infected animal 1999 and earlier 1

Arthropod data

Positive arthropod from 2011–2021 3

Positive arthropod from 2000–2010 2

Positive arthropod 1999 and earlier 1

Possible Evidence Consensus Score Categories (Maximum Possible Score: 21)

Very high evidence of MAYV presence 16–21

High evidence of MAYV presence 11–15

Moderate evidence of MAYV presence 6–10

Little to no evidence of MAYV presence 0–5

https://doi.org/10.1371/journal.pntd.0011859.t001
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GIDEON is a web application that compiles relevant news on infectious disease outbreaks

and designates countries as endemic/potentially endemic for each pathogen. If a country was

listed as endemic/potentially endemic for MAYV in the GIDEON database, it was assigned a

score of 1. If a country fulfilled both criteria (i.e., listed as endemic in GIDEON and a relevant

PAHO/WHO health alert) it was assigned a score of 3.

Peer-reviewed evidence of human infection (max 6 points). Based on methods proposed

by Brady et al., [21] peer-reviewed evidence of human infection was scored based on the fol-

lowing two categories: contemporariness (3 for 2011–2021, 2 for 2000–2010, and 1 for 1999

and earlier) and diagnostic accuracy (3 for PCR, viral culture, or PRNT, 2 for other serological

methods only, 1 for presumed cases without diagnostic test or cases with unspecified diagnos-

tic test). In the case of multiple MAYV reports in a given country, the highest scoring report

was used. For example, if one study in Brazil reported serological evidence of MAYV transmis-

sion (score of 2) in 1990 (score of 1) and another study in Brazil reported MAYV viral culture

(score of 3) in 2019 (score of 3), Brazil would receive a score of 6 for this category. We also con-

sidered returning traveler reports for this category if the case was definitively linked to the

country of travel. These reports are useful for establishing evidence of pathogen presence

because diagnosis may be done more rigorously for travelers upon returning to their country

of origin [21]. Data was compiled in a systematic review that was previously described [25].

Outbreaks and clinical cases (max 6 points). Reported outbreaks of MAYV or clinical

cases that were detected using PCR were scored according to total case numbers and

contemporariness. Previous studies have used only the occurrence of reported outbreaks (with

no consideration to clinical cases) to assign a score for this category [21]. However, because

only a limited number of MAYV outbreaks have occurred and because diagnostic techniques

have been inconsistent across these outbreaks, we also considered clinical cases diagnosed by

PCR or viral culture that were not necessarily considered to be an outbreak. The scoring sys-

tem for this category was adapted based on methods used by Mylne et al., [24] where higher

scores were assigned to contemporary reports with 20 or more cases. In order to calculate a

score for each country, we summed the cases detected across multiple studies within a single

time period. For example, if two separate reports from Peru each detected 10 cases of MAYV

using PCR between 2011 and 2021, we summed the reported cases (20 total) and assigned

Peru 6 points for this category. However, cases from multiple reports were not summed across

different time periods. Data was compiled in a systematic review that was previously described

[25].

A lack of MAYV case reports in a given country is not necessarily indicative of a lack of

virus transmission. It is likely that MAYV cases may go undetected due to variable surveillance

or diagnostic capacity. We attempted to account for this uncertainty using healthcare expendi-

ture (HE) as a proxy of a country’s capacity for detecting MAYV occurrence. If no outbreaks

or clinical cases were reported in a given country, we used the current HE per capita from the

World Health Organization 2017 dataset. Total HE for each country was designated as low

(HE< $100), medium ($100�HE< $500), or high (HE� $500) according to methods that

were previously described [21]. We also considered a country’s proximity to other countries

that have reported outbreaks or clinical cases diagnosed by PCR [24]. Adjacency to countries

with outbreaks or clinical cases was combined with HE to assign a score. The highest score was

assigned to countries with MAYV outbreaks/clinical cases in two or more neighboring coun-

tries and a low HE.

Animal and arthropod data (max 6 points). Detection of MAYV occurrence in non-

human animal or arthropod species provides additional evidence of MAYV presence. This

may be indicative of the potential for disease spillover into the human population. Previous

studies have considered the presence of competent vector species when calculating the
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evidence consensus score [19, 26]. However, because of uncertainties regarding the role of var-

ious mosquitoes in the MAYV transmission cycle (e.g., the possible role of Aedes aegypti in

urban transmission [13]), we considered reports of any wild-caught arthropods that were iden-

tified as MAYV positive. Similarly, we assigned a separate score based on reports of infection

in potential animal reservoirs. The highest scores for both animal and arthropod MAYV posi-

tivity were assigned to more contemporary studies. In the case of multiple MAYV reports in a

given country, the highest scoring report was used. All data on MAYV positivity in non-

human animals and arthropods was compiled in a systematic review that was previously

described [27].

In order to provide more granular data throughout Brazil, we also calculated evidence

scores by state (i.e., first-administrative division). Because health organization status was not

available for each state, we assigned a baseline score of one to each state, and then calculated

the remaining categories according to the methods described above.

Occurrence records

We previously developed and published a georeferenced compendium of MAYV occurrence

[25] based on methods that have been established for other pathogens including dengue and

leishmaniasis [28–31]. MAYV occurrence among humans, non-human animals, and arthro-

pods was compiled through a systematic review of the literature, including an evaluation of the

quality of such evidence. These methods were described previously in greater detail [25, 27].

All occurrences were assigned to a point or polygon location, depending on the spatial resolu-

tion provided by the authors. Point data comprised precise locations with less than 5km of

uncertainty (e.g., specific coordinates or a small town) while polygon data comprised larger

areas or administrative units that exceeded 5km of uncertainty. The coordinates of point loca-

tions and polygon centroids were recorded in our database and used as the presence records in

our current modeling study.

Presence points with�75km of uncertainty were included in our current analysis, although

the majority of points had substantially less uncertainty. Following a previously published

modeling study that accepted up to 65km of uncertainty [32], we chose to accept a greater level

of uncertainty in our occurrence data in order to include more occurrence locations during

the model development process. Due to the limited size of our occurrence dataset, we deemed

that the extra information gained from each occurrence record outweighed any issues associ-

ated with the greater uncertainty of some occurrence records.

The final MAYV database contained 262 unique georeferences in 15 countries, published

between 1954 and 2022. This data is available in the Dryad data repository [33]. One hundred

and ninety-five of these occurrence points fell within our study region and met the�75km

uncertainty threshold, and thus were eligible for inclusion in our model. We used the spThin

package in the R statistical software to reduce clustering of presence records [34]. A 5km dis-

tance threshold was applied to ensure that no more than one presence point occurred within

each pixel of our covariate layers.

Description of covariates

We considered 10 ecologically relevant gridded variables (i.e., raster data) for inclusion in our

model. These variables included various measures of topography, climate, land cover and vege-

tation that likely influence the MAYV transmission cycle and the distribution of MAYV risk

throughout the region. Several variables were derived from NASA’s Moderate Resolution

Imaging Spectroradiometer (MODIS) remote sensing platform [35]. These MODIS variables

(plus an additional rainfall variable) were provided by the Malaria Atlas Project (https://
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malariaatlas.org/) after a gap-filling algorithm was used to account for cloud cover [36]. The

variables were transformed to ensure matching spatial resolution of 2.5 arc-minutes (~5km)

and matching extent. Values for the variables were extracted at each presence/pseudoabsence

location and used in the modelling procedure described below.

Temperature and rainfall play an important role in vector abundance and activity [37].

Entomological surveys have demonstrated an association between Hg. janthinomys abundance

and temperature [38, 39] and Alencar et al. reported that the mosquito’s presence was corre-

lated with high temperatures ranging from 24˚C–30˚C [40]. Several studies have also demon-

strated that large diurnal temperature range can impact larval development time, adult

survival, and reproductive output in Aedes and Anopheles populations [41–43] and an ecologi-

cal niche model demonstrated that mean diurnal range was one of the most important predic-

tors of Hg. janthinomys distribution [44]. Humidity and rainfall have also been shown to

impact the density of adult Hg. janthinomys mosquito populations [38, 45–48] and Hg. janthi-
nomys biting activity was shown to peak during intense rainfall in January [46]. Due to the

impact of temperature and rainfall on vector abundance and vectorial capacity, we included

three climate variables in our model, namely night-time and daytime land surface temperature

(LST) and cumulative rainfall. LST Night and LST Day are remotely sensed variables from the

NASA MODIS MOD11A2 satellite [49]. Annual LST Day and LST Night raster layers span-

ning the years 2000–2020 were used to calculate a single layer representing the mean values

over this time period. We also used rainfall data from the Climate Hazards Group InfraRed

Precipitation with Station (CHIRPS) [50], a quasi-global data set that incorporates satellite

imagery at 0.05˚ resolution and meteorological station data to construct gridded rainfall

estimates.

In addition, Hg. janthinomys mosquitoes thrive in arboreal habitats (e.g., tropical rainfor-

ests) and oviposit in water-filled natural plant cavities (e.g., tree holes or broken bamboo) [51].

Adult mosquitoes have predominantly been found in the forest canopy at heights of 16m and

30m [38]. Therefore, the density of vegetation canopy and moisture supply may influence Hg.

janthinomys abundance in a given area. To account for these factors, we included three covari-

ates related to vegetation and surface moisture: enhanced vegetation index (EVI), tasseled cap

wetness (TCW) and tasseled cap brightness (TCB). The EVI is a measure of vegetation canopy

greenness displayed at a 500m spatial resolution [52] and is derived from the MODIS

MCD43B4 product [53]. The EVI has been used as a covariate in previous environmental suit-

ability models of arboviruses including Yellow Fever [54], chikungunya virus [19], and Zika

virus [18]. TCW and TCB, measures of surface moisture that are used to assess land cover

change, were also generated from the MODIS MCD43B4 product [55].

Previous outbreaks of MAYV have occurred in towns close to the rainforest or jungle out-

posts in close proximity to the forest edge [2, 12, 56]. MAYV most likely circulates in a sylvatic

cycle involving canopy-dwelling mosquitoes and non-human primates, with occasional spill-

overs into humans living close to the forest [9]. Entomological surveys have demonstrated that

Hg. janthinomys are predominantly found in forest canopies at heights of 16m and 30m [38].

Due to the strong impact of land cover on the probability of MAYV occurrence in a given

area, we included two land cover covariates, namely evergreen broadleaf forest and urban/

built-up, from the MODIS MOD13Q1 product [57, 58]. These covariates represent the pro-

portion of each raster grid cell (ranging from 0–100) that is covered by the land cover class in

question, whereby a value of zero represents the absence of land cover and 100 represents com-

plete coverage. Lastly, we included slope and elevation covariates that we accessed from the US

Geological Survey’s Global Multi-resolution Terrain Elevation Data (GMTED) [59]. Elevation

represents the meters above sea level at a given location. Slope values range from 0 (flat) to 90

degrees (vertical) and represent the angle of the downward sloping terrain.
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We implemented a data-driven variable selection process in the R package SDMtune to

identify variables for inclusion in our models. This process involves removal of highly corre-

lated variables based on an algorithm that first ranks the variables by permutation importance

and evaluates the correlation between the most important variable and the remaining vari-

ables. A leave-one-out Jack-knife test is then used to remove the variable that has the smallest

impact on model performance according to the AUC. Based on this analysis, we removed

TCW from the final model. Maps of the variables included in the model are presented in Fig 1.

Fig 1. Covariates used to model the environmental suitability of MAYV. A. and B. Land surface temperature (LST) night and LST day, respectively; C.

Rainfall; D. Enhanced vegetation index (EVI); E. Evergreen forest; F. Urban/built-up land cover; G. Tasseled cap brightness (TCB); H. Elevation; I. Slope. Maps

were created in R using shape files from the Natural Earth public domain repository (http://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0011859.g001

PLOS NEGLECTED TROPICAL DISEASES Predicting environmental suitability for Mayaro Virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011859 January 9, 2024 8 / 21

http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pntd.0011859.g001
https://doi.org/10.1371/journal.pntd.0011859


Mapping environmental suitability for MAYV occurrence

Environmental suitability models are common in the epidemiological literature to model

human disease risk. A robust disease mapping framework has been established in the last

decade to model the environmental suitability for medically-relevant pathogens including den-

gue virus [17], Chikungunya virus [19] and Zika virus [18], among others.

We used BRT to model the environmental suitability for MAYV occurrence across our

study region. This algorithm uses regression or classification trees to partition the dataset

using recursive binary splits. It also incorporates boosting into the model-building process, a

procedure that combines many simple models to improve overall model accuracy. The boost-

ing algorithm is an iterative process that fits many small trees sequentially, building on previ-

ously fitted trees to improve model performance [20]. This process incorporates a level of

stochasticity by randomly selecting a subset of the data to fit each tree, thereby reducing the

model variance [20]. BRT have several advantages including their ability to fit complex nonlin-

ear relationships, handle missing data, and to accommodate many different types of covariates

without any need for data transformation [20].

One of the most important aspects of modeling species distributions with presence-only

data is the selection of pseudo-absence points that represent the range of environmental condi-

tions where the species or pathogen was not detected. Random selection of pseudo-absence

points may not be appropriate if the presence locations are spatially biased [60]. In most cases,

the detection of disease presence locations may be subject to sampling bias if some locations

are more likely to be surveyed than others (e.g., locations that are closer to roads) [61]. There-

fore, pseudo-absence points should be selected with a similar level of bias as the presence

points to ensure that background and presence locations are biased in the same manner [61].

Following the methods of previous modeling studies [24, 62–64], we selected 10,000 back-

ground points from the study region, biased towards more populous areas. Therefore, popula-

tion density was used as a proxy for sampling bias. Pseudoabsence points were selected using

the 2˚ method proposed by Barbet-Massin (2012) [65], whereby each pseudo-absence point

was at least 2˚ away from a presence location. In order to improve the model’s discrimination

capacity, the pseudoabsence points were down-weighted to ensure that the weighted sum of

presence records equaled the sum of weighted background points [65].

We subsequently fitted 100 BRT ‘sub-models’ to separate bootstraps of the dataset. The

bootstrapped datasets were chosen with replacement, subject to the condition that a minimum

of 25 presence and 25 pseudo-absence points were selected. This bootstrapping procedure

allowed us to quantify the uncertainty across models and to increase the model’s robustness

[66]. Each sub-model was fit in R using the gbm.step procedure in the dismo package [67].

This function uses cross-validation to identify the optimal number of trees for each sub-model

to improve predictive capacity. The remaining BRT hyperparameters were held at their default

values (tree complexity = 4, learning rate = 0.005, bag fraction = 0.75, cross-validation

folds = 10, step size = 10). The final prediction map represents the mean MAYV suitability of

each 5 x 5 km pixel across our ensemble of 100 models along with the lower 2.5th percentile

and 97.5th percentile predictions. We also generated a map of the model uncertainty, repre-

sented by per-pixel standard deviation. In order to avoid extrapolating the model far outside

of regions of known MAYV transmission, the model predictions were restricted to the follow-

ing countries in Central and South America with moderate, high, or very high evidence of

MAYV transmission based on evidence consensus scores: Panama, Ecuador, Brazil, Colombia,

Peru, Venezuela, Trinidad and Tobago, Suriname, Guyana, French Guiana and Bolivia.

The predictive accuracy of the model was assessed using the area under the receiver opera-

tor characteristic curve (AUC), sensitivity, specificity, Kappa statistic, and percent correctly
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classified (PCC). Metrics were calculated for each sub-model using 10-fold cross validation. The

cross-validation procedure involved randomly splitting each bootstrapped dataset into 10 folds

with approximately the same number of presence and absence records in each fold. The model

was subsequently trained on nine of the folds and the withheld fold was used to evaluate the

model performance. The performance metrics for each sub-model represent the mean values

across the 10 folds. These values were then averaged across each of the sub-models to generate

an estimate of overall model performance. We also calculated relative importance scores for

each of the covariates. Relative importance was defined according to the relative percent contri-

bution, which quantifies how often the model selects a variable for splitting. The scores are

weighted by the squared improvement to model performance and averaged across all trees [20].

Total population living in areas with high predicted MAYV suitability

We estimated the total human population living in areas of high predicted MAYV suitability.

We first transformed the mean prediction map into a binary risk map using a previously estab-

lished protocol [18], whereby a suitability threshold value was chosen that encompassed 90%

of the MAYV occurrence points. Each 5 x 5 km pixel was classified as 1 (i.e., suitable) if its pre-

dicted suitability exceeded the threshold value; otherwise, it was classified as 0 (i.e., not suit-

able). We then determined the total population residing in suitable areas by multiplying the

population count within each grid cell by the binary suitability classification and summing

these values across each country. We used population count data from the Gridded Population

of the World (GPW) version 4 [68]. Furthermore, we calculated uncertainty in these popula-

tion estimates (i.e., 95% confidence intervals) using the 2.5% (lower) and 97.5% (upper)

bounds of the BRT model prediction. Following Deribe et al. [69], we also conducted a sensi-

tivity analysis to assess the impact of alternative suitability thresholds on the estimated popula-

tion residing in suitable transmission zones.

Dryad DOI

https://doi.org/10.5061/dryad.cfxpnvx8n [33]

Results

The map of evidence consensus is presented in Fig 2A and the evidence score for each country

is presented by category in the S1 and S2 Tables. Evidence consensus scores ranged from 0 (no

evidence of MAYV transmission) to 19 (very high evidence of transmission). We recorded a

very high evidence consensus score for Brazil and Venezuela, with scores of 19 and 16, respec-

tively. Other countries with a high evidence consensus score included Peru (Evidence Consen-

sus = 15), French Guiana and Trinidad and Tobago (Evidence Consensus = 13 for both), and

Colombia and Bolivia (Evidence Consensus = 11 for both). We recorded evidence consensus

scores ranging from very low to moderate in all Central American and Caribbean countries.

Among these countries with low to moderate risk, the highest evidence consensus scores were

documented for Haiti (Evidence Consensus = 10) and Panama (Evidence Consensus = 9).

Evidence consensus scores for Brazilian first-level administrative divisions are presented in

Fig 2B. Evidence of MAYV transmission was highest in the central Brazilian states of Mato

Grosso and Goiás, both with very high scores of 16. High evidence of MAYV was also docu-

mented in five Northern and Central states, including Pará and Bahia (Evidence Consen-

sus = 14 for both), Roraima (Evidence Consensus = 13), Piauı́ (Evidence Consensus = 12), and

Mato Grosso do Sul (Evidence Consensus = 11).

Fig 3 displays the 195 MAYV occurrences (human, animal, and arthropod) that were used

to fit our model. The occurrence locations fell in 10 countries, most frequently in Brazil
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(n = 101), French Guiana (n = 25) and Peru (n = 21). MAYV occurrences were reported

between the years 1954 and 2021, with the majority of cases (n = 133) occurring since the year

2000. One hundred fifty-two (78%) of the occurrence locations were detected in humans while

43 (22%) were detected in non-human animals or arthropods.

Maps of the predicted distribution of MAYV environmental suitability, along with the

lower (2.5%) and upper (97.5%) of the prediction limits, are presented in Fig 4. This risk map

represents the average output across the 100 BRT sub-models. The map of model uncertainty

(i.e., the per-pixel standard deviation across the 100 model runs) is presented in the S1 Fig

High suitability for MAYV transmission was evident across the Amazon rainforest ecoregion

in South America. The model predicted very high suitability for MAYV across a large portion

of Central and Northern Brazil, especially the states of Amazonas, Acre, Pará, and Tocantins.

High suitability was also predicted throughout French Guiana, Guyana, Suriname, and Trini-

dad and Tobago, as well as the southern portion of Colombia and Venezuela, and the north-

eastern region of Peru and northern region of Bolivia. The southern region of Panama was

also found to be highly suitable for MAYV transmission. After applying pairwise distance sam-

pling to remove spatial sorting bias, the model demonstrated good predictive power with an

AUC of 0.83. Other statistics from the 10-fold cross-validation procedure included the follow-

ing: PCC = 87%, sensitivity = 0.82, specificity = 0.93, and Kappa = 0.75.

Fig 2. Evidence consensus scores. Evidence consensus is presented at the country level for all countries in the study (Fig 2A) and at the first-level

administrative division (Fig 2B) for Brazil. Scores are based on health organization status, date of most recent MAYV occurrence; validity of MAYV diagnostic

test, recency of MAYV outbreaks or clinical cases, and recency of MAYV occurrence in animals or arthropods. Blue represents very low evidence consensus

while red represents very high evidence consensus. Maps were created in R using shape files from the Natural Earth public domain repository (http://www.

naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0011859.g002
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Our models showed MAYV suitability to be especially influenced by climatic variables

including rainfall, with a relative importance of 34.5 (95% CI: 28.3–41.6) and nighttime LST,

with a relative importance of 29.6 (95% CI: 24.4–34.0). Relative percent contributions for the

remaining variables were 9.0 for elevation (95% CI: 6.2–12.8), 6.9 for EVI (95% CI: 5.1–8.9),

5.9 for urban land cover (95% CI: 4.4–7.6), 4.9 for daytime LST (95% CI: 3.8–6.5), 4.0 for ever-

green land cover (95% CI: 2.5–5.7), 3.3 for TCB (95% CI: 2.1–4.9) and 1.9 for slope (95% CI:

0.7–3.5). The partial dependence plots for the covariates are presented in Fig 5. The partial

dependence plot for nighttime LST reveals a steep increase in MAYV suitability around ~15˚C

that peaks at ~22˚C and then falls. The plot for rainfall reveals a similarly steep increase start-

ing at ~100mm that plateaus and then decreases around ~300mm, with only a minor peak at

~375mm.

We identified 0.53 as the threshold suitability value that encompassed 90% of the MAYV

occurrence locations. We applied this conservative value to classify pixels as either suitable or

unsuitable for MAYV transmission. A summary of the population living in potentially suitable

MAYV transmission zones is presented in Table 2. Overall, we estimate that approximately

Fig 3. Geographic distribution and temporal trend of MAYV occurrence. The map shows the distribution of the 195 occurrence locations (before the

spatial thinning procedure) that were used to construct the boosted regression tree (BRT) model. The color corresponds to the host type of each point

(human, animal, or arthropod). The inset chart displays total occurrences that were reported in each year since the initial human case was detected in 1954.

The map was created in R using shape files from the Natural Earth public domain repository (http://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0011859.g003
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Fig 4. Map of environmental suitability and prediction uncertainty for MAYV occurrence. Suitability ranged from blue (0—no

suitability) to red (1—very high suitability). We obtained the lower and upper bound of MAYV presence limits by fitting an ensemble

of 100 BRT submodels. The base map was sourced from Global Administrative Areas (GADM) version 4.0: https://gadm.org/

download_country.html.

https://doi.org/10.1371/journal.pntd.0011859.g004
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58.9 million people (95% CI: 21.4–100.4) in Central and South America live in areas that are

potentially suitable for MAYV transmission. Countries with the greatest population living in

suitable transmission zones include 46.2 million in Brazil (95% CI: 17.6–68.9), 3.5 million in

Colombia (95% CI: 0.6–11.0), and 2.4 million in Panama (95% CI: 1.4–3.1). The majority of

the Brazilian population living in suitable areas reside in the Amazon rainforest ecoregion. For

our sensitivity analysis, we used lower (0.4) and higher (0.6) suitability values [69] to dichoto-

mize the final map as suitable or unsuitable, and subsequently calculated the total population

living in suitable transmission zones. Based on these alternate suitability values, the total popu-

lation would be 77.2 million (95% CI: 35.7–120.6) and 49.8 million (95% CI: 16.5–91.3) for the

0.4 and 0.6 values, respectively.

Fig 5. Partial dependence plots of the included variables. The solid black line represents the average response over 100 sub-models and the gray region

represents one standard deviation. Tick marks represent values of each variable at occurrence locations. The y-axis represents the untransformed logit response

and x-axis represents the full range of values for each covariate.

https://doi.org/10.1371/journal.pntd.0011859.g005

Table 2. Total population living in areas potentially suitable for MAYV transmission (millions).

Country Population in millions (95% CI)

Brazil 46.2 (17.6–68.9)

Colombia 3.5 (0.6–11.0)

Panama 2.4 (1.4–3.1)

Venezuela 2.2 (0.5–5.9)

Peru 1.3 (0.2–5.7)

Trinidad & Tobago 0.9 (0.6–1.0)

Ecuador 0.7 (0.0–2.5)

Bolivia 0.5 (0.1–1.0)

Suriname 0.5 (0.2–0.5)

Guyana 0.3 (0.1–0.4)

French Guiana 0.3 (0.1–0.3)

Overall 58.9 (21.4–100.4)

https://doi.org/10.1371/journal.pntd.0011859.t002
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Discussion

In this paper we present an ensemble BRT model of MAYV environmental suitability in Cen-

tral and South America and an evidence consensus framework that integrates multiple infor-

mation sources. Such suitability models can serve an important role in guiding arboviral

surveillance (in humans and other hosts, including informing regional laboratory-based sur-

veillance) and targeting vector control efforts. This is especially true in the case of MAYV

given its nonspecific febrile presentation and the uncertainty surrounding its true distribution

and non-human animal reservoirs. Our model provides important information regarding

regions of Central and South America that are at highest risk of MAYV transmission allowing

us to estimate the total population living in areas suitable for MAYV transmission. Further-

more, we are able to identify areas with high predicted MAYV suitability despite low or mod-

erate evidence consensus of known transmission.

Our model predicted the distribution of MAYV with relatively high accuracy, identifying

several regions of high environmental suitability. This included large areas of North and Cen-

tral Brazil (e.g., the states of Mato Grosso, Pará, and Goiás), French Guiana, Trinidad &

Tobago, and Northern Peru, all areas with well-documented evidence of MAYV transmission

[70]. In addition, several regions with limited published evidence of MAYV transmission were

also found to be highly suitable for transmission, including the majority of Guyana and Suri-

name. This finding highlights the utility of distribution models in identifying areas within

countries that are particularly receptive to MAYV transmission that could be targeted for

increased laboratory-based surveillance or vector control.

The wide predicted geographic distribution of MAYV underscores the need for increased

surveillance and diagnostic capacity throughout Central and South America. Our findings sug-

gest that MAYV may be underreported and that co-occurring arboviral epidemics (e.g.,

DENV or CHIKV) may obfuscate the true MAYV disease burden. This is especially true in

Brazil, where ~43 million people reside in areas that are potentially suitable for MAYV trans-

mission. An additional concern is the detection of MAYV in Haiti [71]. The discovery of

MAYV in Haiti has prompted additional questions about its potential vectors and the possibil-

ity of urban transmission, due to the lack of Haemagogus (Hag.) janthinomys mosquitoes and

non-human primates on the island. These questions require further entomological investiga-

tions in order to elucidate the vectorial capacity of urban mosquitoes and potential animal res-

ervoirs other than non-human primates.

Another understudied aspect of the MAYV ecology is the impact of deforestation/land use

change on transmission risk. This is an important consideration given the potential spread of

MAYV in urban areas [13] and the demonstrated competence of Aedes mosquitoes in labora-

tory settings [14]. Epidemiological studies have demonstrated the link between residing or

working in forested areas and MAYV risk [11, 12]. Environmental degradation and urbaniza-

tion have led to increased contact between human populations and disease-carrying vectors,

leading to elevated arbovirus transmission risk in general [72]. While this was not a specific

focus of this study, we did account for the importance of land use/land cover in our analysis

with the inclusion of EVI, evergreen forest, and urban land cover variables. While these vari-

ables contributed less to MAYV suitability model predictions compared to other climatic vari-

ables (e.g., rainfall), they still predicted MAYV transmission risk. Future studies of MAYV

transmission risk could consider the specific impact of current and projected deforestation or

land use change in order to predict future MAYV risk.

Our paper has several important limitations. First, there is significant heterogeneity of

transmission within countries which may not be adequately captured by the evidence consen-

sus scores. However, these country-level scores may help inform national-level approaches to
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surveillance and vector control, as well as help define transmission risks for international

travel. In future work, evidence consensus scores may be generated for smaller geographic

regions (e.g., first or second-level administrative divisions) as more data becomes available.

Another limitation is related to the MAYV occurrence locations used as input data in the BRT

environmental suitability model. Georeferenced reports of disease occurrence are subject to

sampling bias related to the accessibility of certain locations, availability of laboratory infra-

structure, or the presence of a robust surveillance system that is able to detect arbovirus occur-

rence. Therefore, the presence locations used in our model are likely subject to sampling bias

and may not reflect the true distribution of MAYV. Following previously published modeling

studies [62], we adjusted for the sampling bias in our dataset through the use of pseudoabsence

points with a similar spatial bias as the presence points. However, the model may still be

affected by sampling bias in the occurrence locations. Ideally, future MAYV distribution mod-

els will be updated when new occurrence locations are reported (as in Pigott et al. [73] updates

to the Ebola suitability map), leading to a more accurate prediction of the true MAYV

distribution.

Another limitation relates to the covariate set used to fit our model. Many aspects of the

MAYV epidemiology remain poorly understood and current knowledge of MAYV ecology is

limited. We included covariates that likely have a strong influence on MAYV transmission,

including climate, landcover, and vegetation indices, which impact vector ecology and there-

fore transmission risk. However, MAYV transmission risk may be influenced by other

unknown or understudied variables including socioeconomic factors and the presence of non-

human reservoir hosts. Although several non-human primate species appear to be important

MAYV reservoirs [9], we opted not to include primate distribution in our model due to uncer-

tainty regarding their precise role in transmission cycles [27] in contrast to YFV [54]. As more

research is conducted on MAYV ecology and additional animal reservoirs are identified,

future MAYV distribution models should be updated to include primate distribution as a con-

tributor to overall spillover risk. Our results here may assist in targeting and designing animal

reservoir studies.

Conclusion

In this study, we produced a high-resolution map of predicted MAYV environmental suitabil-

ity as well as evidence consensus scores of known transmission for countries in the Americas.

Although there is still much to learn about MAYV ecology and epidemiology, these results

may help inform national-level transmission risk awareness and guide tailored, local disease

surveillance and vector control efforts. Furthermore, these evidence consensus scores and

environmental suitability maps can be updated as new MAYV occurrence data is reported and

with additional variables in the future as the role of other drivers of MAYV transmission are

clarified.
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48. Silva SOF, Ferreira de Mello C, Figueiró R, de Aguiar Maia D, Alencar J. Distribution of the Mosquito

Communities (Diptera: Culicidae) in Oviposition Traps Introduced into the Atlantic Forest in the State of

Rio de Janeiro, Brazil. Vector borne and zoonotic diseases (Larchmont, NY). 2018; 18(4):214–21.

https://doi.org/10.1089/vbz.2017.2222 PMID: 29595406

49. Wan Z, Li Z-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from

EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing. 1997; 35(4):980–96.

50. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, et al. The climate hazards infrared

precipitation with stations—a new environmental record for monitoring extremes. Sci Data. 2015;

2:150066. https://doi.org/10.1038/sdata.2015.66 PMID: 26646728

51. Ali R, Mohammed A, Jayaraman J, Nandram N, Feng RS, Lezcano RD, et al. Changing patterns in the

distribution of the Mayaro virus vector Haemagogus species in Trinidad, West Indies. Acta Trop. 2019;

199:105108. https://doi.org/10.1016/j.actatropica.2019.105108 PMID: 31351893

52. Didan K, Huete A. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006

In: DAAC NELP, editor. 2015.

53. Lin Q. Enhanced vegetation index using Moderate Resolution Imaging Spectroradiometers. 2012 5th

International Congress on Image and Signal Processing. 2012:1043–6. https://doi.org/10.1109/CISP.

2012.6470008

54. Shearer FM, Longbottom J, Browne AJ, Pigott DM, Brady OJ, Kraemer MUG, et al. Existing and poten-

tial infection risk zones of yellow fever worldwide: a modelling analysis. Lancet Glob Health. 2018; 6(3):

e270–e8. https://doi.org/10.1016/S2214-109X(18)30024-X PMID: 29398634

55. Lobser S, Cohen W. MODIS tasselled cap: land cover characteristics expressed through transformed

MODIS data. Int J Remote Sens. 2007; 28(22):5079–101. https://doi.org/10.1080/01431160701253303

56. Schaeffer M, Gajdusek DC, Lema AB, Eichenwald H. Epidemic jungle fevers among Okinawan colo-

nists in the Bolivian rain forest. I. Epidemiology. Am J Trop Med Hyg. 1959; 8(3):372–96. https://doi.org/

10.4269/ajtmh.1959.8.372 PMID: 13661542

57. Friedl M, Sulla-Menashe D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global

0.05Deg CMG V006. In: DAAC. NELP, editor. 2015.

58. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, et al. MODIS Collection 5

global land cover: Algorithm refinements and characterization of new datasets. Remote Sens Environ.

2010; 114(1):168–82. https://doi.org/10.1016/j.rse.2009.08.016

59. Danielson JJ, Gesch DB. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). 2011.

60. Phillips SJ, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehen-

sive evaluation. Ecography. 2008; 31:161–75. https://doi.org/10.1111/j.0906-7590.2008.5203.x

61. Phillips SJ, Dudı́k M, Elith J, Graham CH, Lehmann A, Leathwick J, et al. Sample selection bias and

presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl.

2009; 19(1):181–97. https://doi.org/10.1890/07-2153.1 PMID: 19323182

62. Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, et al. Mapping the zoonotic niche of

Ebola virus disease in Africa. Elife. 2014; 3:e04395. https://doi.org/10.7554/eLife.04395 PMID:

25201877

63. Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ, Brady OJ, et al. Mapping the zoonotic niche of Mar-

burg virus disease in Africa. Trans R Soc Trop Med Hyg. 2015; 109(6):366–78. https://doi.org/10.1093/

trstmh/trv024 PMID: 25820266

PLOS NEGLECTED TROPICAL DISEASES Predicting environmental suitability for Mayaro Virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011859 January 9, 2024 20 / 21

https://doi.org/10.1371/journal.pntd.0010564
https://doi.org/10.1371/journal.pntd.0010564
http://www.ncbi.nlm.nih.gov/pubmed/35802748
https://doi.org/10.1111/j.1365-2915.1992.tb00592.x
https://doi.org/10.1111/j.1365-2915.1992.tb00592.x
http://www.ncbi.nlm.nih.gov/pubmed/1358266
https://doi.org/10.1590/s1519-566x2010000400030
https://doi.org/10.1590/s1519-566x2010000400030
http://www.ncbi.nlm.nih.gov/pubmed/20878007
https://doi.org/10.3157/021.121.0109
https://doi.org/10.1089/vbz.2017.2222
http://www.ncbi.nlm.nih.gov/pubmed/29595406
https://doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
https://doi.org/10.1016/j.actatropica.2019.105108
http://www.ncbi.nlm.nih.gov/pubmed/31351893
https://doi.org/10.1109/CISP.2012.6470008
https://doi.org/10.1109/CISP.2012.6470008
https://doi.org/10.1016/S2214-109X%2818%2930024-X
http://www.ncbi.nlm.nih.gov/pubmed/29398634
https://doi.org/10.1080/01431160701253303
https://doi.org/10.4269/ajtmh.1959.8.372
https://doi.org/10.4269/ajtmh.1959.8.372
http://www.ncbi.nlm.nih.gov/pubmed/13661542
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.7554/eLife.04395
http://www.ncbi.nlm.nih.gov/pubmed/25201877
https://doi.org/10.1093/trstmh/trv024
https://doi.org/10.1093/trstmh/trv024
http://www.ncbi.nlm.nih.gov/pubmed/25820266
https://doi.org/10.1371/journal.pntd.0011859


64. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al. Estimating Geographical Varia-

tion in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLoS Negl

Trop Dis. 2016; 10(8):e0004915. https://doi.org/10.1371/journal.pntd.0004915 PMID: 27494405

65. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution

models: how, where and how many? Methods Ecol Evol. 2012; 3(2):327–38. https://doi.org/10.1111/j.

2041-210X.2011.00172.x

66. Araújo MB, New M. Ensemble forecasting of species distributions. Trends Ecol Evol. 2007; 22(1):42–7.

https://doi.org/10.1016/j.tree.2006.09.010 PMID: 17011070

67. Hijmans RJ PS, Leathwick J, Elith J. dismo: Species Distribution Modeling. 2016. http://CRAN.R-

project.org/package=dismo.

68. Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded

Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, New York:

NASA Socioeconomic Data and Applications Center (SEDAC); 2018.

69. Deribe K, Cano J, Newport MJ, Golding N, Pullan RL, Sime H, et al. Mapping and Modelling the Geo-

graphical Distribution and Environmental Limits of Podoconiosis in Ethiopia. PLoS Negl Trop Dis. 2015;

9(7):e0003946. https://doi.org/10.1371/journal.pntd.0003946 PMID: 26222887

70. Ganjian N, Riviere-Cinnamond A. Mayaro virus in Latin America and the Caribbean. Revista panameri-

cana de salud publica = Pan American journal of public health. 2020; 44:e14. https://doi.org/10.26633/

RPSP.2020.14 PMID: 32051685

71. Blohm G, Elbadry MA, Mavian C, Stephenson C, Loeb J, White S, et al. Mayaro as a Caribbean traveler:

evidence for multiple introductions and transmission of the virus into Haiti. International journal of infec-

tious diseases: IJID: official publication of the International Society for Infectious Diseases. 2019;

87:151–3. https://doi.org/10.1016/j.ijid.2019.07.031 PMID: 31382049

72. Lowe R, Lee S, Martins Lana R, Torres Codeço C, Castro MC, Pascual M. Emerging arboviruses in the

urbanized Amazon rainforest. Bmj. 2020; 371:m4385. https://doi.org/10.1136/bmj.m4385 PMID:

33187952

73. Pigott DM, Millear AI, Earl L, Morozoff C, Han BA, Shearer FM, et al. Updates to the zoonotic niche map

of Ebola virus disease in Africa. Elife. 2016; 5. https://doi.org/10.7554/eLife.16412 PMID: 27414263

PLOS NEGLECTED TROPICAL DISEASES Predicting environmental suitability for Mayaro Virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011859 January 9, 2024 21 / 21

https://doi.org/10.1371/journal.pntd.0004915
http://www.ncbi.nlm.nih.gov/pubmed/27494405
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1016/j.tree.2006.09.010
http://www.ncbi.nlm.nih.gov/pubmed/17011070
http://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=dismo
https://doi.org/10.1371/journal.pntd.0003946
http://www.ncbi.nlm.nih.gov/pubmed/26222887
https://doi.org/10.26633/RPSP.2020.14
https://doi.org/10.26633/RPSP.2020.14
http://www.ncbi.nlm.nih.gov/pubmed/32051685
https://doi.org/10.1016/j.ijid.2019.07.031
http://www.ncbi.nlm.nih.gov/pubmed/31382049
https://doi.org/10.1136/bmj.m4385
http://www.ncbi.nlm.nih.gov/pubmed/33187952
https://doi.org/10.7554/eLife.16412
http://www.ncbi.nlm.nih.gov/pubmed/27414263
https://doi.org/10.1371/journal.pntd.0011859

