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Abstract

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and per-

sistent arthritogenic disease. While MAYV was previously reported to infect non-human pri-

mates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this

study we characterized MAYV infection and immunity in rhesus macaques. To inform the

selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6

mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and

disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-

forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infec-

tion (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which

included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues,

as well as peripheral and central nervous system tissues. Histological examination demon-

strated that MAYV infection was associated with appendicular joint and muscle inflammation

as well as presence of perivascular inflammation in a wide variety of tissues. One animal

developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin

samples, which was associated with the presence of perivascular and perifollicular lympho-

cytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust

innate and adaptive immune activation, including the presence of anti-MAYV neutralizing

antibodies with activity against related Una virus and chikungunya virus. Inflammatory cyto-

kines and monocyte activation also peaked coincident with viremia, which was well sup-

ported by our transcriptomic analysis highlighting enrichment of interferon signaling and

other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of

MAYV infection recapitulates many of the aspects of human infection and is poised to facili-

tate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
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Author summary

Mayaro virus (MAYV) is an arbovirus capable of causing debilitating arthritis and myalgia

in humans and the virus is currently circulating in Central and South America. With sev-

eral factors supporting viral emergence, MAYV is a public health risk due to the lack of

FDA-approved countermeasures. Although non-human primate (NHP) infection models

are well established for chikungunya virus (CHIKV) and the equine encephalitic alpha-

viruses, there is currently no well-characterized NHP model of MAYV pathogenesis.

With evidence of well-established mouse models of MAYV infection and a report from

1967 demonstrating that MAYV infection of NHPs in a laboratory setting was feasible, we

aimed to further characterize MAYV infection in three rhesus macaques. Following pre-

cursor studies in mice to identify an optimal viral strain for NHP infection, we subcutane-

ously challenged rhesus macaques and characterized viral pathogenesis and immunity

over the course of 10 days. Our study establishes a framework for future evaluation of

MAYV-specific treatments in this relevant animal model.

Introduction

Mayaro virus (MAYV) is a re-emerging arthritogenic alphavirus responsible for numerous

outbreaks that are increasing in frequency in the tropical regions of Latin America and the

Caribbean. In 1954, MAYV was isolated from forest workers in Mayaro County, Trinidad and

Tobago, but the virus is now endemic to 14 countries of Central and South America [1–3].

Travel-associated infections have occurred in these endemic regions and reported for people

returning to the United States and Europe [4]. MAYV is related to and co-circulates with chi-

kungunya virus (CHIKV), which is the most prevalent alphavirus contributing to several large

outbreaks over the last several decades in over 110 countries [5]. In 2022, there were 383,357

reported cases and 76 deaths caused by CHIKV with Brazil bearing the brunt of the public

health burden (265,289 cases and 75 deaths) [6]. Brazil is also home to the largest number of

MAYV outbreaks and is continually faced with the threat of other arboviral infectious out-

breaks including dengue fever and Zika [7]. MAYV is primarily transmitted by Haemagogus
sp. mosquitos dwelling in tropical forests, but experimental studies have shown other species

to be capable of transmission [8–13]. Transmission is maintained in sylvatic transmission

cycles by non-human primate (NHP) primary hosts and by rodent or other secondary hosts

[14]. Although evidence of urban transmission of MAYV has not been identified, in research

settings, MAYV has been shown to be transmitted by urban-dwelling mosquito vectors [1]

including Aedes albopictus and Aedes aegytpi, causing concern for outbreaks outside of

endemic regions [13,15–17]. While humans are only sporadically infected, some hypothesize

that MAYV is poised to emerge more often due to tropical forest workers or travelers encoun-

tering more rural destinations [18–21]. Currently, there are no approved vaccines or therapeu-

tics for the treatment or prevention of MAYV infections, presenting a major concern as

MAYV continues to emerge in sporadic epidemics.

MAYV is an 11kb single-stranded, positive sense RNA member of the Semliki Forest anti-

genic complex that includes Una (UNAV), chikungunya (CHIKV), O’nyong’nyong (ONNV),

Bebaru (BEBV), Getah (GETV), Semliki Forest (SFV), and Ross River (RRV) viruses [22].

Given the high degree of genetic and antigenic similarity within this serological complex,

cross-reactive immune responses have been described for humans and in animal models [23–

28]. There may be a high level of cross-reactive herd immunity afforded by CHIKV-MAYV
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co-circulation, and cross-neutralization of MAYV by anti-CHIKV patient sera has been

described by our group and others [23,24,29,30]. Phylogenetically, there are three distinct

genotypic strains of MAYV (D, L, and N) with only 17% nucleotide divergence between them

[10]. Genotype D viruses are distributed in Venezuela, Peru, and Bolivia, the L genotype is pri-

marily confined to Brazil and Haiti, and Genotype N only contains isolates from Peru [31].

Due to co-circulation with other arboviruses, clinical disease similarity, and alphavirus cross-

reactivity, these infections can also be difficult to diagnose as differentiating diagnostics are

limited. There are incidences of arboviral co-infections, including reports of MAYV and

CHIKV co-infection [32] and ex vivo superinfection with MAYV and Zika (ZIKV) [17]. Co-

infections with non-arboviruses like HIV have also been reported, but little research has been

done to investigate the interplay of these co-infections or consequence of pre-existing immu-

nodeficiency [33]. Altogether, these confounding factors may lead to an underestimation of

MAYV human disease burden.

MAYV causes Mayaro fever in humans which was first described in 1957, detailing case

reports of febrile forest workers infected in 1954 and their MAYV-seroconversion [2,3].

Although disease is rarely fatal, it is estimated that 90% of MAYV infections are symptomatic

and the incubation period is approximately 8 days [7]. Disease initially presents with a high

fever that is concurrent with peak viremia at 1–2 days post-infection (dpi), and viremia has

been reported to last at least 4 days [34]. Other disease symptoms include rash (inclusive of

exanthema), headache, dizziness, retro-ocular pain, diarrhea, vomiting, inguinal lymphade-

nopathy, myalgia, and arthralgia [18]. These symptoms can last 5–7 days but myalgia and

arthralgia can persist in>50% of patients for months to years following infection [34]. Acute

phase infections can also present with mild leukopenia and thrombocytopenia [7]. Neurologi-

cal complications associated with more severe cases and myocarditis has been reported follow-

ing CHIKV infection, thus cardiac involvement has been hypothesized for other arthritogenic

alphavirus infections including MAYV [35–41].

MAYV infection in mice has been used to characterize viral pathogenesis and also to evalu-

ate MAYV-specific countermeasures. Mouse models of MAYV infection have been reported

for C57BL/6, Balb/c, CD-1, AG129, Rag1-/-, and IFNαR-/- mice utilizing different strains of

the virus including: MAYVBeAr505411 [25], MAYVBeH407 [28,42], MAYVTRVL [43–45], MAY-

VIQT4235 [46] and MAYVCH [47,48]. Una virus (UNAV) is closely related to MAYV and has

been used in a limited number of mouse infection studies [25]. To our knowledge, a compari-

son of MAYV strain pathogenicity in mice has not been published, however, the impact of

genetic diversity on viral fitness was recently explored for three strains in vitro [49]. Vaccina-

tion strategies targeting MAYV have been reported for live-attenuated virus platforms [48,50],

virus-like particles [51], adenovirus vectors [25,52], inactivated virus preparations [53], and

DNA transfections [54]. Vaccines targeting CHIKV with cross-reactivity or cross-protective

efficacy against MAYV have also been described [29,55]. Monoclonal antibody treatments

[47,56,57] and antiviral drugs [58–63] directed against MAYV are also in development.

Despite promising MAYV treatments reported in the literature, evaluation of their efficacy in

NHP infection models has been hindered by the absence of an established NHP model.

NHP models of CHIKV infection have been well established in cynomolgus macaques

(Macaca fascicularis) [64,65] and adult, aged, or pregnant rhesus macaques (Macaca mulatta)

[66–69]. These models have proven useful for evaluation of CHIKV-specific vaccines [70–73]

and monoclonal antibody therapies [74–76]. Additional NHP models of arthritogenic alpha-

virus disease have yet to be developed, although many have been established for the encepha-

litic alphaviruses. Indeed, Binn et al. established in 1967 that rhesus macaques could be

infected with MAYV in a research setting, and the NHPs developed MAYV-neutralizing and

CHIKV cross-neutralizing antibodies, which protected them from heterologous CHIKV
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challenge [67]. However, this study has left several unanswered questions pertaining to viral

tissue tropism, persistence, viral strain-specific differences in pathogenicity, as well as a general

lack of knowledge about the kinetics and durability of innate and adaptive immunity. Due to

the potential emergence of MAYV and the active and ongoing development of alphavirus-spe-

cific therapeutics and vaccines, we aimed to holistically characterize MAYV pathogenesis and

immunity in adult rhesus macaques (RM).

Results

Infection of mice with the MAYV BeAr505411 strain results in robust

replication and viral dissemination

To better inform strain selection for NHP experiments, we subcutaneously inoculated 4-week-

old C57BL/6 mice (Fig 1) and 13-week-old IFNαR-/- mice (S1 Fig) in the right footpad with

104 PFU of genotype D and L MAYV strains including MAYVBeAr505411, MAYVCH, MAYV-

Guyane, MAYVTRVL, MAYVUruma, or UNAVMAC150 and compared viremia, tissue distribution

and disease parameters for each of the strains. Infectious virus levels in serum collected at 2

days post-infection (dpi) from the female C57BL/6 mice were determined by limiting dilution

plaque assays on Vero cells. Infection with MAYVBeAr505411 and MAYVCH resulted in signifi-

cantly higher serum viral titers compared to the three other MAYV strains tested (Fig 1A).

Mice were euthanized at 5 dpi and MAYV vRNA levels were quantified using qRT-PCR for

the RNA isolated from tissue homogenates of the contralateral and ipsilateral ankles, calves,

and quads, as well as brain, spleen, and heart. Viral RNA levels generally trended significantly

higher for MAYVBeAr505411 with infection in muscles (ranging 1–3 logs higher) and joints

(ranging 2–5 logs higher) compared to the other strains (Fig 1B–1G). Across viral strains the

levels of viral RNA in ipsilateral joints and muscles were equivalent to the levels detected in the

contralateral samples indicating efficient viral spread. In spleen, brain, and heart tissue homog-

enates, vRNA levels trended significantly higher (ranging 1–3 logs greater) for MAYV-

BeAr505411 infection compared to the other MAYV strains (Fig 1H–1J). For many tissues, viral

RNA levels in MAYVCH and MAYVGuyane infected C57BL/6 mice were similar to each other

and higher than MAYVTRVL, MAYVUruma, or UNAVMAC150, but still lower relative to MAYV-

BeAr505411 (Fig 1A–1H). Interestingly, the MAYV strain differences observed in C57BL/6 mice

were not as profound in IFNαR-/- mice as the five MAYV strains all lead to similar changes in

weight loss (S1D Fig) and footpad swelling (S1C Fig) as well as survival time (S1B Fig). How-

ever, in these immunodeficient mice UNAV infection exhibited the highest viral titer at 1 dpi

as well as the quickest loss of body weight and time to death (S1A, S1B and S1D Fig). In sum-

mary, MAYVBeAr505411 replicated to the highest levels in immunocompetent mouse tissues of

expected viral tropism relative to other viral strains. Given these findings, we hypothesized

that among the MAYV strains tested, MAYVBeAr505411 would replicate the most efficiently in

rhesus macaques and potentially elicit better clinical disease.

Kinetics of MAYV replication in rhesus macaques reveals peak viremia at 2

dpi

To characterize MAYV pathogenesis in NHPs, we infected three male rhesus macaques (RM)

ages 4, 10, and 13 years (Fig 2). At approximately one month prior to infection, we collected

peripheral blood as well as spleen, axillary lymph node (LN) and mesenteric LN biopsies to

provide baseline comparisons for immunological assays. Animals were inoculated subcutane-

ously in both hands and arms at five sites per arm (100μL per injection) in an attempt to

mimic a mosquito bite with a total infectious dose of 1x105 PFU of MAYVBeAr505411. Peripheral
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blood and urine samples were collected at 0, 1, 2, 3, 4, 5, 7, and 10 dpi (Fig 2A). RM were

humanely euthanized at 10 dpi for extensive tissue collection that included lymphoid tissues,

muscles, joints, heart, peripheral nerves, central nervous system, male reproductive tissues,

and other major organs. The 10 dpi timepoint was chosen to maximize the characterization of

viral dissemination and immune activation following MAYV infection. We quantified plasma
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Fig 1. Evaluation of MAYV strain pathogenesis in C57BL/6 mice. Five 4-week-old female C57BL/6 mice were infected with 104 plaque forming units (PFU)

with one of five MAYV strains or UNAV via a right foot pad 20μL injection. Blood was collected for serum isolation at 2 days post-infection (dpi) and tissues

were harvested at 5 dpi. Titers of infectious virus in serum at 2 dpi are shown in (A) and viral RNA (vRNA) levels in tissues were quantified (B-J). Data points

are mean with SEM error bars for n = 5 per group, measuring three replicates of log-transformed data. Serum was tittered on Vero cells by limiting dilution

plaque assays and vRNA in tissues was measured in triplicate by qRT-PCR (vRNA copies per well were normalized to the RsP17 house keeping gene.) The

LOD in (A) was 100 PFU/mL with undetectable samples graphed as 50 PFU/mL. The LOD in (B-J) was 50 vRNA copies per well or per 200μL homogenate.

Statistical analysis was completed using a one-way ANOVA with log-transformed data, where **** p< 0.0001, *** p = 0.0001, ** p< 0.001, * p< 0.05, ns

p> 0.05.

https://doi.org/10.1371/journal.pntd.0011742.g001
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viral RNA (vRNA) at all timepoints following infection and found that MAYV replicated up to

108 vRNA copies / mL of plasma, with peak viremia occurring at 2 dpi in all three animals

(Fig 2B). Plasma infectious virus was consistently detected at 1–4 dpi but not at 5, 7 or 10 dpi.

(Table 1). We were unable to detect MAYV vRNA in urine samples from any of the RM, at

any timepoint. Complete blood counts and serum chemistry analyses of each macaque

revealed few remarkable changes over the duration of the study, but one animal experienced

minor anemia that coincided with peak viremia (S2 and S3 Figs). One animal developed a

fever of 104˚F at 1 dpi, however, the animals were only monitored for temperature during
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Fig 2. Study overview of MAYV infection of NHPs. Schematic summarizing the MAYV macaque infection study (A). Pre-infection axillary, inguinal, and

mesenteric lymph node and spleen biopsies as well as blood were collected one month prior to infection for three male rhesus macaques (RMs) ages 4, 10, and

13 years. Animals were inoculated with 105 plaque forming units (PFU) of MAYVBeAr505411 administered subcutaneously and spread evenly in both arms and

hands. Blood was drawn for PBMC and plasma isolation as well as complete blood count (CBC) and serum chemistry at 0–5, 7, and 10 dpi. Animals were

humanely euthanized at 10 dpi and extensive lymphoid, muscles, joints, nerves, lobes of the brain, heart, major organs, and male reproductive tissues were

harvested. Plasma was isolated from blood collections at 0–5, 7, and 10 dpi for quantification of viral RNA in copies/mL of plasma by qRT-PCR in triplicate

reactions (B). The qRT-PCR data is representative of three independent experiments. The LOD was 250 copies MAYV RNA per mL of plasma with

undetectable samples graphed as 125 copies vRNA/mL plasma. Body temperatures (˚F) (C) and change from starting body weight (%) (D) were recorded daily

at all study timepoints.

https://doi.org/10.1371/journal.pntd.0011742.g002
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procedures, making it impossible to know whether they were febrile at other times (Fig 2C).

None of the three animals experienced weight loss over the duration of the 10-day infection

study, although NHP 3 did experience 7% loss of body weight between the biopsy period and

infection day. (Fig 2D). We did not observe additional signs of discomfort or disease in these

three animals.

On the day of necropsy (10 dpi), a maculopapular rash was observed on the ventrum and

flanks of one animal, without any observed pruritis, (Fig 3A–3D and Table 2) and these

lesions were positive for MAYV RNA (Fig 4E). Erythematous macules, papules and xerotic

plaques extended from the caudal thorax to the inguinal region with the most pronounced

changes on the flanks. A bacterial culture revealed normal background dermatologic flora, and

histologic screening for other etiologic causes such as measles virus was negative. Microscopic

changes in the abdominal skin included multifocal acanthosis, mild dyskeratosis, and superfi-

cial edema which corresponded to grossly visible papules. Perivascular lymphocytic

Table 1. Isolation of infectious MAYV from RM plasma and tissue. Using NHP tissue homogenates collected in PBS at 10 dpi, we infected C6/36 cells and harvested

supernatants at 3 dpi to isolate infectious MAYV. Viral supernatants were tittered in triplicate by limiting dilution plaque assays on Vero cells to quantify infectious viral

particles in cell supernatants. Viral titers are reported as plaque forming units per 1 mL of C6/36 viral supernatant. The LOD was 3.3 PFU/mL. Samples with titers below

the LOD are labeled (-).

Plasma NHP 1 NHP 2 NHP 3

1 dpi 1.00x1010 PFU 4.60x1010 PFU 5.00x109 PFU

2 dpi 6.20x1010 PFU 4.66x1010 PFU 5.20x1010 PFU

3 dpi 2.90x1010 PFU 9.25x1010 PFU 2.40x1010 PFU

4 dpi - 2.43x106 PFU 3.40x104 PFU

5 dpi - - -

7 dpi - - -

10 dpi - - -

Tissue

Ax LN 1.00x102 PFU - -

Ing LN - 1.10x104 PFU 3.30x100 PFU

Submandibular LN - - -

Finger - - -

Wrist 1.43x106 PFU - -

Elbow - - 3.10x106 PFU

Toe 3.46x104 PFU - 1.36x104 PFU

Ankle 1.96x104 PFU - -

Bicep - - -

Brachial radius - - -

Knee - - 5.90x106 PFU

Quad - - -

Tricep - - -

Soleus - - -

Hamstring - - -

Aorta - - -

Heart left atrium - - -

Heart right atrium - - -

Heart left ventricle - - -

Heart right ventricle - - -

Kidney - - -

Liver - - -

https://doi.org/10.1371/journal.pntd.0011742.t001
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Fig 3. Dermatologic pathology in MAYV-infected rhesus macaques. At 10 dpi with MAYV, macaque skin sections

were collected during necropsy, fixed, paraffin embedded, sectioned and stained for examination with hematoxylin

and eosin (HE). (B; Bar = 1 cm) A maculopapular rash extends from the ventral abdomen to the flanks and inguinal

region of NHP 3. (A; Bar = 100 μm. C; Bar = 50 μm) Sections of a maculopapular rash in the abdominal skin displaying

multifocal acanthosis, mild dyskeratosis, superficial dermal edema, and perivascular lymphocytic inflammation in the

superficial dermis. (D; Bar = 100 μm) The thoracic skin had similar perivascular and perifollicular lymphocytic

aggregates. (E; Bar = 100 μm) Thoracic skin from NHP 1 with mild perivascular lymphocytic inflammation in the

superficial dermis. (F; Bar = 100 μm) Normal thoracic skin from NHP 2.

https://doi.org/10.1371/journal.pntd.0011742.g003
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inflammation was within the superficial dermis, which increased in severity in areas accompa-

nying epidermal lesions. In the absence of gross or histologic epidermal changes, perivascular

inflammation extended to the thoracic skin in this animal, as well as one other in the cohort,

where it also surrounded few hair follicles (Fig 3E). One of the three animals did not have

lesions within the thoracic skin sample that was collected, which was consistent with the nega-

tive viral detection as well (Fig 4E). Together, these data provide insight into the kinetics of

MAYV viremia and disease symptoms.

Table 2. Perivascular lymphocytic inflammation in the musculoskeletal, nervous, cardiovascular, and integumentary tissues of MAYV-infected rhesus macaques at

10 dpi. Tissues are scored for presence of lymphocytic inflammation by relative intensity (+ to +++) or absence (-) of pathology within sections.

Tissue NHP 2 NHP 3 NHP 1

Joints

Elbow - ++ -

Wrist/Fingers + +++ +

Knee ++ + -

Ankle/Toes + +++ +++

Muscles

Biceps brachii - - -

Triceps brachii - - -

Brachioradialis - - +

Quadriceps femoris - - * -

Biceps femoris (hamstring) + - -

Soleus - - -

Nervous Tissues

Cerebrum + + -

Cerebellum/brainstem - + -

Trigeminal nerve - - N

Spinal cord / dorsal root ganglia - + (Lumbar) + (Cervical)

Brachial plexus - + -

Femoral nerve - ** - -

Sciatic nerve + + -

Eye - - -

Cardiovascular Tissues

Heart + *** - **** +

Aorta - - **** -

Integument

Abdominal skin (rash) N +++ N

Torso skin - +++ ++

Tissues are scored for presence of lymphocytic inflammation by relative intensity (+ to +++) or absence (-) of pathology within sections using the following scale

+, one small aggregate of perivascular lymphocytes

++, multiple blood vessels within one or two areas of the tissue with small to moderate numbers of perivascular lymphocytes; and

+++, perivascular lymphocytes affecting a majority of blood vessels in small to moderate numbers with or without infiltration of the surrounding tissue.

N, tissue not available for evaluation.

*, minor myocyte degeneration and regeneration

**, pre-existing fasciitis

***, hypertrophic cardiomyopathy and valvular endocardiosis; and

****, myxofibromatous degeneration of the mitral valve (endocardiosis) and aorta.

https://doi.org/10.1371/journal.pntd.0011742.t002
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MAYV infects joint, muscle, lymphoid, cardiac, and nervous system tissues

of rhesus macaques

Next, we aimed to identify MAYV tissue distribution in the RMs at 10 dpi. Total RNA was iso-

lated from muscle, joint, lymphoid, heart, brain, nerve, reproductive, and other major organs;

and vRNA was quantified for each sample using qRT-PCR (Fig 4). At the time of necropsy, we

combined right and left muscle and joint tissues into one sample tube and detected high levels
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Fig 4. Detection of MAYV RNA in NHP tissues at 10 dpi. During necropsy extensive tissue subsets were collected from macaques and viral burden was

determined through quantification of copies of viral RNA (vRNA) in qRT-PCR. Tissue subsets included muscles and joints (A), lymphoid tissues (B), genital

and urinary (C), nervous system (D), and organs and glands (E). For all panels, the LOD was 500 copies per mL of tissue homogenate with undetectable

samples graphed as 250 copies of vRNA/mL. Shown for each panel is a compilation and comparison of vRNA quantities for the tissue group, analyzed using a

one-way ANOVA (ns = p> 0.05). All qRT-PCR reactions were performed in triplicate.

https://doi.org/10.1371/journal.pntd.0011742.g004
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of vRNA in most subsets, notably the ankles, toes, elbows, fingers, and wrists for all three ani-

mals, indicating that the virus disseminated effectively throughout the body (Fig 4A). Consis-

tent with this finding, we detected high levels of MAYV RNA for all three animals in several

lymphoid tissues with the exception of bone marrow; viral loads were particularly high (nearly

106 copies of vRNA per μg of RNA) in the axillary and inguinal lymph nodes (LNs), which

drain from the arms and legs, respectively (Fig 4B). Viral RNA was detected in the male repro-

ductive tissues (Fig 4C). MAYV crosses the blood-brain barrier in NHPs, as we observed

vRNA in all three animals in lobes of the brain and other major central nervous tissues, the

thoracic spinal cord being the only subset sampled with no detection in any animal (Fig 4D).

Although we detected MAYV vRNA in many nervous system tissues, we did not observe evi-

dence of neurological disease in any of the macaques. Because we detected viral replication in

cardiac compartments in our mouse strain selection study (Fig 1J), we separated the ventricles,

atriums, and aorta of the heart for viral detection in the RMs. We detected vRNA in all cardiac

compartments for one animal, in the right ventricle of two animals, but one animal had no

detectable vRNA in the heart tissue samples (Fig 4E). The duodenum and pancreas were the

only tissues that were undetectable for vRNA for all three animals (Fig 4E). We compared the

pooled vRNA levels in each tissue group across the three animals in an attempt to identify any

trends in quantity or distribution, but there were no significant differences (Fig 4A–4E). The

presence of infectious virus was determined by coculture of tissue homogenates with C6/36

cells and subsequent tittering of culture supernatants. Infectious virus was recovered in several

muscle and joint tissues as well as lymph nodes, which provides additional evidence of sus-

tained viral replication (Table 1). These data provide valuable insights into MAYV tissue tro-

pism, replication, and distribution with valuable translational impact for understanding

human infection.

Immunopathologic changes associated with MAYV infection in rhesus

macaques highlight variable tissue inflammation in joints, muscles, heart,

and central nervous tissues

Histological assessment revealed that each of the animals infected with MAYV exhibited vari-

able degrees of perivascular inflammatory cell infiltration in several tissue types. For example,

all three animals had minimal to moderate lymphocytic inflammation of the finger, wrist,

ankle, and toe joints (Fig 5A and 5B). The degree of inflammatory infiltration varied from

minimally affecting rare perivascular areas in the fascia to moderate tenosynovitis also involv-

ing the adjacent adipose tissues (Table 2), and vasculitis was present in the most affected tis-

sues. Multifocally, synovial and endothelial cells were hypertrophic, indicative of cellular

activation. Interestingly, the ankles and toes (secondary sites of infection) of NHP 1 had more

involvement than the forelimb joints. A focus of perivascular lymphocytes was in the brachior-

adialis muscle of NHP 1, which was the muscle collected closest to the infection sites. The

elbow of one animal (Fig 5C) and the knees of two animals showed similar minimal to mild

findings. Lymphocytic inflammation in the joint tissues occurred without gross changes in the

cartilage or bone and variations were absent macroscopically where present on sections stained

with hematoxylin and eosin (H&E). These findings imply that any pre-existing osteoarthritic

components were less likely, though this cannot be ultimately ruled out due to collection limi-

tations on size of tissue samples. Additionally, these lesions would be unexpected in the juve-

nile NHP 1.

Aggregates of lymphocytes were also present surrounding rare blood vessels in multiple

additional tissues, including the appendicular muscles, heart, and nervous system of all NHPs

(Figs 5D–5G and S4, and Tables 2 and S1). The medullary sinuses of the axillary lymph
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nodes were expanded by histiocytes and hemophagocytes, which grossly presented as ery-

thema and lymphadenopathy in all animals (S5 Fig and S2 Table). Mild enlargement of many

peripheral and visceral lymph nodes microscopically corresponded to sinus histiocytosis and

varying levels of hemophagocytosis, particularly present in the medullary sinuses of mesenteric

and sacral lymph nodes. A consistent finding between these animals was lesions within the red

pulp of the spleen (S5 Fig and S2 Table). At low magnification, a perifollicular pattern of con-

gestion was evident (S5D Fig). At higher magnification, sinusoidal reticuloendothelial hyper-

plasia, histiocytosis, erythrophagocytosis, increased neutrophils, and rare microabscesses were

evident (S5E–S5F Fig). Mentionable age-related or incidental lesions were chronic hepatic

Fig 5. Lymphocytic inflammation in the musculoskeletal, cardiac, and nervous system of MAYV-infected rhesus

macaques. Macaque joint and muscle tissues were collected during necropsy, fixed, paraffin embedded, sectioned and

stained with hematoxylin and eosin (HE). Extensive histology was examined, and select representative images are

shown for the three animals. (A; Bar = 300 μm, inset 100 μm) Lymphocytic inflammation within the periarticular

connective tissue of the wrist and fingers with a perivascular pattern. (B; Bar = 100 μm) Perivascular and synovial

lymphocytic inflammation in the ankle and toes. (C; Bar = 100 μm) Similar lymphocytic inflammation affects the

elbow. (D; Bar = 100 μm) Minor perivascular inflammation within the fascia adjacent to the hamstring. (E;

Bar = 50 μm) A minor focal aggregate of lymphocytes within the interventricular septum of the heart. (F;

Bars = 500 μm, inset 100 μm) A vessel within the dorsal funiculus of the cervical spinal cord surrounded by

lymphocytes. (G; Bar = 100 μm) Minor lymphocytic inflammation in the perivascular space of a vessel in the sciatic

nerve.

https://doi.org/10.1371/journal.pntd.0011742.g005
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degeneration and valvular endocardiosis of NHP 3 and hypertrophic cardiomyopathy, valvular

endocardiosis, and fasciitis near the femoral artery and nerve of animal NHP 2.

Cytokine and cellular innate immune signatures peak with MAYV viremia

in rhesus macaques

We analyzed the expression of 37 cytokines and chemokines in longitudinal plasma samples

following MAYV infection. Previously, a number of different proinflammatory cytokines and

chemokines have been reported to be activated following MAYV infection in mice and

humans or CHIKV infection in NHPs, in a process that typically coincides with viremia and

subsequent innate and adaptive immune activation [69,74,77,78]. Studies with other arthrito-

genic alphavirus such as CHIKV and RRV have shown osteoblasts to be susceptible to infec-

tion, leading to secretion of MCP-1, IL-1, and IL-6 [79,80]. Consistent with these findings,

G-CSF, IL-RA, eotaxin, MCP-1, IFN-α, and IFN-γ were all elevated relative to baseline at 2

dpi, aligning with peak viremia in the MAYV-infected RMs (Figs 6 and S6). Studies in mice

following CHIKV infection have previously shown biphasic peaks in these inflammatory cyto-

kines, and we captured sporadic secondary peaks for IL-4, IL-7, IL-8, IL-15, NGF-β, PDGP-BB,

and SDF-1 (S6 Fig) [81]. Production of these cytokines and chemokines provide evidence of

monocyte recruitment and migration (i.e., eotaxin, MCP-1) during peak viremia, which have a

prominent role in the control of infection.

Activation of monocytes, macrophages, and dendritic cells have been consistently shown to

contribute to the innate immune response to help control alphavirus infection but are also
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Fig 6. Cytokine and chemokine profile following MAYV infection. The inflammatory cytokine and chemokine profile following MAYV infection was

characterized in macaque plasma at 0–5, 7, and 10 dpi using a Cytokine Monkey Magnetic 29-plex Panel for Luminex Platform Kit (Invitrogen) according to

the manufacturer’s instructions. A full panel of 29 cytokine and chemokine levels (pg/mL of plasma) were quantified, but shown are G-CSF (A), IL-1RA (B),

eotaxin (C), MCP-1 (D), IFN-α (E), and IFN-γ (F). The LOD was determined to be the lowest detectable value in the assay for each cytokine or chemokine.

Paired t tests were used for statistical analysis where baseline (d0) was compared to each of the other timepoints but did not yield any statistically significant

results (p> 0.05).

https://doi.org/10.1371/journal.pntd.0011742.g006
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capable of causing inflammatory damage [82–85]. To understand the kinetics of these innate

immune responses in our MAYV-infected RMs, we quantified the frequency of total and acti-

vated (CD169+) monocytes, NK, and dendritic cells in longitudinal PBMC samples as well as

lymphocytes isolated pre- and post-infection from lymphoid tissues (Figs 7 and S7). All three

key peripheral blood monocyte populations (classical, non-classical, and intermediate mono-

cytes) were highly activated in a process that coincided with the kinetics of plasma viremia

(Fig 2B), peaking between 2 and 4 dpi but returning to baseline by 10 dpi (Fig 7A–7C). The

peak of activation of NK cells (p = 0.3139), myeloid dendritic cells (p = 0.0460), and plasmacy-

toid dendritic cells (p = 0.0767) in PBMC also coincided with viremia (Fig 7D–7F), however,

this trend was only statistically significant for myeloid dendritic cell activation (Fig 7E). While

we detected increases in activation for monocyte, NK, and dendritic cell subsets, there were no

significant changes in the total frequencies of any of these populations (Fig 7A–7F). Innate

immune population activation in lymphoid tissues following infection varied by tissue and cell

type. For example, after infection intermediate monocytes in the mesenteric LN were signifi-

cantly activated (p = 0.0337) and those from the spleen also trended towards increased activa-

tion (p = 0.2798). However, other monocyte populations from these same tissues were not

activated nor were they activated from axillary lymph node tissues (Fig 7G–7I). NK cell activa-

tion trended upwards following infection while not reaching statistical significance

(p = 0.6650, p = 0.1481, p = 0.2022, respectively) (Fig 7J–7L). There was a general trend for

plasmacytoid DCs to express less CD169 following infection and this trend reached signifi-

cance in cells isolated from the spleen (p = 0.0264) (Fig 7J–7L).

Proliferating T and B cell subsets dominate the early adaptive immune

response to MAYV infection in rhesus macaques

The adaptive arm of the immune system is activated during alphavirus infection leading to the

production of functional antibodies and T cells. While T cells have been shown to control

alphavirus-mediated infection and disease [86–88], anti-CHIKV CD4+ T cells have also been

shown in mice to mediate joint disease [88,89]. To characterize T cell frequency and pheno-

typic changes that occur in response to MAYV infection, we utilized flow cytometry for stain-

ing of longitudinal macaque PBMC from -28, 0–5, 7, and 10 dpi as well as lymphocyte

preparations from lymph nodes and spleen collected at one month prior to infection and at 10

dpi (Figs 8 and S8). Using a well-characterized panel of antibodies, we found that the overall

frequencies of each of the CD4 and CD8 T cell subsets remained stable in the peripheral blood

with no major changes over time. While central memory (CM) CD4+ T cell proliferation

(Ki67+) in peripheral blood increased at 2 dpi and again between 5 and 10 dpi (Fig 8A), only a

slight increase in Ki67 staining was detected for the effector memory (EM) CD4+ T cells and

less so for the naïve CD4+ T cell population. Proliferation of both CM and EM CD8+ T cell

populations increased over time peaking at 7dpi (Fig 8B), which is consistent with previous

published data for T cell proliferation in CHIKV-infected NHPs [66,74]. Also in line with pub-

lished data, there was a steady expansion of granzyme B positive EM CD4+ and CD8+ T cells

with peak frequency values attained at 7 to 10 dpi (Fig 8C and 8D) [90]. In addition, the fre-

quency of granzyme B positive naïve and CM CD4+ and CD8+ T cells also increased following

MAYV infection with peak values detected between 7 and 10 dpi, depending upon the specific

subtype (Fig 8C and 8D). In general, CD8+ CM and EM T cells isolated from the spleen, axil-

lary LNs, and mesenteric LNs stained significantly higher for the proliferation marker Ki67

and for granzyme B at 10 dpi when compared with tissues from prior to infection (Fig 8E–8J).

While CD4+ T cell granzyme B was lower than those observed for the CD8+ cells, the CD4

+ CM and EM T cell populations also changed their frequency of Ki67 and granzyme B
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Fig 7. Longitudinal peripheral blood and lymphoid tissue cell phenotype activation of monocytes, dendritic cells, and NK cells following MAYV infection. Macaque

PBMC from -28, 0–5, 7, and 10 dpi (A-F) and lymphocytes isolated from three lymphoid tissues either one month prior to infection or 10 dpi (G-L) were analyzed for cell

phenotype using flow cytometry. Changes in the longitudinal frequency of both total and activated (CD169+) classical monocytes (A), non-classical monocytes (B),

intermediate monocytes (C), NK cells (D), myeloid dendritic cells (E), and plasmacytoid dendritic cells (F) are quantified. Comparison of the frequencies of intermediate,

classical, and non-classical monocyte phenotype activation at pre- or post-infection are quantified for axillary (Ax) LN (G), mesenteric (Mes) LN (H), and spleen tissues
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staining following infection but the responses were tissue and cell type specific with higher

proliferation observed for cells derived from the axillary LN and spleen (Fig 8E–8J). Thus,

these data demonstrate a robust cellular response following infection with MAYV.

Flow cytometry was also used to characterize the B cell component of the adaptive immune

response by measuring the kinetics of B cell subset expansion and proliferation (Ki67+) in

(I). Frequency of NK cell and dendritic cell activation comparing pre- and post-infection is shown for axillary LN (J), mesenteric LN (K) and spleen tissues (L). Lines

represent mean frequencies of the three animals and error bars represent the standard error of the mean. Longitudinal changes in total or activated (CD169+) cells in the

peripheral blood (A-F) were analyzed using paired t tests where baseline (d0) was compared to the peak of the phenotype between 2 or 4 dpi; for this analysis, ****
p< 0.0001, *** p = 0.0001, ** p< 0.001, * p< 0.05, ns p> 0.05. Statistical analyses for comparisons of baseline vs. 10 dpi cell phenotype frequencies in the lymphoid

tissues (G-L) were completed using two-tailed paired t tests; only significant comparisons are shown, all other comparisons yielded ns p values> 0.05.

https://doi.org/10.1371/journal.pntd.0011742.g007

Fig 8. Kinetics of T cell proliferation and granzyme B expression in peripheral blood and phenotype comparisons in lymphoid tissues pre- and post-

MAYV infection. Macaque PBMC from -28, 0–5, 7, and 10 dpi (A-D) and lymphocytes isolated from three lymphoid tissues either one month prior to

infection or 10 dpi (E-J) were analyzed for T cell phenotype using flow cytometry. Changes in the longitudinal frequency of proliferating naïve, central

memory, and effector memory CD4+ T (A) and CD8+ T cells (B) as well as granzyme B expression (granzyme B+) by CD4+ T (C) and CD8+ T cells (D) are

shown. We additionally compared proliferation of these same memory T cell subsets at baseline to 10 dpi in the axillary LN (E), mesenteric LN (F), and

spleen (G). We finally compared frequencies of granzyme B positive CD4 and CD8 memory T cell subsets in the axillary LN (H), mesenteric LN (I) and

spleen from baseline to 10 dpi as well (J). Lines represent mean frequencies of the three animals and error bars represent the standard error of the mean.

Longitudinal changes in proliferating (Ki67+) or granzyme B+ T cell subsets in the peripheral blood (A-D) were analyzed using paired t tests where baseline

(d0) was compared to the peak of the phenotype at 2–3 timepoints; for this analysis, ns (not significant) represents p> 0.05 for naïve, central memory, and

effector memory T cell subsets. Statistical analyses for comparison of baseline to 10 dpi cell frequencies in the lymphoid tissues (E-J) were completed using

two-tailed paired t tests; only significant comparisons are shown, all other comparisons yielded ns p values> 0.05.

https://doi.org/10.1371/journal.pntd.0011742.g008
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peripheral blood and lymphoid tissues over the infection time course (S9 and S8 Figs). Similar

to the T cell population frequency, no major changes in the total frequencies of naïve, marginal

zone (MZ)-like, and memory B cell subsets were observed during the study period (S9A Fig)

except for an expansion of proliferating MZ-like B cells that occurred between 5 and 10 dpi

(S9B Fig). We did not detect major longitudinal changes in naïve or memory B cell proliferat-

ing subsets or proliferation of any B cell subsets in the axillary or mesenteric LNs (S9B–S9D

Fig). However, we did identify an increase in proliferation of MZ-like B cells in axillary LN

with a significant increase in cells from the spleen (Figs 9E and S9C). Proliferation of memory

B cells trended higher in the axillary LN and spleen following infection but not in cells from

the mesenteric LN (S9C–S9E Fig). These data suggest that MZ-like B cells are activated and

proliferating following MAYV infection in the peripheral blood and spleen, likely for prepara-

tion of downstream differentiation into antibody-secreting plasmablasts.

To verify our immunology and pathogenesis findings at a global level, we performed RNA-

seq analysis of longitudinal PBMC samples. Differential expression (DE) analysis revealed that

several genes involved in interferon signaling (i.e., IFI6, IFI44, ISG15), antiviral immunity (i.e.,

STAT2, PARP14, MX1), and negative regulation of viral replication (i.e., OAS1-3, RSAD2,

MX1) were significantly upregulated at 2 dpi (Fig 9A), with FDRp<0.05 and |FC|>2. If less

stringent thresholds are used, other genes in these pathways such as IFIT1, IFNAR1, ISG15,

and STAT1 are also differentially expressed (FDRp<0.2, |FC|>1.5). The top 10 enriched

DEGs between 0 and 2 dpi, all key players in the antiviral response, were PARP12, SLC38A5,

DTX3L, OAS1/3, STAT2, DHX58, DDX60, AGRN, and SIGLEC1 (FDRp<0.05, |FC|>2,

ordered by FDR p-value) (Fig 9B). Similarly, Ingenuity Pathway Analysis (IPA) software iden-

tified changes in the enriched pathway signatures of both innate and adaptive immunity after

MAYV infection. IPA also highlighted EIF2 signaling (translation modulation) to be tightly

downregulated at 2 dpi while viral pathogenesis, interferon signaling, mTOR signaling, antivi-

ral immune response, IL-12 signaling and production in macrophages, and B cell signaling

pathways were among the top enriched upregulated pathways (FDRp<0.2, |FC|>1.5)(Fig 9C

and 9D). These conclusions were well supported when examining these aspects for the 0 and 3

dpi comparison as well (S10 Fig). Over-representation of these innate and adaptive immune

pathways support our findings and suggest an important role for the interferon response and

antiviral immune responses following MAYV infection (Figs 6, S6, 7, 8 and S9).

Virus-specific antibodies are present as early as 5 dpi and expand in

neutralization breadth by 10 dpi

To interrogate humoral immune responses against MAYV, we measured the kinetics, magni-

tude, and breadth of antibody development following infection. Virus-specific IgM antibodies

are typically present as early as 4 days post-infection but can persist for three months in

humans [91–93]. In mice, evidence shows that CHIKV-specific IgM can be detected in serum

as early as 2 dpi and CHIKV-specific IgG as early as 6 dpi, with both IgM and IgG anti-

CHIKV antibodies having neutralizing abilities [94]. Consistent with these observations, we

detected MAYV-specific IgM as well as IgG antibodies as early as 5 dpi in all three macaques

(Fig 10A). Indeed, the IgM antibody response was more robust and initially increased more

rapidly than IgG during this acute infection period, but the levels of antiviral IgG matched

IgM by 10 dpi (Fig 10A). In a limiting dilution assay where we stimulated RM PBMC and

screened supernatants by MAYV ELISAs, anti-MAYV antibody-secreting cells were detected

with a similar frequency (~101 cells / 106 PBMC) in all three animals at 10 dpi (Fig 10B). Fur-

thermore, we utilized these same LDA supernatants in MAYV neutralization assays to com-

pare the frequency of cells secreting MAYV-binding versus -neutralizing antibodies and found

PLOS NEGLECTED TROPICAL DISEASES Mayaro virus nonhuman primate model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011742 November 20, 2023 17 / 40

https://doi.org/10.1371/journal.pntd.0011742


Fig 9. Transcriptional analysis of changes following MAYV infection and pathways analysis. (A) Heat map of top 50 differentially expressed (DE) genes

between 0 and 2 dpi (FDRp<0.05 and |FC|>2). (B) Volcano plot of top DE genes defined in (A) between 0 and 2 dpi with the top 10 genes annotated in the

plot. (C) Graphical summary of the top hits for pathways and transcripts that are altered between 0 and 2 dpi (FDRp<0.2 and |FC|>1.5) generated using

Ingenuity Pathway Analysis software. (D) Pathway analysis of the top 37 enriched pathways between 0 and 2 dpi (FDRp<0.2 and |FC|>1.5). Colors in all plots

encode z-scores that are more upregulated in red/orange or more downregulated in blue.

https://doi.org/10.1371/journal.pntd.0011742.g009
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that these occur at about the same frequency (6 cells / 106 PBMC binding vs 10 cells / 106

PBMC neutralizing; p = 0.2703) (Fig 10B). To interrogate the breadth of the MAYV-specific

antibodies, we probed immunoblots of purified MAYV particle preparations with RM plasma

from 0 and 10 dpi. Viral-envelope specific antibodies were detected in all RMs (Fig 10C).

MAYV-neutralizing antibodies were detected as early as 5 dpi in all three macaques using pla-

que reduction neutralization assays (Fig 10D). These neutralizing antibody levels reached 50%

plaque reduction neutralization titers (PRNT50) of 3.5x103-4.6x104 by 10 dpi (Fig 10D).

Finally, antiviral breadth of neutralizing antibodies was determined using plaque neutraliza-

tion assays against additional Semliki Forest antigenic complex viruses including UNAV,

CHIKV, O’nyong’nyong virus (ONNV), and Ross River virus (RRV) as well as Venezuelan

equine encephalitis virus (VEEV) (Fig 10E). Pre-infection plasma was screened to ensure the

absence of pre-existing cross-neutralizing antibodies, which were found to be devoid of any

neutralizing activity (PRNT50 < 20) against any of the viruses tested. At 10 dpi, cross-neutral-

izing antibodies were detected for UNA, CHIKV, ONNV, and RRV but not VEEV (Fig 10E).
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Fig 10. Characterization of MAYV-specific antibodies and analysis of cross-reactive breadth. (A) The development of MAYV-binding, IgM and IgG

isotype antibody titers were quantified in macaque plasma at 0, 5, 7, and 10 dpi in ELISA. The LOD was a 1:50 plasma dilution with undetectable values

graphed as half the LOD. (B) The frequency of cells secreting MAYV binding or neutralizing antibodies were quantified in limiting dilution assays in which

macaque PBMC from 10 dpi was stimulated with IL-2 and R848 and supernatants were screened in either MAYV ELISAs or MAYV neutralization assays. The

LOD frequency was 0.01 cells per 1×106 PBMC. (C) The binding specificity of MAYV-specific antibodies was characterized in a western blot in which

inactivated, purified MAYV was ran on a 4–12% Bis-Tris gel and probed with macaque plasma from 0 or 10 dpi. Blots from only one animal are shown but are

representative for all three animals. (D) The longitudinal development of MAYV-neutralizing antibodies was quantified in MAYV neutralization assays using

heat-inactivated macaque plasma at 0–5, 7, and 10 dpi. 50% plaque reduction neutralization titers (PRNT50) were determined in non-linear regression. The

LOD was a 1:20 plasma dilution and undetectable values were graphed as half of the LOD. (E) The breadth of antibodies that neutralized other relevant

alphaviruses following MAYV infection were characterized in cross-neutralization assays against UNAV, CHIKV, ONNV, RRV, and VEEV using heat-

inactivated macaque plasma from 10 dpi. The LOD was a 1:20 plasma dilution and undetectable values were graphed as half of the LOD. (F) Antigenic

cartography mapping the antigenic distances between viruses is used to visualize the cross-neutralization data. Error bars are SEM in (A) and (E). A paired t

test was used to compare frequency of MBC secreting MAYV binding and neutralizing antibodies in (B).

https://doi.org/10.1371/journal.pntd.0011742.g010
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Cross-neutralization at 10 dpi was greatest against viruses more antigenically related to

MAYV, which is visualized using antigenic cartography (Fig 10F). RM plasma clustered

around MAYV due to highest neutralization potency with UNA, CHIKV, and ONNV posi-

tioned nearer to this cluster, but RRV and VEEV positioned further away due to little or no

detectable neutralization against these viruses (Fig 10F). In summary, our findings indicate

that MAYV-specific antibodies develop as early as 5 dpi and expand in both magnitude and

breadth, with the capability to neutralize other related arthritogenic alphaviruses.

Discussion

MAYV is a virus endemic to Central and South America that is considered an emerging public

health threat. While MAYV-specific therapeutics have been reported in the literature, their

evaluation has been constricted to mouse models of infection due to lack of a fully defined

NHP model. In this investigation, we characterized MAYV infection in rhesus macaques to

better understand viral dissemination, pathogenesis and immunity. Before initiating our RM

study, we compared the pathogenicity of MAYV strains and related UNAV in both immuno-

competent and immunodeficient mice. While UNAV replicates more quickly in IFNαR-/-

mice leading to earlier demise when compared to the MAYV strains, we found that MAYV-

BeAr505411 infection resulted in the most robust viral replication in WT mice, which informed

our strain selection for use in macaques. It should be noted that varying passage history of the

MAYV strains used in our study may impact our conclusions regarding murine pathogenesis

and strain selection. For example, MAYVTRVL has been extensively passaged, which may have

contributed to reduced virulence in mice. Nevertheless, our data supports increased pathogen-

esis of the MAYVBeAr505411 strain in mice relative to the other strains that were tested here. In

1967, MAYV-infected NHPs were reported to develop viremia lasting 4–5 days [67]. In our

study, we explored the kinetics of MAYV viremia between 1 and 10 dpi, identifying the dura-

tion of viremia to be between 4 and 7 days with peak viral RNA levels occurring at 2 dpi. We

isolated infectious virus from RM plasma from 1–4 dpi, suggesting that there is a brief window

for blood-borne transmission. Future studies will be required to validate transmission poten-

tial and to evaluate disease presentation beyond the initial control of viremia.

In our study, we explored MAYV tissue tropism in a wide breadth of anatomical sites

through quantification of viral genomes and qualification of inflammation via histopathology.

Previously, the characterization of MAYV tissue tropism has been largely derived from infec-

tion in mouse models and mammalian cell lines [25,51,77,95,96]. Our study in NHPs indicated

that MAYV efficiently disseminated throughout major organ systems, infecting a broad range

of muscles, joints, nerves, lobes of the brain, compartments of the heart, lymphoid tissues, and

other primary organs. Our evidence of viral detection and lymphocyte aggregation near rare

blood vessels of the heart and central nervous tissues is in agreement with experimental

CHIKV infections CHIKV and clinical outcomes in patients infected with CHIKV [39,40].

While we isolated infectious virus in multiple tissue types at 10 dpi, it is unclear whether this

will lead to sustained viral replication in joints and muscles and/or be responsible for chronic

disease symptoms in MAYV-infected humans. Robust MAYV viremia and widespread tissue

distribution to the distal joints and muscles indicated that the virus is capable of causing dis-

ease in multiple tissues. While we did not detect overt clinical signs of arthritic or neurologic

disease, there is potential for chronic disease development beyond 10 dpi in this model as evi-

denced by our viral detection data and pathological changes associated with infection.

A paucity of published data exists on the histopathology of MAYV in humans, presumably

due to few cases causing mortality, difficulty in obtaining biopsy samples, and presence of

other established diagnostics. This highlights the importance of elucidating the microscopic
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changes caused by MAYV in an animal model with high anatomic similarity to humans.

Appurtenant to other techniques utilized, our study is the first to explore the pathology

induced by MAYV infection in a broad range of rhesus macaque tissues, which has significant

implications for understanding viral pathology in humans. Arenı́var and colleagues have

reported MAYV arthralgia to occur commonly in the hand, knee, ankle/foot, wrist, elbow, and

shoulder in decreasing frequencies, which is a significant cause of disability in humans [97].

Equivalently, in the subacute period of infection, CHIKV frequently affects the distal joints of

the limbs and may involve the elbows and knees [36]. Microscopic analysis of muscle and joint

biopsies from alphavirus-infected patients has been employed for diagnosis in addition to

molecular techniques. In CHIKV-infected humans, some of these microscopic findings have

included synovial hyperplasia, muscle degeneration and necrosis, and mononuclear to mixed

inflammation with indication of a change in cellular infiltration profiles between acute, sub-

acute, and chronic infections [98,99]. Of the extensive tissue sets sampled in our study, the fin-

gers, wrists, ankles, and toes were the most consistent sites for inflammation and perivascular

lymphocytic infiltration. Synovial and endothelial cell hyperplasia also occurred in these

peripheral joints across the three animals. Similar findings were present in the knees of two

animals and the elbows of one, which is consistent with what has been noted for CHIKV infec-

tion in humans, NHPs, and mouse models [74]. Previous studies in multiple mouse strains

have extensively characterized joint and muscle tissue inflammation following MAYV infec-

tion in the footpads [25,51,77]. Mimicking the results from our study, BALB/c mice displayed

inflammatory infiltrates of the ligament, tendon, and muscle surrounding joints at 10 dpi [77].

Other studies have described vasculitis, mononuclear infiltration, polymorphonuclear cell

infiltration, muscular necrosis and inflammation, and dermal edema [44] throughout the

course of disease [46]. Despite investigation in only three animals, the consistent pathologic

findings of inflammation in the peripheral joints of these rhesus macaques, in conjunction

with viral detection, enhances our understanding of pathogenesis in an appropriate animal

model. Taking into account alternative study designs with respect to timing, successive studies

may supplement the musculoskeletal pathology information by inclusion of a larger subset of

joints and muscles, including axial structures, to determine the extent of inflammation and

screen for any potential tropism between appendicular versus axial structures.

Another discovery homologous with human MAYV infection was a maculopapular rash at

10 dpi spanning the caudal ventrum of NHP 3. In humans, papular to maculopapular rash

described as variably pruritic typically presents on 5 dpi and generally lasts 3–7 days following

onset [34]. Recorded spread of the rash is generally on the limbs and trunk [100,101] and

active replication of MAYV in human skin has been observed up to 4 days after infection

[102]. In one macaque in our study, a rash was found at 10 dpi and was only able to be fully

visualized with shaving, which would have precluded identification at any prior timepoints

particularly given that pruritis was not a feature. The histologic picture matched the gross pre-

sentation with increased severity of lymphocytic dermatitis and epidermal hyperplasia in areas

of macules and papules. Perivascular inflammation extended into distant areas of the integu-

ment on the thorax and were also found in one other animal. Maculopapular rash has not

been reported in mice although it is possible it is missed without shaving the hair from these

animals. Biopsies of human specimens are not widely conducted, potentially making the

macaque a uniquely significant model for investigating dermatologic presentations of MAYV.

In our study, other sampled sites were recognized through the conjunction of histologic

lesions and positive viral identification, which may offer promising insight into processes

occurring in humans. On routine microscopic evaluation, minimal to mild perivascular leu-

kocytic aggregates spanned multiple organ systems. Influence of any potential age-related or

incidental pre-existing lesions could not be definitively elucidated utilizing H&E-stained
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sections. However, in CHIKV infections in humans, it has been established that pre-existing

chronic conditions are associated with increased inflammation and worsened disease

[103,104]. Future investigation into potential colocalization of viral particles and inflammatory

or degenerative foci, which was not within the scope of this current study, would improve

identification of lesion relevance.

The liver is a tissue of interest as it, along with the spleen, is considered a primary site of

viral replication and the Pan American Health Organization recommends histologic and

immunohistochemical analysis of both tissues [96,105]. It was demonstrated that oxidative

stress causes tissue damage in BALB/c mice, which manifests as polymorphonuclear hepatitis

from 1 to 7 dpi [96]. As with other tissues, we observed a predominance of mononuclear

inflammation in the liver of two rhesus macaques, with one having a pre-existing chronic

hepatopathy. Though extensive determination of potential neurotropism in non-human pri-

mate species has yet to be carried out, MAYV possesses the ability to infect human neural cells

with meningoencephalitis being described in rare human cases [106], and neurotropism has

been demonstrated in both wild-type and immunocompromised mice [44]. We identified

small leukocytic foci within different central and peripheral nervous system components

between our experimental subjects, that was consistent with viral detection and these features

bear additional probing as proposed for other tissues.

Coinciding with peak viremia at 2 dpi, we observed the elevation of proinflammatory cyto-

kines and chemokines that have been associated with persistence of disease symptoms,

although these responses could also play more of a protective role [78,107]. It should be noted

that we detected more limited levels of proinflammatory cytokine and chemokine responses in

one animal (NHP 2) although other evidence of activation of innate immunity was present. In

fact, a key component of innate immune activation that we characterized was the consistent

activation of monocytes (classical, non-classical, intermediate), dendritic cells (myeloid and

plasmacytoid) and NK cells between 2 and 4 dpi, which returned to baseline activation status

by 10 dpi, closely mirroring viremia kinetics. To identify early adaptive immune responses, we

used flow cytometry to detect changes in naïve and memory T cell population frequencies and

capture their cytotoxic and proliferative functions in response to MAYV infection. We identi-

fied CD4+ and CD8+ memory T cells with proliferative (Ki67+) and cytotoxic functions (gran-

zyme B+) that expanded following infection, which makes it likely that they target MAYV-

infected cells. However, we did not have access to a MAYV peptide library, but our future

studies will characterize virus-specific T cell responses. Our transcriptomics data also indicates

the robust activation of interferon responses coinciding with peak viremia as well as upregula-

tion of pathways with antiviral effects, which is consistent with RNA-seq data for CHIKV

infection comparing mouse and human gene expression profiles that showed similar signa-

tures of immune activation [108–111]. Lastly, we characterized the timing of humoral immu-

nity during acute infection, which indicated the presence of virus binding and neutralizing

antibodies as early as 5 dpi, with breadth extending to similar arthritogenic alphaviruses as

early as 10 dpi. We hypothesize that these cross-neutralizing antibody responses will expand in

magnitude as the adaptive immune response develops beyond 10 dpi as we have observed in

CHIKV-infected patients. Although antibody cross-reactivity within the SFV antigenic com-

plex is well established, major questions remain regarding protective levels of cross-reactive

antibody titers following infection and the duration of this immunity [23].

In this study, we were only able to explore MAYV pathogenesis and immunity in three

macaques. With a small animal number, it is difficult to capture the spectrum of disease,

although, many of our virologic, immunologic and histologic findings were consistent among

all three animals. Limited tissue sampling could bias tissue viral load and histologic analyses as

the whole tissue cannot be assayed in entirety, which is a limitation that should be considered
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when interpreting the tissue viral load and pathology data. Sex and age-related variation are

two additional variables that were not addressed in this study due to small animal number but

are variables that have been found to impact CHIKV disease [66,112,113]. Future MAYV NHP

studies should explore both a shorter study duration to capture acute tissue viral loads and

examine tissue-resident inflammatory immune responses as well as a longer study duration to

understand long term kinetics and duration of homotypic and heterotypic adaptive immunity.

This study establishes an MAYV infection model in NHP that contributes to our understand-

ing of pathogenesis and immunity that could be used for the evaluation of MAYV-specific vac-

cines, monoclonal antibody therapies, and antivirals.

Materials and methods

Ethics statement

Mice were housed in the ABSL-3 facility at the Vaccine and Gene Therapy Institute (VGTI) of

Oregon Health and Science University (OHSU) in ventilated racks with open access to food

and water with a 12-hour light/dark cycle. Mouse experiments were performed in compliance

with the Oregon Health and Science University (OHSU) Institutional Animal Care and Use

Committee (IACUC Protocol #0913). Rhesus macaque studies were performed in an ABSL-2

facility at the Oregon National Primate Research Center (ONPRC) (IACUC #0993). Both facil-

ities are accredited by the Association for Accreditation and Assessment of Laboratory Animal

Care (AALAC) International. Mouse and macaque experiments were performed in compli-

ance with good animal practices outlined by local and national welfare bodies and all efforts

were made to reduce pain, distress, and discomfort experience by the animals when possible.

When possible, rhesus macaques were housed in pairs with visual and auditory contact of

other animals for social interaction and enrichment. Animals were fed standard chow supple-

mented with food enrichment. Animals were euthanized according to the recommendations

of the American Veterinary Medical Association 2013 Panel on Euthanasia.

Cells and viruses

Vero cells (ATCC CCL-81) were propagated at 37˚C and 5% CO2 in Dulbecco’s Modified

Eagle Medium (DMEM; Thermo Scientific) containing 5% fetal calf serum (FCS; Thermo Sci-

entific) supplemented with 1X penicillin-streptomycin-glutamine (PSG; Life Technologies).

Aedes albopictus C6/36 cells (ATCC CRL1660) were grown at 28˚C with 5% CO2 in DMEM

containing 5% FCS and 1X PSG. Alphaviruses MAYVBeAr505411 (NR-49910), MAYVGuyane

(NR-49911), MAYVTRVL4675 (NR-49913), MAYVUruma (NR-49914), UNAVMAC150 (NR-

49912), ONNVUgMP30 (NR-51661), RRVT-48 (NR-51457) and VEEVTC-83 (NR-63) were

obtained though BEI Resources. MAYVCH was generated from an infectious clone provided

by Dr. Thomas Morrison (University of Colorado Denver) and CHIKV181/25 was generated

from an infectious clone as previously described [114]. Viruses were propagated in Aedes albo-
pictus C6/36 cells. At 72 hours post-infection (hpi), clarified culture supernatants were pelleted

through a 10% sorbitol cushion by ultracentrifugation at 82,755 x g for 70 minutes. The viral

pellets were resuspended in PBS, aliquoted, and frozen at -80˚C. Virus was tittered by limiting

dilution plaque assays using confluent monolayers of Vero E6 cells. Infected cells were rocked

continuously for 2 hours at 37˚C and overlaid with CMC-DMEM supplemented with 5% FBS,

1X PSG, and 0.3% high / 0.3% low viscosity carboxymethylcellulose (CMC; Sigma). Plaque

assays for MAYV, UNA, RRV and VEEV were fixed with 3.7% formaldehyde and stained with

0.2% methylene blue at 48 hpi; and the plaque assays for CHIKV and ONNV were fixed and

stained at 72 hpi. Plaques were enumerated under a light microscope and titers of viral stocks

were determined. Virus stocks used for all lab experiments were either passage 1 or 2, although
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passage history at BEI prior to arrival in the lab does vary by strain and has been presented pre-

viously in a table for the MAYV strains by Powers 2006 et al [115].

Mouse experiments

C57BL/6 mice were purchased from Jackson Laboratories and interferon alpha receptor

knockout (IFNαR-/-) mice originated from the OHSU/VGTI established breeding colony.

MAYV and UNAV infections were performed in 4-week-old female C57BL/6 mice (n = 5 per

virus group) and 13-week-old male and female IFNαR-/- mice (n = 4 per virus group). Mice

were inoculated subcutaneously in the right footpad with 20μL containing 104 plaque forming

units (PFU) of MAYVBeAr505411 (NR-49910), MAYVCH, MAYVGuyane (NR-49911),

MAYVTRVL4675 (NR-49913), MAYVUruma (NR-49914), or UNAVMAC150 (NR-49912). Infected

C57BL/6 mice were bled at 2 days post-infection (dpi) to quantify the level of viremia in serum

collected from clotted blood samples. These mice were euthanized by isoflurane overdose at 5

dpi to assess viral burden in ankle, calf, quad, spleen, brain, and heart tissues. IFNαR-/- mice

were bled at 1 dpi to quantify the levels of serum viremia; body weight, survival, and ipsilateral

footpad swelling measurements were recorded daily. IFNαR-/- mice were euthanized when

20% of body weight had been lost.

Nonhuman primate experiments

Three adult male rhesus macaques (Macaca mulatta) ages 4, 10 and 13 years were included in

this study. Animals were sedated prior to any procedure. Lymphoid organ biopsies (axillary

and mesenteric lymph nodes, and spleen) and blood were surgically collected at 28 days prior

to infection [116–118]. Animals were infected with 105 plaque forming units (PFU) of MAYV

diluted in 1mL of PBS through 100μL subcutaneous injections in both of the arms and hands

in an attempt to mimic virus inoculation through the bite of an infected mosquito. Animals

were fed standard monkey chow with routine food supplements for enrichment. The animals

were monitored daily for clinical signs of disease and discomfort. Temperature and body

weight were measured on the days on which peripheral blood and urine samples were collected

(0, 1–5, 7, and 10 dpi). Blood was collected for monitoring by both complete blood count and

serum chemistry analyses and analytes were compared to standard reference ranges [119].

Whole blood was layered over lymphocyte separation medium (Corning) and centrifuged for

30 minutes at 2,000 rpm for plasma and peripheral blood mononuclear cell (PBMC) isolation.

PBMC were washed in RPMI medium (Fisher) supplemented with 5% FBS and 1X PSG. Rhe-

sus macaques were humanely euthanized at 10 dpi and complete necropsies were performed.

Representative tissue sections (~1cm3) from joint, muscle, lymphoid, major organs, nervous

system, and reproductive tissue were collected into 1mL TRIzol reagent (Invitrogen) for RNA

isolation or fixed in 10% formalin for histopathology. When appropriate, right and left tissues

(i.e., fingers, toes, quadriceps, triceps, etc.) were combined for RNA analysis. An additional

section from each tissue was preserved in RNAlater.

Histopathological analysis

A wide range of tissues were collected at necropsy for histologic analysis, which underwent fix-

ation in 10% neutral buffered formalin for 24 hours and then 80% ethanol, stored at 4˚C, for

24–72 hours followed by routine processing, sectioning at 5 μm, and staining with hematoxylin

and eosin (HE). Slides were assessed on Leica DFV495 light microscopes by two board-certi-

fied veterinary pathologists and were scanned with a Leica Aperio AT2 slide scanner for crea-

tion of digital images. Presence and relative intensity of lymphocytic inflammation was graded

based on a scale of—to +++ (Tables 2 and S1) within all non-hematopoietic tissues. Lower
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scores (+) indicated one small aggregate of perivascular lymphocytes and ranged up to inflam-

mation affecting the majority of blood vessels, in small to moderate numbers, with or without

infiltration into the surrounding tissue (Tables 2 and S1). Any additional pathologic diagnoses

were included in these tables as well as separately for the hematopoietic tissues (S2 Table).

Viral RNA detection

Mouse tissues were homogenized in 1mL of 1X PBS with approximately 250μL of silica beads

(VWR 48300–437) using a bead beater for three cycles of 45 seconds on and 30 seconds off

(Precellys 24 homogenizer, Bertin Technologies). Samples were centrifuged at 5,000 rpm for 5

minutes in a microfuge to remove cellular debris, and 300μL of each homogenate was removed

for RNA isolation. Nucleic acids from mouse tissues were isolated using the Promega Maxwell

48 sample RSC automated purification system and the Maxwell RSC Viral TNA extraction kit

(Promega). Total nucleic acids were resuspended in 60μL of RNAse free water. RM tissue sam-

ples were homogenized in 1mL of TRIzol reagent (Invitrogen) with approximately 250μL of

silica beads using a Precellys 24 homogenizer bead beater as described above. Samples were

centrifuged at 5,000 rpm for 5 minutes to remove cellular debris. Total RNA was isolated from

either 200μL of homogenized tissue or 200μL of plasma or urine using a Direct-zol RNA Mini-

prep Plus kit (Zymo Research) following the manufacturer instructions. Total RNA was resus-

pended in 50μL of RNAse-free water. Prepared RNA was quantified using a Nanodrop and

diluted to 100ng/μL. Contaminating DNA was removed from all of the RNA samples by diges-

tion with ezDNase (ThermoFisher). Single stranded cDNA was generated from 1μg of total

RNA using random hexamers and reverse transcriptase Superscript IV (Invitrogen) following

the manufacturer’s protocol. Gene amplicons served as quantification standards. The follow-

ing primers and probe were used to detect MAYV RNA: Forward- CCATGCCGTAACGATT

GC, Reverse- CTTCCAGGCTGCCCGGCACCAT, and probe FAM- TGGACACCGTTCGA-

TAC–MGB. The following primers and probe were used to detect UNAV RNA: Forward-

GAAGCTTTTGTCTCCGGTGAA, Reverse-ATGACAATGGCCCGAATATGA, and Probe-

FAM-TGAATGTCGCTGGGACT–MGB. Quantitative RT-PCR was performed on a Quant-

Studio 7 Flex Real-Time PCR system. All data was analyzed using Applied Biosystems Quant-

Studio 6 and 7 Flex Real-time PCR System software. For mouse tissues, viral RNA levels were

normalized to a murine housekeeping gene, ribosomal protein RPS17. Viral RNA levels in RM

tissues and blood were reported per μg of input RNA. All qRT-PCR reactions were performed

in triplicate.

Quantification and isolation of infectious virus

Limiting dilution plaque assays were used to quantify viral loads in tissues and blood. For this

assay, aliquots of 20μL of tissue homogenate, tissue culture supernatant, or mouse serum were

serially diluted 10-fold in DMEM containing 5% FBS and 1X PSG, which was added to confluent

monolayers of Vero cells in 48-well plates. The plates were rocked for 2 hours at 37˚C and then

CMC-DMEM was added to each well. At 2 dpi, the plates were fixed with 3.7% formaldehyde and

stained with 0.2% methylene blue for microscopic visualization and enumeration of the plaques.

Isolation of MAYV from mouse tissues was carried out as previously described [25]. MAYV

was isolated from NHP plasma and tissues as previously described for CHIKV [74]. Briefly, tissues

were collected in 1mL of 1X PBS containing approximately 250μL of silica beads (VWR 48300–

437) and homogenized using a bead beater for three cycles of 45 seconds on and 30 seconds off

(Precellys 24 homogenizer, Bertin Technologies). Samples were centrifuged at 5,000 rpm for 5

minutes to remove cellular debris, sterile-filtered (0.22μM filter), and 400μL was used to infect a

T25 flask of confluent C6/36 cells. At 3 dpi, supernatants were collected from C6/36 cultures and
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tittered in triplicate by limiting dilution plaque assays on Vero E6 cells as described above. Sam-

ples were considered positive for infectious virus if one or more plaques were detected, providing

a limit of detection of 3.3 PFU/mL of cellular supernatant.

Transcriptomic analysis

Total RNA from rhesus macaque PBMC isolated using the TRIzol extraction method

described above was prepared for transcriptomic analysis using the Illumina TruSeq Stranded

mRNA Library Prep Kit (RS-122-2101, Illumina) as previously described [120]. The library

was validated using an Agilent DNA 1000 kit on a bioanalyzer. Samples were sequenced by the

OHSU Massively Parallel Sequencing Shared Resource using an Illumina NovaSeq.

Differential expression analysis was performed by the ONPRC Bioinformatics & Biostatis-

tics Core. The quality of the raw sequencing files was evaluated using FastQC [121] combined

with MultiQC [122] (http://multiqc.info/). Trimmomatic [123] was used to remove any

remaining Illumina adapters. Reads were aligned to Ensembl’s Mmul_10 genome along with

its corresponding annotation, release 109. The program STAR [124] (v2.7.10b_alpha_220111)

was used to align the reads to the genome. STAR has been shown to perform well compared to

other RNA-seq aligners [125]. Since STAR utilizes the gene annotation file, it also calculated

the number of reads aligned to each gene. RNA-SeQC [126] and another round of MultiQC

were utilized to ensure alignments were of sufficient quality.

Gene-level raw counts were filtered to remove genes with extremely low counts in many

samples following the published guidelines [127], normalized using the trimmed mean of M-

values method (TMM) [128], and transformed to log-counts per million with associated obser-

vational precision weights using the voom method [129]. Gene-wise linear models with pri-

mary variable day after infection, and accounting for within subject correlation, were

employed for differential expression analyses using limma with empirical Bayes moderation

[130] and false discovery rate (FDR) adjustment [131]. Differential expression data were ana-

lyzed through the use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/

products/ingenuity- pathway-analysis), using a stringent cutoff for significant molecules of

FDRp< 0.2 and |FC|> 1.5. The background reference set used was the dataset of all genes in

the differential analysis.

Neutralization assays

RM plasma was heat inactivated for 30 minutes at 56˚C and serially diluted in DMEM supple-

mented with 5% FBS and 1X PSG. Diluted plasma was mixed with media containing approxi-

mately 70–120 plaque forming units of MAYVBeAr505411, CHIKV181/25, UNAVMac150,

ONNVUgMP30, RRVT-48, or VEEVTC-83. Samples containing plasma and virus were incubated

for 2 hours at 37˚C with 5% CO2 with continuous rocking and then transferred to 12-well

plates of confluent Vero cells. Plates were incubated for an additional 2 hours at 37˚C with

continuous rocking followed by addition of a CMC-DMEM overlay. Plates were incubated 48

hours for MAYV, UNAV, RRV and VEEV or 72 hours for CHIKV and ONNV, then cells

were fixed and stained as described above. The 50% plaque neutralization titers (PRNT50)

were calculated by non-linear regression analysis using GraphPad Prism 9 software after deter-

mining the percent of plaques at each dilution relative to control wells containing no plasma.

Antigenic cartography

The antigenic cartography plot to visualize alphavirus cross-neutralization following MAYV

NHP infection was assembled as previously described [132,133] and implemented using the

Acmacs Web Cherry platform (https://acmacs-web.antigenic-cartography.org/). To ultimately
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construct the antigenic map, a table of calculated antigenic distances (Dij) between each viral

antigen (i) and plasma sample (j) using plasma titers for each plasma-titer pair (Nij) is gener-

ated. To calculate table distance, the titer against the best neutralized virus for that plasma sam-

ple is defined as bi and the distances from each virus for that plasma are calculated as Dij =
log2(bi)-log(Nij). For the highest neutralization titer for a plasma sample, Nij = bi, and the dis-

tance will be equal to 0. For the remaining plasma-virus pairs, table distance Dij is equivalent

to the fold-difference in titer between bij and Nij. Euclidean map distance (dij) for each plasma-

virus pair is found by minimizing the error between the table distance Dij and map distance,

dij, using the error function E = ∑ije(Dij,dij), where e(Dij,dij) = (Dij-dij)2 when the neutralization

titer is detectable or above 1:20. For instances where no detectable plasma neutralization titer

is observed for a virus with neutralization titers <1:20, values of 19 are entered and the error is

defined as e(Dij,dij) = (Dij-1-dij)2(1/1+e-10(Dij-1-dij)). To make a map and derive dij for each

plasma-virus pair, viruses and plasma samples are assigned random starting coordinates and

the error function is minimized using the conjugate gradient optimization method. Each

square grid line on the antigenic map represents a two-fold change in plasma neutralization

titer.

Enzyme-linked immunoassays (ELISA)

Purified MAYVBeAr505411 was inactivated at 56˚C for 30 minutes, diluted in 1X PBS, and 5×108

plaque forming units (PFU) were added to each well of 96-well high binding plates (Corning)

and incubated for 4 days at 4˚C. To detect total IgG by ELISA for limiting dilution assays

described blow, a goat anti-human IgG (H+L) coating antibody (Jackson Immuno Research)

was diluted in 1X PBS and added to the 96-well high binding plates at 1 μg/mL. Plates were

washed with ELISA wash buffer (0.05% Tween-20, 1X PBS) and blocked for 1 hour with

ELISA wash buffer containing 5% milk. The plates were washed with ELISA buffer and then

100μL of 1:3 serial dilutions of heat-inactivated RM plasma were added and incubated for 1

hour. Plates were washed with ELISA wash buffer before secondary anti-monkey IgG or IgM

(H+L) HRP-conjugated detection antibodies (Rockland) were diluted 1:5,000 and added to

appropriate plates. Plates were washed, developed with OPD substrate buffer (0.05M citrate,

0.4 mg/mL o-phenylenediamine, 0.01% hydrogen peroxide, pH 5), and reactions were stopped

with 1M HCl. A BioTek plate reader was used to read plates at 490nm. Log-log transformation

of the linear portion of the curve was performed and 0.1 OD units was the cut-off point to cal-

culate end point titers.

Limiting dilution assay quantification of MAYV antibody-secreting cell

frequency

Limiting dilution assays (LDA) to characterize the frequency of antibody-secreting cells, previ-

ously defined as memory B cells, were carried out as previously described [134]. Briefly, RM

PBMC collected at 10 days post-infection (dpi) were resuspended in Roswell Park Memorial

Institute (RPMI) 1640 medium supplemented with 5% FBS and 1X PSG. We chose not to refer

to cells in our assay at 10 dpi as memory B cells because at this time following infection, this

may also include more premature plasmablasts. Two-fold serial dilutions of PBMC were

added to a 96-well round-bottom plate; the top row contained 3–5×105 PBMC per well. Next,

100μL of RPMI stimulation media containing 5% FBS, 1X PSG, 2.5 μg/mL R848 (InvivoGen),

and 1000 U/mL IL-2 (Prospec) was added to each well with the exception of an unstimulated

control column containing PBMC only. The 96-well plates were incubated for 7 days at 37˚C

with 5% CO2, and then culture supernatants were collected for analysis by IgG ELISA detect-

ing either total IgG (to determine the frequency of antibody producing cells) or MAYV
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proteins (to determine the frequency of viral antigen specific antibody producing cells) [135].

The supernatants from unstimulated PBMC served to normalize against background absor-

bance values. LDA supernatants were also collected for quantification of cells secreting

MAYV-neutralizing antibodies. For these assays, remaining LDA supernatants were used in

MAYVBeAr505411 neutralization assays as described above with approximately 80μL of superna-

tant serving in place of plasma. Neutralization in each individual well was calculated relative to

a well containing MAYV only, with no LDA supernatant. Wells exhibiting 50% or greater neu-

tralization relative to the control well were determined to be positive for neutralizing activity.

The percentage of negative wells (below 50% neutralization) vs cell count in each row was

graphed to calculate the frequency of cells secreting MAYV-neutralizing antibodies.

Plasma cytokine and chemokine analysis

The macaque inflammatory cytokine profile was characterized using a Cytokine Monkey Mag-

netic 29-plex Panel for Luminex Platform Kit (Invitrogen) according to the manufacturer’s

instructions using a 7-point standard curve. First, 25μL of RM plasma was incubated for 2

hours with beads and then washed and labeled with a biotinylated antibody for 1 hour. Beads

were washed and incubated with R-Phycoerythrin conjugated to streptavidin for 30 minutes,

then washed for a final time. Inflammatory cytokine levels were then quantified using a Lumi-

nex 200 Detection system (Luminex).

Lymphocyte phenotypic analysis

RM lymphocytes isolated from peripheral blood, spleen and lymph nodes and spleen were

thawed and resuspended in RPMI medium supplemented with 10% FBS and 1X PSG. Cells

were pelleted by centrifugation (2,000 rpm) and washed with 1X PBS and approximately one

million cells were aliquoted for each of three panels for phenotypic analysis by flow cytometry.

For T cell analysis, cells were stained for cellular differentiation markers CD3, CD4, CD8,

CD25, CD28, CD95, CD127, and intracellular Ki67 using fluorophore-conjugated antibodies.

Naïve CD4+ or CD8+ T cells were defined as CD28+/CD95-, central memory CD4+ or CD8

+ T cells were defined as CD28+/CD95+, and effector memory CD4+ or CD8+ T cells were

defined as CD28-/CD95+. For B cell analysis, cells were stained with fluorophore-conjugated

antibodies directed against CD3, CD20, CD27, CD14, IgD, and intracellular Ki67. Naïve B

cells were defined as IgD+/CD27-, MZ-like B cells were defined as IgD+/CD27+, and memory

B cells were defined as IgD-/CD27+. For innate immune cell analysis, cells were stained with

CD3, CD8, CD14, CD16, CD11c, HLA-DR, CD56, CD123, and CD169 used as a marker for

cellular activation. Monocytes and macrophages were defined as CD3-/CD20-/CD8-/HLA-DR

+ with classical monocytes being CD16-/CD14+, intermediate monocytes being CD16+/CD14

+, and non-classical monocytes being CD16+/CD14-. Dendritic cells (DCs) were defined as

CD3-/CD20-/CD8-/HLA-DR+/CD16-/CD14- with myeloid DCs being CD11c+/CD123- and

plasmacytoid DCs being CD11c-/CD123+. Sample analysis was performed using an LSRII

instrument (BD Pharminogen) and analyzed with FlowJo Version 10 software.

Western blot analysis

Purified MAYVBeAr505411 proteins were separated by SDS-PAGE using 4–12% Bis-Tris poly-

acrylamide gels (Invitrogen) and loading (5×109 plaque forming units/lane). Proteins were

transferred to an activated PVDF membrane (Millipore) using a semi-dry transfer system (30

minutes at 25V). Membranes were blocked with 3% BSA/TBST for 1 hour and probed with a

1:250 dilution of primary RM plasma from 0 or 10 dpi. Membranes were washed with TBST

and probed with a secondary IgG anti-monkey, HRP conjugated antibody (Rockland) diluted
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1:10,000. Membranes were washed a final time and developed in a Pico luminescence devel-

oper solution (ThermoFisher) and exposed on X-ray film.

Statistical analysis

Statistics and graphs were created with GraphPad Prism 9. A one-way ANOVA was used to

compare means of viral RNA and viral titers levels between groups of mice infected with the

different strains of MAYV. Neutralizing antibody titers were calculated using normalized vari-

able slope non-linear regression with upper and lower limits of 100 and 0, respectively. Paired

t tests were used to compare cell phenotype changes and cytokine levels at various timepoints

to baseline (0 dpi).

Supporting information

S1 Table. Perivascular lymphocytic inflammation in endocrine, respiratory, alimentary,

hepatobiliary and pancreatic, and genitourinary tissues in MAYV-infected rhesus

macaques at 10 dpi. Presence and relative intensity (+ to +++) of lymphocytic inflammation

within tissues were assessed using the following scale:—, absence of pathology within sections;

+, one small aggregate of perivascular lymphocytes; ++, multiple blood vessels within one or

two areas of the tissue with small to moderate numbers of perivascular lymphocytes; +++, peri-

vascular lymphocytes affecting a majority of blood vessels in small to moderate numbers with

or without infiltration of the surrounding tissue. *, Chronic hepatic degeneration and regener-

ation; **, Rare attenuated cortical tubules, scant cellular or proteinaceous casts with few associ-

ated lymphocytes; and ***, diffuse chronic mild lymphocytic and neutrophilic urethritis.

(DOCX)

S2 Table. Hematopoietic pathology in MAYV-infected rhesus macaques at 10 dpi.

Table summarizes pathologic diagnoses in given lymphoid tissues. Absence of observed

pathology within the tissue is denoted (-).

(DOCX)

S1 Data. Raw transcriptomics data. Differential expression raw data for transcriptomic anal-

ysis of PBMC samples

(XLSX)

S2 Data. Master raw data file for the manuscript. Raw data is provided for both main and

supplemental figures throughout the paper.

(XLSX)

S1 Fig. MAYV strains in IFNαR-/- mice. Four 13-week-old IFNαR-/- mice per group

received a subcutaneous right footpad injection of 104 PFU of MAYVBeAr505411, MAYVCH,

MAYVGuyane, MAYVTRVL, MAYVUruma, or UNAVMAC150. Mice were bled at 1 dpi for peak

serum viremia and body weights and footpad swelling were recorded daily until animals were

euthanized due to excessive loss of body weight. Serum titer of infectious virus measured by

plaque-forming units per mL (PFU/mL) is log-transformed and shown in (A). Statistical anal-

ysis for comparison of viral titers was completed using a one-way ANOVA with log trans-

formed data, where **** p< 0.0001, *** p = 0.0001, ** p< 0.001, * p < 0.05, ns p> 0.05. The

Kaplan-Meier survival curve is shown in (B) for the four-day monitoring period until mice

succumbed to infection. A Kruskal-Wallis test was used to compare survival data for the

groups of mice and the only significant comparison was survival of MAYVTRVL-infected com-

pared to UNAVMAC150 -infected mice, p< 0.0001. Footpad swelling (mm) in the ipsilateral

footpad is shown in (C) and percent change from starting weight (%) is shown in (D). Error
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bars are SEM when included.

(EPS)

S2 Fig. Complete Blood Count (CBC) data for macaques over the duration of the study.

CBC analytes from EDTA-treated whole blood: white blood cell count (A), lymphocytes (B),

neutrophils (C), monocytes (D), eosinophils (E), basophils (F), red blood cells (G), hematocrit

(H), hemoglobin (I), mean corpuscular volume (J), mean corpuscular hemoglobin (K), plate-

lets (L), and mean platelet volume (M).

(EPS)

S3 Fig. Serum chemistry panel analytes for macaques during the study. Analytes for serum

chemistry at all blood draw timepoints included total protein (TP), albumin (ALB), alkaline

phosphatase (ALKP), alanine transaminase (ALT), aspartate transaminase (AST), gamma-glu-

tamyl transferase (GGT), total bilirubin (TBIL), glucose (GLU), blood urea nitrogen (BUN),

creatinine (CREA), potassium (K), sodium (NA), chloride (CL), magnesium (MG), phospho-

rus (PHOS), cholesterol (CHOL), and triglyceride (TRIG).

(EPS)

S4 Fig. Lymphoid pathology of MAYV-infected rhesus macaques. Macaque lymphoid tis-

sues were collected during necropsy, fixed, paraffin embedded, sectioned, and stained with

hematoxylin and eosin (HE). Histology was examined, and select representative images are

shown for the three animals. (A; Bar = 1 cm) The axillary skin of NHP 2 is discolored red-tan.

(B; Bar = 1 cm) The axillary lymph nodes in all three animals were enlarged and erythematous.

(C; Bars = 500 μm, inset 50 μm) The axillary lymph nodes have mild lymphofollicular hyper-

plasia and medullary sinus histiocytosis with hemophagocytosis. (D; Bars = 500 μm, inset

300 μm) Perifollicular sinusoids are congested. (E; Bar = 50 μm) Perifollicular sinusoids (black

and white arrows) have reticuloendothelial hypertrophy and are engorged with macrophages,

lymphocytes, and erythrocytes. There is rare erythrophagocytosis. (F; Bar = 50 μm) An

increased number of neutrophils are within the red pulp (arrowheads).

(EPS)

S5 Fig. Lymphocytic inflammation in the nervous system of a MAYV-infected rhesus

macaque. At 10 dpi with MAYV, macaque hematopoietic tissues were collected, fixed, paraffin

embedded, sectioned, and stained with hematoxylin and eosin (HE). Extensive histology was

examined and select representative images are shown from NHP 3. (A; Bar = 5 mm, inset

200 μm) Minor perivascular lymphocytic inflammation within the gray-white matter junction

of the putamen, (B; Bar = 100 μm) the brainstem, (C; Bar = 100 μm, inset 50 μm) the ventral

horn of the lumbar spinal cord, (D; Bar = 100 μm) and the brachial plexus.

(EPS)

S6 Fig. Cytokine and chemokine profile following MAYV infection. Additional inflamma-

tory cytokines and chemokines quantified in longitudinal macaque plasma that were included

in the 29-plex Luminex panel. Select cytokines and chemokines are quantified in pg/mL at

0–5, 7, and 10 dpi. Paired t tests were used for statistical analysis where baseline (d0) was com-

pared to each of the other timepoints but did not yield any statistically significant results

(p> 0.05).

(EPS)

S7 Fig. Flow cytometry gating strategy for monocyte/DC/NK panel. Gating strategy for

monocyte/DC/NK panel is shown. Monocytes and macrophages were defined as CD3-/

CD20-/CD8-/HLA-DR+ with classical monocytes being CD16-/CD14+, intermediate mono-

cytes being CD16+/CD14+, and non-classical monocytes being CD16+/CD14-. DCs were
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defined as CD3-/CD20-/CD8-/HLA-DR+/CD16-/CD14- with myeloid DCs being CD11c

+/CD123- and plasmacytoid DCs being CD11c-/CD123+. Activated cells within each subset

were defined as CD169+.

(EPS)

S8 Fig. Flow cytometry gating strategy for T and B cell panels. Gating strategy for T and B

cell panels are shown. Naïve CD4+ or CD8+ T cells were defined as CD28+/CD95-, central

memory CD4+ or CD8+ T cells were defined as CD28+/CD95+, and effector memory CD4

+ or CD8+ T cells were defined as CD28-/CD95+. Naïve B cells were defined as IgD+/CD27-,

MZ-like B cells were defined as IgD+/CD27+, and memory B cells were defined as IgD-/CD27

+. Proliferating (Ki67+) T and B cells and granzyme B expressing (granzyme B+) T cells within

each subset were also quantified using these gating schemes.

(EPS)

S9 Fig. B cell phenotype and proliferation in longitudinal peripheral blood and lymphoid

tissues following MAYV infection. Macaque PBMC from -28, 0–5, 7, and 10 dpi (A-B) and

lymphocytes isolated from three lymphoid tissues either one month prior to infection or 10

dpi (C-E) were analyzed for B cell phenotype using flow cytometry. Changes in the total longi-

tudinal frequency of naïve, memory, and MZ-like B cell subsets (A) as well as proliferation

within these subsets (B) are quantified over time. B cell proliferation of these same subsets in

the axillary LN (C), mesenteric LN (D), and spleen (E) is also compared at one month prior to

and 10 dpi. Lines represent mean frequencies of the three animals and error bars represent the

standard error of the mean. Longitudinal changes in total or proliferating (Ki67+) B cell sub-

sets (A-B) relative to baseline (0 dpi) were compared to 7 or 10 dpi using paired t tests and

yielded only p values> 0.05, ns, for naïve, marginal zone (MZ)-like, and memory B cell sub-

sets. Statistical analyses for comparison of baseline to 10 dpi cell frequencies in the lymphoid

tissues (C-E) were completed using two-tailed paired t tests; only significant comparisons are

shown, all other comparisons yielded ns p values > 0.05.

(EPS)

S10 Fig. (A) Heat map of top 50 DE genes between 0 and 3 dpi (FDRp<0.05 and |FC|>2). (B)

Volcano plot of top DE genes defined in (A) between 0 and 3 dpi with the top 10 genes anno-

tated in the plot. (C) Graphical summary of the top hits for pathways and transcripts that are

altered between 0 and 3 dpi (FDRp<0.2 and |FC|>1.5) generated using Ingenuity Pathway

Analysis software. (D) Pathway analysis of the top 37 enriched pathways between 0 and 3 dpi

(FDRp<0.2 and |FC|>1.5). Colors in all plots encode z-scores that are more upregulated in

red/orange or more downregulated in blue.

(EPS)
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