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Abstract

Background

Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac dis-

ease. However, the liver is important for both controlling parasite burdens and metabolizing

drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage.

We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is

a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However,

the impact of this treatment on liver health is unknown. Therefore, we evaluated several

markers of liver health after treatment with low dose BNZ plus the vaccine therapy in com-

parison to a curative dose of BNZ.

Methodology

Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately

70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/

kg BNZ, 25μg Tc24-C4 protein/ 5μg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine,

or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite

burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translo-

cation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-

PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phos-

phatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum.

Results

Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the

quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH.

Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the
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quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly

decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of

BTG2 while low BNZ plus vaccine had no impact.

Conclusions

These data confirm toxicity associated with curative doses of BNZ and suggest that while

dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better

preserves liver health.

Author summary

Chagas disease is a neglected tropical disease caused by the protozoal parasite Trypano-
soma cruzi, which has long-term deleterious health effects. The current treatment for Cha-

gas disease is administering the antiparasitic drug, benznidazole. While benznidazole

effectively treats the disease during the acute phase, its efficacy is reduced during chronic

infection. In addition, benznidazole therapy causes significant side effects, including liver

toxicity. Texas Children’s Hospital Center for Vaccine Development at Baylor College of

Medicine has developed a treatment strategy that combines a prototype therapeutic vac-

cine with a lower dose of Benznidazole to promote a protective immune response, amelio-

rate the deleterious effects of the parasite, and limit the harmful side effect of the drug. We

call this vaccine-linked chemotherapy, which has shown promising results regarding

heart health by reducing parasite burden and pathology in the heart and improving car-

diac function. This study evaluated the strategy’s effectiveness in the liver since it is the

prime metabolizer of the benznidazole drug, as well as the organ of parasite clearance.

Results from this study demonstrated that vaccine-linked chemotherapy causes less dam-

age to the liver compared to curative doses of benznidazole and may be a desirable treat-

ment strategy to preserve overall health while retaining efficacy.

Introduction

Chagas disease is a bloodborne parasitic protozoal disease caused by Trypanosoma cruzi, which

through human migration, is found in all parts of the world [1]. Considered a neglected tropical

disease, it is mainly found in lower socioeconomic areas of Latin America, where an estimated

6–7 million people are affected by this disease [2]. Being a bloodborne infection, the disease can

be disseminated through blood transmission, organ transplant, or congenital transmission from

mother to fetus [3]. However, the most common path of infections is through contact with the

feces of infected Triatomine insect vectors, which are only found in the Americas [4].

Most often, people are not even aware of their infection status. In the initial acute phase of

infection, the infected individual may be asymptomatic or experience nonspecific, generalized

flu-like symptoms such as fever, fatigue, body aches, vomiting, and diarrhea [1,5]. During this

time, high levels of motile trypomastigotes circulate throughout the individual’s bloodstream

[6]. Left untreated, the disease progresses to a chronic phase, circulating parasite levels in the

blood drop to low levels, and detection can be difficult without sensitive PCR or culture meth-

ods [7,8]. There are also long-term deleterious health effects associated with the chronic phase.

30% of people develop cardiac complications, which is the most significant disease manifesta-

tion and may include heart enlargement, conduction disturbances, or even cardiac arrest
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[9,10]. In 10% of people, gastrointestinal complications may occur, causing disorders like

megaesophagus or megacolon [11].

Though cardiac disease, and to a lesser extent gastrointestinal disease, have been extensively

explored, the impact of T. cruzi on the liver need further elucidation. Studies have shown that

the liver is important in clearing parasites from the blood during both the acute and chronic

phases of infection [12]. The release of amastigote nest and immediate phagocytosis by resi-

dent immune cells produce nitric oxide and oxygen radicals that kill the parasite but can lead

to organ damage [13]. Once the disease enters the chronic phase, it is characterized by low

parasitemia and low-grade tissue inflammation [7]. Reactive oxygen species (ROS) can directly

stimulate hepatic stellate cells, which are known to produce extracellular matrix proteins that

lead to hepatic fibrosis [14]. Over time, ROS and chronic low-grade inflammation lead to

fibrosis and organ dysfunction [14].

The current treatment for Chagas disease is administering the antiparasitic drug benznida-

zole (BNZ) [10]. While BNZ is effective at curing when treatment is initiated during the acute

phase, cure rates significantly decline when treatment is initiated during the chronic phase

[15]. Importantly, a large multicenter trial treating patients with established cardiac disease

showed that treatment did not prevent disease progression or cardiac death [16]. Another

important limitation of benznidazole therapy is the toxic profile. The side effects of BNZ

include hypersensitivity, neuropathy, and bone marrow disorders, which can result in individ-

uals discontinuing treatment [17]. Benznidazole is metabolized by the cytochrome p450

enzyme, which is found throughout the body but primarily in liver cells [18]. The liver has also

been shown to efficiently elicit a robust immune response with superior levels of inflammation

and IFN-y production [19]. These elevated levels of inflammation can also damage the liver

and may be associated with immune allergic hepatitis [20]. Further, it has been demonstrated

in pre-clinical models of acute Chagas disease that the combined effect of both infection and

BNZ treatment induce more liver damage than either component alone [21]. Thus, it is critical

to evaluate the impact of novel treatments for Chagas disease on the liver to avoid exacerbating

damage and diminishing overall health.

To overcome the efficacy and tolerability limitations of standard BNZ treatment, we devel-

oped a recombinant protein vaccine, consisting of the T. cruzi flagellar derived Tc24-C4 anti-

gen combined with a TLR4 agonist adjuvant in a stable squalene emulsion [22,23]. In mouse

models of acute infection, this vaccine effectively reduces parasite burdens, cardiac inflamma-

tion, and cardiac fibrosis when combined with low-dose BNZ treatment in a vaccine-linked

chemotherapy strategy [24,25]. Further, vaccine-linked chemotherapy improved cardiac func-

tion, and reduced endpoint cardiac inflammation in a mouse model of chronic infection simi-

lar to curative doses of BNZ [26]. This multimodal approach reduces the dosing requirements

of BNZ while showing the ability to enhance the efficacy of the drug and reduce tissue damage

by increasing IFN- γ production. Thus, this dose sparing strategy should reduce the tolerability

concerns of standard BNZ treatment. However, the impact of vaccine-linked chemotherapy

on liver health has not been explored. Therefore, we specifically evaluated the effect of both a

curative BNZ treatment regimen as well as our vaccine-linked chemotherapy regimen on liver

health in a mouse model of chronic T. cruzi infection.

Material and methods

Ethics statement

All animal studies were conducted in strict compliance with the 8th Edition of The Guide for

Care and Use of Laboratory Animals and were approved by the Baylor College of Medicine

Institutional Animal Care and Use Committee under assurance number D16-00475.
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Mice and parasites

Six- to eight-week-old BALB/c female mice were obtained from Taconic (Rensselaer, NY).

Mice were housed in groups of 5 in static caging, with ad-libitum food and water, and kept on

a 12:12hr light/dark cycle. The T. cruzi H1 strain, transfected with the pTRIX2-RE9h plasmid

containing the thermostable, red-shifted firefly luciferase gene PpyRE9h [27–30], was grown

on monolayers of the C2C12 mouse myocyte cell line (ATCC CRL-1772) in RPMI media sup-

plemented with 5% fetal bovine serum and 1X Penicillin/Streptomycin (cRPMI) to propagate

tissue culture trypomastigotes (TCT). Culture media containing TCT was collected, parasites

were pelleted by centrifugation, washed once with sterile medical grade saline, then resus-

pended in sterile medical grade saline. We elected to use a luciferase expressing clone of the T.

cruzi H1 strain for these studies as we have demonstrated that chronic infection with this

clone induces significant cardiac pathology in our female BALB/c mouse model, including

changes in cardiac structure and function (30), similar to changes induced by chronic infection

with the WT T. cruzi H1 strain used in prior studies (26). Use of this clone will allow serial in
vivo imaging in future studies to track and quantify tissue parasite levels.

Benznidazole

Benznidazole powder (MedChem Express) was resuspended in 5% DMSO/95% HPMC (0.5%

hydroxypropyl methylcellulose/ 0.4% Tween 80/ 0.5% benzyl alcohol in deionized water) to a

final concentration of 10mg/mL. Mice were administered a 25mg/kg BNZ or 100mg/kg BNZ

(Table 1) as described in the study design.

Vaccine formulations

Recombinant Tc24-C4 protein was expressed and purified in-house according to previously

published protocols [23]. The TLR4 agonist adjuvant E6020 (Eisai, Inc) was dissolved in a sta-

ble squalene emulsion (SE). Vaccine formulations comprised of the selected dose of recombi-

nant Tc24-C4 protein and E6020 in 4% squalene emulsion in PBS 1x pH 7.4 were freshly

prepared and mixed (1:1) just before subcutaneous injection. Mice were administered 25μg

Tc24-C4/ 5μg E6020-SE or 5μg E6020-SE alone (Table 1) as described in the study design.

Study design

Mice were infected with 5000 trypomastigotes of a bioluminescent clone of the T. cruzi H1

strain, generated in our laboratory [30], by intraperitoneal injection. Naïve age-matched mice

were left uninfected as controls. Blood was collected by tail vein microsampling from all mice

at approximately 28 days post-infection (DPI) to confirm parasitemia by quantitative PCR.

Approximately 70 DPI mice were randomly assigned to treatment groups, with 15 mice per

group as described in Table 2. Benznidazole treatments were administered once daily by oral

gavage, and vaccinations were administered by subcutaneous injection according to the time-

line in Fig 1. Mice were monitored daily for morbidity and any mice that reached humane

Table 1. Treatments, routes, doses and frequency.

Treatment Dose Route Frequency

Vaccine 25μg Tc24-C4/ 5μg E6020-SE Subcutaneously Twice, two weeks apart

E6020 SE 5μg E6020-SE Subcutaneously Twice, two weeks apart

Low BNZ 25mg/kg Orally Once daily for 18 days

Curative BNZ 100mg/kg Orally Once daily for 18 days

https://doi.org/10.1371/journal.pntd.0011519.t001
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endpoints were humanely euthanized. Cohorts of mice were euthanized at multiple time

points after treatments were completed to evaluate the treatment’s short- and long-term effects

on liver health. At the study endpoints, all mice were weighed, then humanely euthanized.

Whole blood was collected postmortem. Livers were removed, and weighed, then one section

was frozen for DNA and RNA analysis, and a second portion was placed in 10% neutral buff-

ered formalin for histopathology analysis.

QRT-PCR for Parasite Burden

According to the manufacturer’s guidelines, DNA was extracted from frozen liver tissue

(20mg) using PDQeX Nucleic Acid Extractor. To measure tissue parasite burden, quantitative

real-time PCR was performed using TaqMan Fast Advanced master mix (Life Technologies)

and oligonucleotides specific for the satellite region of T. cruzi nuclear DNA (primers

50-ASTCGGCTGATCGTTTTCGA-30 and 50-AATTCCTCCAAGCAGCGGATA-30 and probe

50-6-FAM-CACACACTGGACACCAA-MGB-30. T. cruzi data were normalized to glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) (primers 5’ CAATGTGTCCGTCGTGGATCT 3’

Table 2. Treatment groups.

Group Infection Treatment #1 Treatment #2 Euthanasia Timepoint

#1 Naïve N/A N/A 142dpi

#2 Infected N/A N/A 90dpi

#3 Infected N/A N/A 120dpi

#4 Infected N/A N/A 142dpi

#5 Infected Low BNZ N/A 120dpi

#6 Infected Vaccine N/A 120dpi

#7 Infected Low BNZ Vaccine 142dpi

#8 Infected E6020 SE N/A 120dpi

#9 Infected High BNZ N/A 142dpi

https://doi.org/10.1371/journal.pntd.0011519.t002

Fig 1. Treatment timeline. Image created with Biorender.

https://doi.org/10.1371/journal.pntd.0011519.g001
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and 5’ GTCCTCAGTGTAGCCCAAGATG 3’, probe 5’ 6-FAM CGTGCCGCCTGGA
GAAACCTGCC MGB 3’; Life Technologies, CA, USA) (Life Technologies), and parasite bur-

den was calculated based on the standard curve of known parasite contents [24].

Liver enzyme analysis

Whole blood was allowed to clot at room temperature for 30 minutes, then centrifuged at

10,000 rpm for 5 minutes at room temperature to separate serum. Serum was analyzed for

aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase

(ALP), and lactate dehydrogenase (LDH) using a Beckman Coulter AU480 Chemistry Ana-

lyzer (Clinical Pathology Laboratory, Baylor College of Medicine).

Histopathology analysis

Sections of the liver were fixed in 10% neutral buffered formalin, dehydrated, embedded in

paraffin, sectioned to 5μm thickness, and adhered to glass slides. Sections were routinely

stained with hematoxylin and eosin (H&E). Images of liver H&E histology slides were taken

from 5 randomly selected representative fields at 10x magnification using an Amscope ME580

brightfield microscope. Images’ color thresholds (hue, saturation, brightness) were adjusted

using ImageJ to create uniformity among all images. A count of lymphocyte nuclei was accom-

plished by setting a particle size limit to exclude larger hepatocyte nuclei and smaller debris

from being factored into the count. Lymphocyte counts from all 5 randomly selected fields

were averaged to indicate inflammatory cell infiltration in the liver.

QRT-PCR for BTG2 and PPARα
According to the manufacturer’s guidelines, RNA was isolated from frozen liver tissue (20mg)

using RNeasy kit (Qiagen). The concentration of RNA was quantified using Nanodrop with a

target concentration of 100ng/uL. cDNA was amplified with RT-PCR master mix (Thermo-

Fisher) and ran in Bio-Rad PCR Thermal Cycler. QRT-PCR was performed using a Quant Stu-

dio 3 thermocycler (Applied Biosciences). The specific primers were as follows: BTG2

(Mm00476162_m1 Primers and Probe Taqman gene Btg2 (FAM-MGB), PPARα
(Mm00440939_m1) Primers and Probe Taqman gene Pparα (FAM-MGB) (Applied Biosci-

ences). All samples were run in duplicate. The relative quantity (RQ) values were calculated

according to the ΔΔCt method. The infected mice were normalized to the values obtained

from non-infected mice (ΔΔCT). Then, the RQ was calculated as RQ = 2-ΔΔCt.

Statistical analysis

For each parameter measured, data were plotted using GraphPad Prism 9.4.1 software (Graph-

Pad). Treatments were compared at each timepoint to infected untreated controls or naïve

mice, as indicated in the figures using a Kruskal-Wallis one-way ANOVA and Dunn’s multiple

comparisons tests. When comparing only two groups, a Mann-Whitney test was used. P

values� 0.05 were considered significant.

Results

Curative Benznidazole treatment reduces T. cruzi induced hepatomegaly

In Liu et al, 2023, we previously reported that combination treatment with low BNZ + vaccine

better restored T. cruzi induced metabolic perturbances in several sections of heart compared

to curative BNZ treatment [30]. However, that work did not evaluate the impact of treatments

on liver health. Hepatomegaly is a consistent finding in human cases of Chagas disease as well
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as experimental animal models [31]. To determine if hepatomegaly was also present in our

model of chronic T. cruzi infection, the liver weight/ body weight ratio was calculated at study

endpoints. The liver weight/ body weight ratio was significantly increased by infection at 90

and 142 DPI (Fig 2C, red and purple symbols, respectively) compared to naïve controls, indi-

cating hepatomegaly was evident in our model. By 142 DPI, curative BNZ significantly

reduced liver weight/body weight ratio compared to infected control mice (Fig 2C maroon

symbol), suggesting that curative BNZ treatment ameliorates infection-induced hepatomegaly.

However, low BNZ + vaccine had no apparent effect on hepatomegaly. Additionally, infection

alone did not induce significant changes in overall body weight compared to naïve controls,

but low BNZ + vaccine resulted in overall lower body weight compared to controls (Fig 2A).

Overall liver weight was significantly increased only at 90 DPI when compared to naïve con-

trols, but liver weight was not increased at other timepoints or with any treatments. Together,

these data confirm hepatomegaly is evident in our mouse model and that curative BNZ

reduces infection induced hepatomegaly by 142dpi, but does not restore liver weight/body

weight ratio to the same level as age matched naïve mice.

Curative Benznidazole clears liver parasites and reduces cellular infiltration

We have previously demonstrated that vaccine-linked chemotherapy significantly reduces car-

diac parasite burdens in acutely infected mice [24,25] and curative BNZ significantly reduces

cardiac parasite burdens and reduces cellular infiltration in chronically infected mice immedi-

ately after treatment [32]. Therefore, we evaluated the impact of treatments on parasite levels

and cellular infiltration in the liver. Infection resulted in significantly increased infiltration of

inflammatory cells into the liver at 90dpi and 142 dpi compared to naïve mice at 142dpi (Fig

3B red and purple symbols, respectively). Additionally, infection induced inflammatory infil-

trate was significantly reduced at 120dpi compared to 90 dpi (Fig 3B green and red symbols,

respectively), but inflammatory infiltrate at 142dpi was not significantly different to 90dpi (Fig

3B maroon and red symbols respectively). Curative BNZ effectively decreased parasite burden

Fig 2. Body weight, liver weight, and liver weight/body weight ratio of mice at 90 dpi, 120dpi and 142dpi. Body (A) and liver (B) weights were taken at time

of euthanasia. A ratio was calculated to normalize results. *P<0.05; ***P<0.0005; ****P<0.0001.

https://doi.org/10.1371/journal.pntd.0011519.g002
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in the liver to below the limits of quantitation for the assay (Fig 3A maroon symbol), while low

BNZ + vaccine had no effect on parasite burdens (Fig 3A blue symbols). Evaluation of H&E

stained liver sections revealed that treatment with low BNZ significantly increased inflamma-

tory infiltrate at 120 DPI compared to infected untreated mice. (Fig 3B orange symbol Fig 4E).

However, curative BNZ significantly decreased inflammatory infiltrate compared to infected

untreated mice (Fig 3B maroon symbol, Fig 4I), while low BNZ + vaccine did not affect the

number of inflammatory cells (Fig 3B dark blue symbol, Fig 4H).

Curative Benznidazole significantly elevates serum tissue damage markers

To determine the effect of treatments on tissue damage markers as indicators of liver damage,

we evaluated levels of ALT, ALP, AST and LDH. By 142dpi, both curative BNZ and low BNZ

+ vaccine induced significant elevations to ALT (Fig 5A, navy and maroon symbols, respec-

tively) and AST (Fig 5C, navy and maroon symbols, respectively) and AST when compared to

naïve mice. Importantly, only curative BNZ induced significant elevation to LDH (Fig 5D,

maroon symbols) compared to naïve mice. Infection alone and single treatments did not cause

significant elevations to AST, ALT and LDH. Further, no differences in ALP were observed for

any groups. Together, these data suggest that our vaccine-linked chemotherapy strategy causes

less liver and tissue damage compared to curative BNZ alone.

Benznidazole treatment reduces the expression of liver damage markers

To begin to define potential mechanism of liver damage in our model, we evaluated expression

of BTG2, a marker of oxidative damage, and PPARα, a regulator of inflammation [33–35].

Fig 3. Parasite burden and amount of inflammatory infiltrate in the liver. T. cruzi parasite burden expressed as parasite equivalents per mg of tissue (A) was

determined using qPCR and inflammatory infiltrate was determined via histopathology analysis using ImageJ (B). *P<0.05; **P<0.005. $ $ $ P<0.001 when

compared to Infected Untreated at 90dpi.

https://doi.org/10.1371/journal.pntd.0011519.g003
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BTG2 expression was elevated by 120 DPI in infected mice compared to 90 DPI and 142DPI

(Fig 6A green symbols), and expression at 142dpi was significantly elevated compared to 90

DPI (Fig 6A purple and red symbols respectively). BTG2 expression was significantly

decreased by low BNZ treatment (Fig 6A orange symbols) compared to infection alone at 120

DPI (Fig 6A green symbols). Similarly, by 142 DPI, infection induced BTG2 expression was

significantly reduced by curative BNZ treatment (Fig 6A maroon symbols). Expression of

PPARα was significantly elevated by infection at 142 DPI (Fig 6B purple symbols) compared

to 90DPI and 120DPI (Fig 6B red and green symbols, respectively). Only low BNZ significantly

decreased PPARα expression by 120DPI (Fig 6B orange symbols) compared to infected mice

at 120 DPI (Fig 6B orange symbols). Together, these data suggest that while low dose BNZ

treatment can improve oxidative damage and regulation of inflammation in the liver, the com-

bination of low BNZ + vaccine does not result in similar improvement.

Discussion

The current first-line treatment for Chagas disease is oral BNZ, which is effective mainly in the

acute phase but has unwanted side effects, including dermatologic and neurologic manifesta-

tions [36,37]. Liver toxicity from BZN is thought to be caused by the formation of reactive

metabolites, which can damage liver cells and lead to inflammation and liver injury [36].

Symptoms of BZN-induced liver toxicity may include fatigue, abdominal pain, jaundice, and

elevated liver enzymes in the blood [20]. Specifically, BNZ treatment results in elevations of

AST, ALT, and ALP [38]. Our group has shown that a vaccine-linked chemotherapy strategy

Fig 4. Impact of therapeutic interventions on the inflammatory infiltrate of liver tissue in mice. Representative

H&E stained sections are shown at 142dpi Naïve (A), 90dpi Infected Untreated (B), 120 Infected Untreated (C), 142dpi

Untreated (D), 120dpi Low BNZ (E), 120dpi Vaccine (F), 120dpi E6020 (G), 142dpi Vaccine + Low BNZ (H), 142dpi

Curative BNZ (I). The scale bar represents 100um.

https://doi.org/10.1371/journal.pntd.0011519.g004
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Fig 5. Impact of infection and treatment on liver enzymes. Complete serum chemistry analysis was performed. ALT, ALP, AST, and LDH were

evaluated because they are the most common liver function tests. *P�0.05; **P�0.01.

https://doi.org/10.1371/journal.pntd.0011519.g005
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allows the reduction of BNZ dose, while still effectively reducing cardiac inflammation and

fibrosis, and improving cardiac function [24–26]. While the evidence showed that this dose-

sparing strategy improved cardiac health, similar to a curative dose of BNZ, the impact of vac-

cine-linked chemotherapy on liver health was unknown. Therefore, we conducted this study

to compare the effects of curative benznidazole treatment and vaccine-linked chemotherapy

on liver health. T. cruzi infection causes inflammation and edema, which can contribute to

hepatomegaly [31]. Additionally, right-sided heart failure can cause congestion of the liver;

thus, an increased liver weight can indicate cardiac dysfunction [39,40]. We confirmed in our

model that curative BNZ treatment was able to ameliorate the infection-induced hepatomeg-

aly, decrease liver parasite burdens, and reduce cellular infiltrate. This agrees with our prior

observations in our chronic infection mouse model that curative BNZ significantly reduced

cardiac parasite burdens and cardiac cellular infiltration immediately after treatment was com-

pleted [32], and reduced cardiac cellular infiltration over 3 months after treatment was com-

pleted [26]. In contrast, low BNZ + vaccine had no apparent effect on T. cruzi induced

hepatomegaly, liver parasite burdens, or cellular infiltrate. We have previously shown that our

Tc24-C4/E6020 SE vaccine induced increased antigen specific CD8+ cells in the spleen [25],

thus it is possible that the cellular infiltrate within the liver of vaccinated mice showed no

apparent reduction due to increased infiltration of antigen specific CD8+ cells into tissues,

which could also contribute to overall enlargement. Additionally, in a dog model of acute T.

cruzi infection, preventative vaccination with a DNA vaccine modified the composition of the

cardiac inflammatory infiltrate from primarily mononuclear cells in infected unvaccinated

Fig 6. Infection status and treatments on expression of BTG2 and PPARα. BTG2 and PPARα were measured in liver tissue. *P<0.05; **P< 0.01;

***P<0.001 ****P< 0.0001.

https://doi.org/10.1371/journal.pntd.0011519.g006
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dogs, to polymorphonuclear cells in infected vaccinated dogs [41]. Further analysis of the spe-

cific cell types present in the liver would be necessary to define specific cell types in inflamma-

tory infiltrate and determine if low BNZ + vaccine modified the composition of cells.

Additionally, while we did not observe reductions in parasite burdens in the liver in mice

treated with low BNZ + vaccine, it is possible that parasite burdens were reduced in other

organs. Evaluation of other tissues including gastrointestinal tract, which is a demonstrated

reservoir for the parasite [29], would be necessary to determine if treatment reduced overall

parasite burdens.

Despite the positive impact of curative BNZ on hepatomegaly, parasite burden, and inflam-

mation, significant elevations in AST, ALT and LDH indicate that tissue damage was still evi-

dent. ALT is abundantly expressed in the liver, and elevated serum levels indicate liver

damage, while AST and ALP are expressed in multiple tissues, including the liver, heart, and

muscle [42–44]. In experimental mouse models of acute Chagas disease, it has been demon-

strated that the combined effect of both infection and BNZ treatment induced more elevation

of serum AST, ALT, and ALP, as well as direct liver damage on histopathology, than either

infection or BNZ administration alone [21]. Our results showed elevated serum ALT and AST

levels in the group treated with the curative dose of BNZ, indicating that in mouse models of

chronic Chagas disease curative BNZ treatment causes elevations in tissue damage markers

similar to acute infection models. In our study, curative BNZ treatment was administered

from approximately 70 dpi until 87 DPI; thus, endpoint serum samples collected at 142 DPI

were 55 days after treatment ended. Since both AST and ALT were still elevated at that time in

mice treated with curative BNZ, this indicates that despite significantly reducing parasite bur-

dens and inflammatory cell infiltrate curative BNZ treatment caused sustained tissue damage,

further supporting the need for less toxic treatment options. Interestingly, treatment with

either a low dose of BNZ alone or the Tc24-C4/ E6020 SE vaccine alone did not cause signifi-

cantly elevated ALT or AST by 120dpi, which was approximately 32 and 36 days after treat-

ment ended, respectively. This suggests low dose BNZ or vaccine do not cause as much tissue

damage as curative BNZ treatment. However, the group treated with low BNZ + vaccine

sequentially had elevated serum levels of ALT and AST at 142dpi, similar to curative BNZ.

This suggests that despite the dose sparing effect of this strategy, the combination of treatments

does still result in elevation of tissue damage enzymes, possibly due to combined effects of

reactive metabolites resulting from BNZ treatment [36] and activation of inflammatory path-

ways by E6020, the TLR4 agonist adjuvant use in the vaccine component [45,46]. Further stud-

ies evaluating ALT and AST at later timepoints after treatment would be needed to determine

if the elevations in these tissue damage markers is sustained or if the elevations are transient

and ultimately return to normal levels.

In addition to ALT, AST, and ALP, we evaluated serum lactate dehydrogenase (LDH) lev-

els, which are also abundantly expressed in the liver, heart, and muscle tissues [47,48]. In dam-

aged tissues, LDH leaks out of the tissues and into the serum [49]. The elevated LDH levels of

curative BNZ-treated mice suggest that the drug has hepatotoxic effects on tissues, which may

lead to acute liver failure [50]. Furthermore, previous studies have also concluded that LDH is

a good prognosticator for death in individuals with acute liver failure [51]. Studies in mice

acutely infected with T. cruzi show that LDH levels are detectable in both serum and tissues at

the early stages of infection, with elevations evident in serum before tissue damage is evident

microscopically [47]. This suggests that LDH elevations caused by T. cruzi are due to the com-

bined effect of early changes in cell membrane permeability and later structural damage to tis-

sues [47]. Our results showed that only treatment with the curative dose of BNZ resulted in

significant elevations in serum LDH levels. Importantly, the lack of LDH elevation in mice

receiving low BNZ + vaccine suggests that this treatment is less damaging to tissues, potentially
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in both the liver and heart, than curative BNZ. Considering the know exacerbation of liver

damage caused by the combined effects of T. cruzi infection and BNZ [21], a less damaging

treatment strategy, such as vaccine-linked chemotherapy, is desirable to preserve overall

health.

In an effort to further characterize potential mechanisms of liver-specific damage in our

model, we evaluated gene expression of B-cell translocation gene 2 (BTG2) and Peroxisome

proliferator-activated receptor alpha (PPARα). BTG2 is a protein-coding gene involved in var-

ious cellular processes, including cell cycle regulation, apoptosis, differentiation, hepatic gluco-

neogenesis, and lipid homeostasis [52–54]. Importantly, BTG2 is induced in response to DNA

damage, and upregulation of BTG2 has been shown to protect against oxidative stress in

human mammary epithelial cells [33,34]. T. cruzi infection leads to DNA damage in mouse

models, specifically in heart cells and splenocytes, due to induction of reactive oxygen species

(ROS), and BNZ has been shown to reduce that effect [55,56]. In our study, treatment with

either low BNZ or curative BNZ significantly decreased BTG2 expression levels compared to

infected, untreated mice at 120 DPI and 142 DPI, respectively. This suggests that in addition to

DNA damage in the heart, T. cruzi also induces DNA damage in the liver leading to elevated

BTG2 expression, which is ameliorated with BNZ treatment. BTG2 expression is also upregu-

lated in response to inflammatory stimuli, including IL-6 and NFκB [57]. In prior studies, we

showed that curative BNZ treatment of chronically infected mice did not significantly reduce

NFκB, pSTAT3, or IL-6 in cardiac tissue [32]. However, specific evaluation of NFκB and IL-6

in the liver would be needed to determine if curative BNZ treatments has a tissue specific

impact on those inflammatory stimuli. PPARα is involved in regulating lipid and glucose

metabolism, is abundantly expressed in the liver, and is critical for reducing inflammation and

protecting against liver injury [35,58,59]. In T. cruzi infected macrophages, PPARα ligands

drive M1-to-M2 conversion, regulating inflammatory responses [60]. We observed that low

BNZ significantly reduced expression of PPARα in the liver, similar to the effect on BTG2

expression. While this reduction did not have an apparent effect on liver cellular infiltrate, fur-

ther studies would be needed to determine any impact on other inflammatory markers specifi-

cally in the liver.

Limitations of this study were identified and have been considered in the interpretation of

our results and planning of future studies. This study focused on evaluating liver damage in

our female mouse model of T. cruzi infection, which we have used extensively to confirm effi-

cacy of our vaccine-linked chemotherapy strategy [24–26]. Additionally, studies of sex related

differences in drug induced liver toxicity have demonstrated that women are more likely to

present with drug-induced hepatotoxicity [61]. However, a 10 year longitudinal study of

patients with Chagas disease found that male patients developed cardiac disease at a higher

rate compared to female patients [62]. Further, heart failure can also result in liver damage

[63]. Thus, in future studies it will be essential to specifically evaluate the impact of T. cruzi
infection and vaccine-linked chemotherapy on liver health in male mice and compare to the

impact in female mice. Another limitation identified in this study is the limited time points

after infection and treatment that were evaluated. In this study we evaluated liver health pri-

marily at 120 DPI and 142 DPI, representing early chronic infection, to evaluate short term

effects of our treatments compared to infected untreated mice at each timepoint. However,

future studies will need to incorporate evaluation of all groups immediately after treatment as

well as at later time points to determine the duration of any treatment effects on liver health.

Indeed, we observed elevated AST and ALT in mice treated with low BNZ + vaccine at

142DPI, representing approximately 36 days after treatment ended. It is possible that at later

timepoints, AST and ALT levels would return to normal range indicating that any toxic effects

in the liver are transient. Finally, cardiac fibrosis is a consistent finding in chronic Chagasic
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cardiomyopathy, and is associated with more severe cardiac disease [64,65]. Because the rela-

tionship between the heart health and liver health has been demonstrated, assessing whether

our treatment affects liver fibrosis will also be important.

BNZ treatment of patients with Chagas disease is problematic due to prolonged treatment

courses and significant toxicity, resulting in up to 40% of patients terminating treatment early

[15,37]. We developed a vaccine-linked chemotherapy strategy that is dose-sparing, and dem-

onstrated to be efficacious at reducing cardiac pathology in preclinical models [24–26]. Here

we present data suggesting that in addition to the beneficial cardiac effects, vaccine-linked che-

motherapy may be less damaging to the liver compared to curative BNZ treatment. While

additional studies are needed to develop optimized multi-modal treatment strategies that fur-

ther improve liver health, these data further support vaccine-linked chemotherapy as an attrac-

tive strategy to bridge the efficacy and tolerability gaps of standard anti-parasitic treatment for

patients with Chagas disease, and ultimately improve overall health.
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major role in clearance and destruction of blood trypomastigotes in Trypanosoma cruzi chronically

infected mice. PLoS Negl Trop Dis. 2010/01/07. 2010; 4(1):e578. https://doi.org/10.1371/journal.pntd.

0000578 PMID: 20052269

13. Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the Immune Response by Trypanosoma

cruzi during Acute Infection. Front Immunol [Internet]. 2015; 6:659. Available from: https://www.ncbi.

nlm.nih.gov/pubmed/26834737 https://doi.org/10.3389/fimmu.2015.00659 PMID: 26834737

14. Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibro-

sis in the Liver. Antioxidants (Basel, Switzerland). 2020 Dec; 9(12). https://doi.org/10.3390/

antiox9121279 PMID: 33333846

15. Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new

approaches. Acta Trop. 2010; 115(1–2):55–68. https://doi.org/10.1016/j.actatropica.2009.10.023

PMID: 19900395
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