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Abstract

Rapid increases in human populations and environmental changes of past decades have led

to changes in rates of contact and spatial overlap with wildlife. Together with other historical,

social and environmental processes, this has significantly contributed to pathogen transmis-

sion in both directions, especially between humans and non-human primates, whose close

phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon

sequencing, we studied strongylid communities in sympatric western lowland gorillas, central

chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the

Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon

sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid

diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and

we commonly observed mixed infections of more than one strongylid species. Human strongy-

lid communities were dominated by the human hookworm N. americanus, while great apes

were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also

able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight

ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae

variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our

results show that knowledge of strongylid communities in primates, including humans, is still

limited. Sharing the same habitat, especially outside protected areas (where access to the for-

est is not restricted), can enable mutual parasite exchange and can even override host phylog-

eny or conserved patterns. Such studies are critical for assessing the threats posed to all

hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to

physical contact, while "spatial overlap" refers to environmental contact.
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Author summary

Strongylid nematodes are common intestinal parasites, infecting a wide range of mamma-

lian taxa, including humans and non-human primates (NHPs). They have evolved to live

in vertebrate hosts for months or years and form complex communities within these

hosts. Heavy strongylid infections can cause severe intestinal inflammation, intestinal

lesions, respiratory difficulties, iron deficiency anemia, weight loss, childhood stunting,

and adverse birth outcomes. As human population and human settlements have grown

rapidly in recent decades, people often live in close proximity to wildlife, allowing for

cross-transmission of soil-transmitted helminths. Because humans and NHPs (especially

great apes) are closely related to one another evolutionarily, it is easy for strongylids

infecting one primate species to jump to a different primate host. This evolutionary rela-

tionship can result in overlap and reciprocal exchange of pathogens and can have a dam-

aging effect both on humans and NHP endangered species populations. As DNA-based

diagnosis has become a routine part of modern parasitology, we employed a modern

high-throughput sequencing approach to describe complex communities and zoonotic

patterns of parasitic strongylid nematodes infecting humans and great apes in Cameroon.

Introduction

Among parasites, strongylid nematodes are of high importance to research, because they cause

one of the most common but neglected tropical diseases in humans associated with the occur-

rence of pathologies [1,2]. They also cause significant parasitosis in livestock, which has a major

economic impact on the livestock industry worldwide. Furthermore, under certain circum-

stances, strongylid nematodes could be pathogenic to wildlife, including non-human primates

(NHPs) [3–5]. Strongylid nematodes inhabit various parts of the host body, mainly gastrointes-

tinal and pulmonary tract, where they feed on blood or tissues [3,6,7]. They can live for many

years within their hosts and generally do not cause mortality; however, severe infections can

lead to inflammatory reactions, lesions, severe weight loss, anemia or malnutrition [8] and can

be attributed to cases of human as well as animal deaths [9]. In humans, the most important

strongylids are hookworms (Necator americanus, Ancylostoma duodenale, and A. ceylanicum),

infecting over 400 million people worldwide [10]. Necator hookworms and the nodule worm of

the genus Oesophagostomum are considered the most prevalent helminths in great apes [11].

Unfortunately, identification of distinct strongylid taxa from feces using microscopy is

essentially impossible, as strongylid eggs are morphologically indistinguishable [5]. Thus,

strongylid identification has been mostly dependent on DNA amplification and sequence anal-

yses [12–14]. Strongylids have mainly been genotyped through DNA amplification methods

targeting only one strongylid genus, followed by Sanger sequencing. However, occurrence of

complex strongylid communities makes utilization of high-throughput sequencing (HTS)

essential [4,15,16]. Despite some limitations (e.g., sequencing errors, short length of the reads

or increased diversity due to presence of paralogues in genomes), HTS of standard phyloge-

netic markers amplified from complex target populations (metabarcoding) is inexpensive and

allows efficient genotyping of hundreds of samples at a time, untangling mixed infections and

detecting rare taxa [17–21]. Exact delineation of amplicon sequencing variants (ASVs) can

help understand the molecular epidemiology of pathogens and, consequently, HTS metage-

nomics has brought about a much deeper insight into the diversity of strongylid nematodes

and has revealed hidden zoonotic transmissions or parasite sharing [16,22–24].
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The close phylogenetic relationship between NHPs and humans significantly facilitates the

overlap and transmission of pathogens and can have a damaging effect on populations of both

humans and endangered NHPs [25,26]. The rapid growth of the human population and the

resulting encroachment into and modification of natural animal habitats have led to an

increase in physical contact and spatial overlap with wildlife, creating ideal conditions for

pathogen transmission and exchange also due to changes in ecological, political, economic,

and social relations [27–29]. Recently, conservation activities and tourism also contribute to

transmission of human pathogens to wildlife and can threaten endangered animals [30,31].

Therefore, it is critical to monitor pathogens, including parasites, at the human-wildlife inter-

face to detect and find ways to prevent such exchanges. Several studies have revealed the zoo-

notic potential of strongylid nematodes with respect to various anthropogenic disturbances;

for example, Oesophagostomum species were found to be shared between humans and great

apes in Eastern Africa [12,32] and at least two Necator species are shared in Central African

Republic and Gabon [33,34]. Using the HTS approach, Pafčo et al. [4] observed hidden trans-

missions of strongylid nematodes between humans and NHPs in the forest habitats of the Cen-

tral African Republic, with Necator spp. as a main driving force of overlap between different

hosts.

We explored strongylid nematode diversity in humans and great apes cohabiting an unpro-

tected area in the northern periphery of the Dja Faunal Reserve, Cameroon. We evaluated pos-

sible zoonotic transmission patterns and assessed the impact of behavioral/hygiene habits of

the local people on their strongylid infections. We employed an ITS-2 metabarcoding

approach and predicted differences in strongylid nematode communities between different

primate hosts.

Methods

Ethics statement

The research complied with the legal requirements of the Cameroon and was approved by

Ministère de la Recherche Scientifique et de l’Innovation (permit number 0000105/MINRESI/

B00/C00/C10/C12) and Ministère des Forêts et de la Faune (permit number 1371/PRS/MIN-

FOF/SG/DFAP/SDVEF/SC). The ape samples were collected noninvasively and did not affect

the animals. Human sampling and data collection followed the protocol approved by the Eth-

ics Committee of the Biological Centre of Academy of Sciences, České Budějovice, Czech

Republic and was approved by the local authorities. Sampling was performed after obtaining

oral and written informed consent of all registered volunteers. Samples were numbered, paired

with questionnaires and anonymized.

Study site, sample collection

Our study took place in the northern periphery of the Dja Faunal Reserve (Dja FR), located in

South-East Cameroon. The reserve is part of a semi-deciduous lowland forest (500–700 m

above sea level) with an equatorial and humid climate characterized by one short and one long

dry season in between two rainy seasons (February–July/August–November) [35]. The unpro-

tected area (40 km2), comprising the target area of Project Grands Singes (PGS), under Ant-

werp Zoo Society, Belgium included the research camp La Belgique and three village

settlements approximately 25 km from the camp. Several ethnic groups (including the Bad-

joué, the Fang, the Kaka, the Nzime, the Niem and the Baka) live in the periphery of the reserve

in close coexistence with wildlife [36]. Although the human population density is low, the pres-

sure on the reserve is substantial, as crops [37], hunting [38,39] and logging [40] remain the

main sources of livelihood for the local people. High densities of central chimpanzees (Pan
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troglodytes troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) were recorded in

the reserve as well as in the unprotected area around the camp La Belgique [41].

Human sampling was carried out in three villages–Duomo-Pierre, Malen V, and Mimpala

(61 households and approximately 600 people in total)–and great ape samples were collected

in secondary forest areas between the villages and around La Belgique research camp during

September and October 2014 (major wet season peak). Fresh fecal samples (total number: n
= 139) were collected non-invasively from humans (n = 48), median age 26 years, and free-

ranging great apes: central chimpanzees (n = 31) and western lowland gorillas (n = 60).

Human participants were provided with sampling tubes and samples were then gathered by

researchers in the villages. Samples of great apes were collected from the ground under

morning nests, a maximum of three hours after individuals left their nests. To reduce the

risk of re-sampling of the same individuals and groups of individuals, only groups of differ-

ent sizes (at the same locality) or groups of the same size (but not at the same locality) were

sampled, and one sample per nest was taken. The samples were immediately fixed in 96%

ethanol and stored at room temperature for a maximum of two weeks until they were sent to

the Department of Pathology and Parasitology of University of Veterinary Sciences Brno,

where they were stored at -20˚C.

Human participants also filled out a close ended questionnaire (S1 Fig) about their lifestyle

including frequency of entering the forest, interaction with great apes, clothing, hygiene,

anthelmintic treatment and dietary habits (Table 1). All participants spoke French and

researchers assisted them to fill in the questionnaires.

DNA isolation, library preparation, sequencing

First, we took approximately 0.25 g of fecal sample preserved in ethanol and evaporated the

ethanol overnight at 37˚C. We extracted total genomic DNA from dry fecal samples using

PowerSoil DNA isolation kit (MO BIO Laboratories, Qiagen company, USA) and amplified

ribosomal DNA (rDNA), specifically the variable section of rDNA (internal transcribed spacer

2; ITS-2). We prepared sequencing libraries according to the protocol of Pafčo et al. [16], using

two-step PCR following the Fluidigm Access Array primer design. We processed each sample

in duplicate and included two negative and three positive controls according to the protocol.

We sequenced the final libraries using the Illumina MiSeq platform (Illumina MiSeq Reagent

Kit v2, sequencing 500 cycles of 2 x 250 bp paired-end reads). Additionally, we created a large

metadata table containing sample identification (ID), collection site and host species.

Table 1. Results of questionnaires based on respondents’ answers. Survey focused mainly on human-animal interactions, lifestyle and hygiene standards.

Activity Yes No Frequently Sometimes Never River Well Both

Entering the forest - - 64.6% 29.2% 6.2% - - -

Contact/Encounter with wild apes 89.6% 10.4% - - - - - -

Contact with ape feces 70.8% 29.2% - - - - - -

Wild apes around household 22.9% 77.1% - - - - - -

Wearing shoes in the forest 39.6% 60.4% - - - - - -

Eating from the ground 97.9% 2.1% - - - - - -

Washing crops before eating 8.3% 91.7% - - - - - -

Washing hands before eating 37.5% 62.5% - - - - - -

Drinking from water sources - - - - - 89.6% 2.1% 8.3%

Anthelmintic treatment 29.2% 70.8% - - - - - -

Taking plant-based drugs 4.2% 91.7% - - - - - 4.1%

https://doi.org/10.1371/journal.pntd.0011499.t001
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Data processing and statistics

We trimmed raw.fastq sequences using Skewer [42] and followed by paired-end reads assem-

bly in PEAR merger [43]. We eliminated low quality sequences (with expected error

rate> 1%) from the dataset. We detected ITS-2 amplicon sequencing variants (ASVs) and esti-

mated sample relative abundances using software dada2 [44]. Using dada2’s algorithm,

sequences inconsistently present in both duplicates were marked as potential artifacts (e.g.,

sequences with low template content, chimeras or sequencing errors) and removed from

downstream analyses (5–7% of sequences after quality control). We searched for correspond-

ing sequences via standalone BlastN (performed on the NCBI nt database, which was down-

loaded on 10th February 2020); we excluded environmental or uncultured samples from the

database and filtered out all blast hits with< 85% identity and< 90% coverage from the file.

We downloaded taxonomy for blast hits using taxize package [45], and used the created refer-

ence database to assign a taxonomic classification in our dataset via dada2’s AssignTaxonomy

method, implementing a Naïve Bayesian Classifier algorithm [46].

We merged the resulting taxonomy table with our metadata table in RStudio (https://

www.rstudio.com); into a single phyloseq object, suitable for downstream analyses. We exe-

cuted all data analyses in the statistical software RStudio. We de-noised the raw dataset (var-

iants unclassified up to “family” level and “non-strongylid” were removed from the dataset)

and used a generalized linear model (GLM) with quasipoisson error distribution to test dif-

ferences in alpha diversity, evaluated as number of ASVs per sample, among the studied

hosts. Additionally, we employed post-hoc testing (Tukey) to identify levels of factorial

response that differ from each other. Moreover, we measured the alpha diversity by Shan-

non’s and Simpson’s indexes; we defined community composition as prevalence and rela-

tive representation of ITS-2 ASVs using Jaccard and Bray-Curtis ecological distances. In

order to prevent negative eigenvalues during computation, we performed square root trans-

formation of the dataset. We then performed Principal coordinate analysis (PCoA) on both

Jaccard and Bray-Curtis dissimilarities. To test the interspecific differences in strongylid

nematode community compositions among the hosts, we executed permutational analysis

of variance (PERMANOVA), followed by analysis of similarity (ANOSIM). We imple-

mented Multivariate general linear models (GLMs) from the R package mvabund [47] to

search for community-wide divergence and identification of significant ASVs that varied

due to the different host species effect. For better resolution, we constructed a diagram

showing proportion of reads for significant variants. We further implemented GLM testing

with quasipoisson error distribution, followed by PERMANOVA and ANOSIM to evaluate

the impact of all factors from the questionnaires (Table 1) on the strongylid alpha and beta

diversity in humans.

Results

Overall characteristics of the dataset

We analyzed fecal samples of humans (n = 48), western lowland gorillas (n = 60) and central

chimpanzees (n = 31). In total, 2,943,087 high-quality reads were identified, with a median

sequencing depth per sample of 15,612 (minimum = 9, maximum = 375,905). After duplica-

tion of the obtained sequencing data from negative control samples, no ITS-2 strongylid reads

were found. Taxonomic assignment revealed 65 ITS-2 amplicon sequencing variants (ASVs),

including at least five strongylid genera (Table 2). Thirty-two unassigned variants (present in

45% of samples) were tentatively classified as being closest to Nematodirus sp. or Travassos-
trongylus sp.; however, the sequence identity and match scores were low (84.1% and 76.8%,
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respectively), thus those variants probably do not represent these genera and could possibly

indicate novel nematode species in the sample.

Composition of strongylid communities

The most prevalent variants belonged to three genera: Necator, Oesophagostomum and Tri-
chostrongylus (Table 3). A bar graph visualizing relative abundances of strongylid variants for

Table 2. List of identified strongylid nematodes found in studied hosts, sequences NCBI Accession numbers and reference.

Family Genus Species NCBI Accession Reference

Chabertiidae Oesophagostomum Oesophagostomum stephanostomum
type I

KR149648.1 Cibot et al. [12]

Oesophagostomum Oesophagostomum stephanostomum
type II

AB821022.1 Makouloutou et al. [62]

Oesophagostomum Oesophagostomum sp. KR149658.1 Cibot et al. [12]

Ternidens Ternidens deminutus AJ888729.1 Schindler et al. [64]

Ancylostomatidae Necator Necator americanus LC088287.1,

LC036563.1

MG256601.1

Hasegawa et al. [34]; Hasegawa unpubl.; Jariyapong &

Punsawad unpubl.

Necator Necator gorillae LC088299.1 Hasegawa et al. [34]

Necator Necator sp. AB793535.1 Hasegawa et al. [33]

Ancylostoma Ancylostoma sp.† LC036567.1 Hasegawa unpubl.
Trichostrongylidae Trichostrongylus Trichostrongylus sp. type I Unassigned‡ NA

Trichostrongylus Trichostrongylus sp. type II LC185220.1 McLennan et al.[66]

Unclassified Unclassified Unclassified Unassigned§ NA

†Closest hit A. ceylanicum (similarity 95.5%)
‡Closest hits T. vitrinius (similarity 98.48%), and T. colubriformis (similarity 97.34%)
§Probably two taxa: closest hits Nematodirus sp. (similarity 84.1%) and Travassostrongylus sp. (similarity 76.8%)

https://doi.org/10.1371/journal.pntd.0011499.t002

Table 3. List of numbers of identified amplicone sequence variants (ASVs), their proportion of total reads, numbers of infected hosts and ASV prevalence among

host species.

Parasite taxa Number of

identified

ASVs

Total reads

proportion (%)

Number of

ASVs in

humans

Number of

ASVs in

gorillas

Number of ASVs

in chimpanzees

Prevalence in

humans (%)

Prevalence in

gorillas (%)

Prevalence in

chimpanzees (%)

Oesophagostomum

stephanostomum

type I

16 41.1 1 12 11 27.1 81.7 96.8

Oesophagostomum

stephanostomum

type II

3 0.7 0 2 3 0 6.5 35.5

Oesophagostomum sp. 1 > 0.1 0 1 0 0 1.7 0

Necator americanus 16 21.7 15 5 0 66.7 31.7 0

Necator gorillae 14 20.0 2 14 4 16.7 96.7 87.1

Necator sp. 8 0.1 0 6 3 0 13.3 9.7

Trichostrongylus sp.

type I

3 0.2 0 3 0 0 13.3 0

Trichostrongylus sp.

type II

2 6.3 1 2 1 2.1 76.7 61.3

Ancylostoma sp. 1 > 0.1 0 0 1 0 0 3.2

Ternidens deminutus 1 > 0.1 0 1 0 0 1.7 0

Unclassified 32 10.0 4 18 17 8.3 58.3 77.4

https://doi.org/10.1371/journal.pntd.0011499.t003
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all studied individuals revealed interspecific differences in the composition of strongylid nem-

atode communities according to host species (Fig 1). Humans were predominantly infected by

N. americanus (66.7%; median relative abundance of reads x = 3,340, min. = 143, max. =

375,811), while N. gorillae variants were less common (16.7%; x = 361, min. = 116, max. =

Fig 1. Bar plots showing a) number of reads in each individual sample on a log10 scale b) relative community

composition of strongylid nematodes in examined samples at the species level, c) relative community composition

of strongylid nematodes in examined samples at the genus level. Each column represents a sample. Numbers of

reads (a) / relative abundances (b, c) of reads are depicted as color panels.

https://doi.org/10.1371/journal.pntd.0011499.g001
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18,068). A significant portion of human infections also included O. stephanostomum type I

(27.1%; x = 35, min. = 9, max. = 3,809). Trichostrongylus sp. type II (2.1%; 870 reads) and four

unassigned variants (8.3%; x = 22, min. = 16, max. = 207) were also found in humans. Strongy-

lids in great apes were dominated by variants of N. gorillae (overall prevalence 91.9%;

x = 1,872, min. = 47, max. = 110,743), Oesophagostomum stephanostomum type I (89.3%;

x = 13,209, min. = 15, max. = 49,181), Trichostrongylus sp. type II (69.0%; x = 863, min. = 16,

max. = 38,774) and unassigned variants (67.9%; x = 3420, min. = 63, max. = 32,817). Necator
americanus variants were found only in gorillas (31.7%; x = 107, min. = 29, max. = 7,646),

while there was no evidence for N. americanus in chimpanzees. Additionally, unidentified var-

iants of Necator species (neither N. americanus nor N. gorillae) were detected in great apes

(13.3% in gorillas; 9.7% in chimpanzees; x = 130, min. = 50, max. = 252). Three taxa were

recorded in low prevalence and with reads only evident in gorillas (Oesophagostomum sp. 400

reads; Trichostrongylus type I x = 688, min. = 52, max. = 1,832; and Ternidens deminutus 45

reads) and one taxon was detected only in a chimpanzee (Ancylostoma sp. 228 reads). We

found eight ASVs shared between humans and great apes (8.25% of all observed ASVs), sug-

gesting zoonotic transmission: two N. gorillae variants, one O. stephanostomum type I variant,

and one Trichostrongylus sp. type II variant were found in humans, gorilla and chimpanzees,

while four N. americanus variants were shared only between humans and gorillas.

Alpha and beta diversity

Variant diversity (x0 = 7; min. = 1, max. = 17) differed among the studied hosts (GLM: F(2,138)

= 203.36, p< 0.0001). Variant diversity in humans was lower compared to both species of

great apes (Tukey post-hoc testing: p = 0.0001 for all pairwise comparisons) (Fig 2), while

there was no evidence of significant differences between gorillas and chimpanzees (p> 0.3).

PCoA diagrams based both on Jaccard and Bray-Curtis ecological distances confirmed clear

differences between humans and great apes in both composition and relative abundance of

Fig 2. Alpha diversity of strongylid nematode communities, boxplot of amplicone sequencing variants (ASVs)

counts for each sample (dots) according to host species. Different letters above boxes indicate statistically significant

differences according to GLM test.

https://doi.org/10.1371/journal.pntd.0011499.g002
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strongylid ASVs (Fig 3). Significant differences between different host species in the composi-

tion of their strongylid nematode communities were further confirmed by PERMANOVA

(Jaccard: F(2,138) = 11.655, p = 0.001; Bray-Curtis: F(2,138) = 14.644, p = 0.001) and ANOSIM

(Jaccard: R = 0.4456, p = 0.001; Bray-Curtis: R = 0.4204, p = 0.001) tests. Tukey post-hoc test-

ing revealed significant differences between humans and other great apes for both Jaccard and

Bray-Curtis (p< 0.01 for all pair-wise combinations) distances. Within great apes, there was

no statistically significant result for Jaccard (p = 0.36) indicating roughly the same composition

of strongylid ASVs; however, results for Bray-Curtis indicated differences in relative abun-

dances (proportion) of ASVs between great apes (p< 0.001). Mvabund testing confirmed the

interspecific differences (mvabund: ΔDF = 2, χ2 = 1002.371, p = 0.001) and identified 17 ITS-2

ASVs with whose different relative abundances were the main driving force of diversity

between different host species in contrast to shared haplotypes (Fig 4a and 4b). Differences

among hosts were mainly due to greater frequencies of O. stephanostomum, N. gorillae,

Fig 3. PCoA ordination diagrams of beta diversity of strongylid nematode communities based on Jaccard ecological distance: Presence/absence

of amplicone sequencing variants (ASVs); Bray-Curtis ecological distance (relative abundances of reads).

https://doi.org/10.1371/journal.pntd.0011499.g003

Fig 4. Plots showing relative abundance of ITS-2 amplicone sequencing variants (ASVs) indicated by a) shared ASVs between humans and great apes; ASVs

shared between all three studied groups are highlighted in blue; ASVs shared between humans and gorillas are highlighted in green, b) Mvabund analyses as a

driving force of differences among studied hosts.

https://doi.org/10.1371/journal.pntd.0011499.g004
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Trichostrongylus type II and unclassified strongylids in great apes, whereas N. americanus was

most frequent in humans.

We found no significant impact of behavioral or hygiene habits of the local people on either

strongylid alpha or strongylid beta diversity (GLM: p> 0.05; PERMANOVA: p> 0.05; ANO-

SIM: p> 0.05).

Discussion

Strongylid community composition

We explored strongylid diversity and transmission patterns in humans and great apes sharing

the same habitat in an unprotected area at the northern border of the Dja Faunal Reserve (Dja

FR), Cameroon. Using the ITS-2 locus for identification, general taxonomic assignment

revealed 95 strongylid ITS-2 amplicon sequence variants (ASVs), of which we could classify 65

at the genus/species level. We are aware of the limitations of the ITS-2 marker [17–19] and

attempted to eliminate errors by running all samples in duplicates, excluding inconsistently

present sequences from the dataset and using negative controls. We did not set a threshold for

the number of reads per sample to detect rare strongylid taxa. We know that the threshold in

this case is somewhat controversial (due to the low number of reads in some samples/ASVs).

However, no official threshold has been set yet and different thresholds and settings are used

in other studies [22,48].

In contrast to our previous study in Dzanga Sangha Protected Areas (DSPA), Central Afri-

can Republic, where only two variants (from the total of 85) remained unassigned [4], our data

from Dja FR contained 32 unassigned ASVs on the genus level. This suggests a more diverse

strongylid fauna in Dja apes and humans, and further indicates that strongylid nematodes are

a rather understudied group with unexplored diversity.

Overall, the composition of strongylid communities found in Dja remained generally con-

sistent with previous studies, suggesting that Necator and Oesophagostomum are the most

prevalent strongylid genera in African apes and humans [4,12,16,24,32,34,49,50], but unlike in

previous studies, these were followed by Trichostrongylus and unassigned genera. Dja apes

were mostly infected by variants of O. stephanostomum and N. gorillae, both commonly found

in great apes [4,12,24,32,50]. Humans were mostly infected by N. americanus variants, con-

firming that N. americanus is the dominant human-specific hookworm in general [51]. Great

apes exhibited higher strongylid diversity than humans and mixed infections of more than one

strongylid species were frequently observed, which is consistent with previous findings in

DSPA [4]. On the contrary, Vlčková et al. [52] used the same sample set as the present study

and observed a higher alpha diversity of Entamoeba (protozoan parasite) communities in peo-

ple living in the Dja compared to co-occurring great apes.

Mason et al. [24] employed HTS techniques to survey strongylid nematodes of wild western

lowland gorillas in five distinct localities across the Congo Basin. The authors [24] observed

lower strongylid diversity in western lowland gorillas in Dja compared to other study areas

(including DSPA, CAR), and explained this to be due to the impact of greater anthropogenic

disturbance on strongylid communities in the unprotected periphery of Dja FR compared to

protected sites. Traditionally, parasites are thought to have negative effects on the host; how-

ever, they are a natural part of the host environment due to millions of years of evolution [53]

and it has more recently been speculated that the loss of parasitic symbionts in industrialized

human populations may contribute to an increase in autoimmune diseases [54]. It appears

that a loss of parasitic symbionts occurs in areas of increased anthropogenic pressure [55];

however, studies employing better characterization of the anthropogenic disturbance across

sites are warranted.
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Necator

We discovered six ASVs of Necator spp. (6.19% from the total of 97 ASVs found) being shared

between multiple hosts. Besides the human hookworm N. americanus, other Necator species

(N. exilidens, N. congolensis and N. gorillae) have been reported in great apes [56–58] and also

in humans in Africa [4,33,59]. Four variants of N. americanus and two variants of N. gorillae
were found co-infecting humans and great apes, suggesting ongoing transmission events pre-

viously described in the tropical forest ecosystem in DSPA and Moukalaba-Doudou National

Park [4,16,33,34]. While N. americanus variants were found mostly in humans, four of them

were shared with gorillas; this demonstrates that N. americanus is not a solely human-specific

parasite. Moreover, such a finding was previously observed in African great apes [4,24,33,34].

Necator gorillae variants were found predominantly in great apes, suggesting its probable ape

origin, but they were also shared with humans. The N. gorillae variants corresponded to those

previously found in gorillas in Gabon [34]. We did not find evidence of N. americanus infect-

ing wild chimpanzees, which supports a previous hypothesis of a lower susceptibility of chim-

panzees to N. americanus infections [34], despite some cases of chimpanzee infections having

been previously recorded [4,60]. Additionally, we found a few variants of undetermined Neca-
tor sp. in Dja apes corresponding to variant III-1 first found in humans in DSPA by Hasegawa

et al. [33], later reported in western lowland gorillas across several African localities [24,34].

Hasegawa et al. [33] speculated that variant III-1 sequences may represent N. congolensis or N.

exilidens, previously described in chimpanzees [56,57]; however, the original descriptions of N.

congolensis or N. exilidens were made at the beginning of the last century, and even “tradi-

tional” morphology-based taxonomy of Necator non-americanus species remain unclear [59].

Several Necator species are clearly capable of infecting both humans and NHPs, at least in hab-

itats where they share the same environment. However, the exact species diversity is not

known, nor is the epidemiology and ability (particularly of the non-americanus species) to

spread in human populations. Therefore, large-scale studies covering multiple populations of

wild great apes, other NHPs and humans, with utilization of advanced HTS tools combined

with modern morphological characterizations will be required for better understanding of

Necator epidemiology.

Oesophagostomum

Two Oesophagostomum species are commonly found in great apes and humans throughout

Africa–O. stephanostomum [12,50] in great apes and O. bifurcum in humans, especially in

West Africa [61]; other Oesophagostomum species have been recorded, but they are much

rarer [11,13]. We recorded one variant of O. stephanostomum type I shared among great apes

and humans in Dja, corresponding to the variant infecting NHPs and humans in Kibale,

Uganda [12]. This means our finding is the second observation of O. stephanostomum in

humans, providing evidence that Oesophagostomum species have zoonotic potential under

suitable circumstances. Pafčo et al. [4] also reported O. stephanostomum infecting NHPs in

DSPA but not in humans, thus suggesting its ape origin. This is also supported by Mason et al.

[24], who found O. stephanostomum in high prevalence in western lowland gorillas across sev-

eral African localities. We only found the second Oesophagostomum group (Oesophagostomum
stephanostomum type II) in great apes; this group was previously described in western lowland

gorillas in Moukalaba-Doudau National Park (MDNP), Gabon [62] and in Dja FR, Cameroon

(using the same gorilla dataset as was used for this study [24]). We only found the other vari-

ants of undetermined Oesophagostomum sp. in one gorilla. They correspond toOesophagosto-
mum sequences from humans and NHPs in Kibale, Uganda [32], further recorded by Cibot

et al. [12] in olive baboons in other part of Kibale, Uganda. Pafčo et al. [4], found O. bifurcum
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infecting mangabeys in DSPA, but not great apes; we also found no evidence of this species in

great apes or humans in Dja FR, although it is known to commonly infect both humans and

NHPs in Africa [24,61,63].

Other strongylids

Other strongylid nematodes also infect humans and NHPs in Africa, such as the “false hook-

worm” Ternidens deminutus, the cyathostomine worm Murshidia spp. [64], strongylids

belonging to Trichostrongylidae [4,65], and other pulmonary strongylids such as Mammomo-
nogamus [7]. We found several ASVs of Trichostrongylus spp. being harbored by Dja FR great

apes (their strongest BlastN matches were to trichostrongylids parasitic in sheep), and we

found one variant to be shared between great apes and one human at Dja FR, corresponding

to the Trichostrongylus variant from chimpanzees living in degraded forest fragments in

Bulindi, Uganda [66]. Variants of Trichostrongylus were reported by Pafčo et al. [4] and Mason

et al. [24] in lowland gorillas, and adult Trichostrongylus worms were found in necropsied

mountain gorillas in Rwanda [67]. Although several cases of Trichostrongylus infections have

been reported in humans in north-eastern Thailand, Lao People’s Democratic Republic (PDR)

and urban areas of Salvador City, Brazil [68,69], human Trichostrongylus infections are consid-

ered rather incidental. We found one variant of Ternidens deminutus infecting western low-

land gorillas, closely similar to the one from Mona monkeys (Cercopithecus mona) found in

Ghana [64]; this finding also corresponded to Pafčo et al. [4], who found four T. deminutus
variants infecting great apes, being closely related to the same sequence. T. deminutus is con-

sidered to be a neglected parasite of humans [64] and has also been reported in chimpanzees

of Tai, Côte d’ Ivoire [5] and in western lowland gorillas of Loango National Park, Gabon and

in DSPA, CAR by Mason et al. [24], thus raising questions about its origin and zoonotic poten-

tial. Ancylostoma duodenale is considered a human-specific parasite and was found by Pafčo

et al. [4] in humans in DSPA, Central African Republic. Our data show evidence for the first

chimpanzee infection by Ancylostoma sp. ever recorded; however, we could not specifically

assign the variant to a known Ancylostoma species, and it was found in only one chimpanzee

sample, representing 100% of total sample reads. Such homogeneity in chimpanzees is rather

unusual, according to our dataset.

Zoonotic transmission patterns

In Dja FR, humans exhibited lower strongylid alpha diversity than great apes and formed a

separate cluster distinct from great apes, which was caused by dominance of N. americanus
variants in both prevalence and relative abundance (measured as the proportion of sequencing

reads assigned to this species). On the other hand, the strongylid communities of the two great

ape species overlapped and were dominated by variants belonging to N. gorillae, O. stephanos-
tomum, Trichostrongylus type II and unclassified variants. Our results corroborate those from

DSPA, CAR [4], where the composition of strongylid communities was also shaped by the

extent of habitat sharing, which is much more intense among species of great apes than

between humans and great apes. Infective larvae (L3) of monoxenous strongylid nematodes

develop in the external environment [6], thus habitat sharing increases the risk of infection

and transmission between hosts. Thus, in both DSPA and Dja FR, the observed patterns of

strongylid communities did not reflect the phylogenetic relationships of the hosts as they are

more similar between great ape species than between phylogenetically closer humans and

chimpanzees [70]. Interestingly, the composition of human and chimpanzee Entamoeba com-

munities in Dja FR overlapped, while that of gorillas formed a clearly separated cluster, dis-

playing a pattern that reflects the phylogenetic distance between the hosts [52]. Mann et al.
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[71] analyzed gut protists and nematodes of NHPs from various sites using the 18S phyloge-

netic marker. Although 18S markers cannot provide high phylogenetic resolution for strongy-

lid nematodes [17], these results showed that gut eukaryotes (unlike symbiotic gut bacteria)

were only weakly structured by primate phylogeny, similar to the case for gut mycobiome [72].

More studies are needed to understand the drivers shaping various eukaryotic gut communi-

ties of great apes and humans.

In Dja FR, we found no impact of frequency of entering the forest, interaction with great

apes, clothing, hygiene, anthelmintic treatment or dietary habits; however, the implementation

of questionnaires was a pilot activity, and a more detailed and rigorous social science approach

would be needed to explain differences in strongylid infections among Dja FR humans. We

recorded higher numbers of strongylid ASVs shared between humans and great apes in Dja

FR in comparison to DSPA. This is quite surprising as the majority of human respondents in

Dja FR were agriculturists while in DSPA the studied humans were contemporary BaAka

hunter-gatherers and some were even employed as gorilla trackers for the Primate Habituation

Programme [4,73]. Our results may therefore indicate a possible impact of rural people’s life-

styles causing anthropogenic disturbance and subsequent changes in spatial overlap between

apes and humans on strongylid transmission patterns. The northern periphery of the Dja FR

experiences high anthropogenic pressure as the forest is degraded and fragmented, with

intense logging, hunting and farming occurring in the area [37–40]. Conversely, in DSPA, the

studied apes inhabited strictly protected parts, namely the Dzanga sector within Dzanga-

Ndoki National Park in DSPA, CAR [4,16,24,33,74]. The agricultural fields of the northern

periphery of Dja FR attract wildlife, including apes, which can result in crop-raiding, and both

humans and apes can defecate around fields [37,75]. Local people often walk barefoot through

Dja agricultural fields and eat crops straight from the ground without washing them (Table 1).

Together with almost no anthelmintic treatment and poor sanitation and hygiene rules, the

transmission of strongylid parasites can be greatly facilitated as Necator, Oesophagostomum
and Trichostrongylus are parasites transmitted by skin penetration or oral ingestion [6]. People

living in Sub-Saharan Africa have always shared their habitat with NHPs. Our results pertain

to people with agricultural and hunter-gatherer lifestyles and apes inhabiting unprotected and

protected areas, and indicate that ecological, social and even political economic changes result-

ing in greater pressures on wildlife habitats and changes in spatial proximity between wildlife

and humans have created opportunities for intensified soil-transmitted helminth spillover in

both directions.

Future research should include analyses of the strongylid communities of apes from multi-

ple areas of varying conservation status. For example, it is necessary to sample gorillas from

the special reserve in DSPA, multiple-use zone with human activities surrounding the national

park and Bantu people following agricultural lifestyle co-habiting DSPA, to better understand

the drivers of transmission patterns in various host cohorts [76,77]. Importantly, a multi-disci-

plinary and anthropological–historical approach, including social science parameters, should

be implemented to describe the patterns of contact and spatial overlap of humans, apes and

helminths across various localities [29].

Conclusion

We reveal complex strongylid nematode communities of great apes and humans sharing an

unprotected tropical forest habitat in Cameroon. The great apes exhibited a greater diversity of

the strongylid fauna harbouring more amplicon sequencing variants (ASVs) and rare variants

in comparison to humans. Oesophagostomum and Necator were the dominant components of

strongylid communities in all studied hosts, and the driving force of strongylid overlaps.
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Human communities were dominated by Necator americanus; although generally thought to

be human-specific, this parasite was also shared by gorillas. Necator gorillae, originally thought

to be a parasite confined to NHPs, was widespread across all studied host species, including

humans. We observed a second case of O. stephanostomum infection in humans. In contrast to

previous studies conducted in the DSPA, CAR, we recorded more genera and variants being

shared between humans and great apes, which might be due to significant anthropogenic pres-

sure in the periphery of the reserve, which is not protected. Most African apes occur outside

protected areas [78] and thus improving the effectiveness of pathogen monitoring, conserva-

tion efforts and management not only inside, but also outside, protected areas is urgently

warranted.
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Validation: Vladislav Ilı́k, Jakub Kreisinger, David Modrý, Erich Marquard Schwarz, Nikki
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verus) in the Taï NP, Côte d ‘ Ivoire − including characterization of cultured helminth developmental

stages using genetic markers. Freien Universität Berlin. 2014.

6. Anderson RC. Order Strongylida (the bursate nematodes). Nematode parasites of vertebrates, their

development and transmission, second edition. Wallingford: C.A.B. International, Unversity Press;

2000. pp. 41–229.
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52. Vlčková K, Kreisinger J, Pafčo B,Čı́žková D, Tagg N, Hehl AB, et al. Diversity of Entamoeba spp. in Afri-

can great apes and humans: an insight from Illumina MiSeq high-throughput sequencing. Int J Parasitol.

2018; 48:519–530. https://doi.org/10.1016/j.ijpara.2017.11.008 PMID: 29530647

53. Perry GH. Parasites and human evolution. Evol Anthropol Issues, News, Rev. 2014; 23:218–228.

https://doi.org/10.1002/evan.21427 PMID: 25627083

54. Maizels RM. Parasitic helminth infections and the control of human allergic and autoimmune disorders.

Clin Microbiol Infect. 2016; 22:481–486. https://doi.org/10.1016/j.cmi.2016.04.024 PMID: 27172808

55. Barelli C, Pafčo B, Manica M, Rovero F, RosàR, Modrý D, et al. Loss of protozoan and metazoan intes-
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