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Abstract

Researchers have raised the possibility that soil-transmitted helminth (STH) infections

might modify the host’s immune response against other systemic infections. STH infections

can alter the immune response towards type 2 immunity that could then affect the likelihood

and severity of other illnesses. However, the importance of co-infections is not completely

understood, and the impact and direction of their effects vary considerably by infection. This

review synthesizes evidence regarding the relevance of STH co-infections, the potential

mechanisms that explain their effects, and how they might affect control and elimination

efforts. According to the literature reviewed, there are both positive and negative effects

associated with STH infections on other diseases such as malaria, human immunodefi-

ciency virus (HIV), tuberculosis, gestational anemia, pediatric anemia, neglected tropical

diseases (NTDs) like lymphatic filariasis, onchocerciasis, schistosomiasis, and trachoma,

as well as Coronavirus Disease 2019 (COVID-19) and human papillomavirus (HPV). Stud-

ies typically describe how STHs can affect the immune system and promote increased sus-

ceptibility, survival, and persistence of the infection in the host by causing a TH2-dominated

immune response. The co-infection of STH with other diseases has important implications

for the development of treatment and control strategies. Eliminating parasites from a human

host can be more challenging because the TH2-dominated immune response induced by

STH infection can suppress the TH1 immune response required to control other infections,

resulting in an increased pathogen load and more severe disease. Preventive chemother-

apy and treatment are currently the most common approaches used for the control of STH

infections, but these approaches alone may not be adequate to achieve elimination goals.

Based on the conclusions drawn from this review, integrated approaches that combine drug

administration with water, sanitation and hygiene (WASH) interventions, hygiene education,

community engagement, and vaccines are most likely to succeed in interrupting the trans-

mission of STH co-infections. Gaining a better understanding of the behavior and relevance
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of STH co-infections in the context of elimination efforts is an important intermediate step

toward reducing the associated burden of disease.

1.0. Introduction

According to the World Health Organization (WHO), approximately 1.5 billion people are

infected by soil-transmitted helminths (STHs) globally, with the highest prevalence reported

from sub-Saharan Africa, South America, and Asia [1]. Infections are caused by 4 major spe-

cies of nematodes, namely, the roundworm (Ascaris lumbricoides), the whipworm (Trichuris
trichiura), the hookworms (Ancylostoma duodenale and Necator americanus), and the thread-

worm (Strongyloides stercoralis), often collectively referred to as geohelminths. Moderate and

high-intensity infections produce clinical manifestations such as vomiting, diarrhea, abdomi-

nal pain, and weight loss [2]. The effects can be more devastating among children, malnour-

ished, and immune-compromised individuals [2,3]. Particularly among school-going children,

intestinal helminth infections have been reported to have long-term consequences such as

micronutrient deficiency and iron deficiency [3]. Moreover, studies have reported increased

incidences of stunting, cognitive growth retardation, school absenteeism, and poor academic

performance associated with STH infections among children [4,5].

Risk factors for transmission of STH infections are poor sanitation conditions, inadequate

water supply, overcrowding, lower socioeconomic status, living in proximity to animals, and

rural areas more than urban areas [6]. Previous systematic reviews have reported an associa-

tion between hygiene-related behavioral risk factors and the transmission of STH infections.

For example, among schoolchildren, the following meta-analytic estimates have been reported:

poor handwashing (OR 1.55, 95% CI 0.61 to 3.92, p< 0.001), open defecation (OR 5.20, 95%

CI 1.35 to 20.16, p< 0.001), untrimmed fingernails (OR 3.21, 95% CI 1.57 to 6.55, p = 0.001),

and not wearing footwear (OR 29.5, 95% CI 6.59 to 132.55, p< 0.001) [7,8]. Other adverse risk

factors discussed in the literature include nail biting, soil eating, eating raw unwashed vegeta-

bles, swimming in water bodies, and close contact with animals [9–13].

STH parasites can interact with multiple other pathogens to cause co-infections and comorbid-

ities in humans. The causes of co-infection are complex and multifactorial, and the evidence on

the direction and magnitude of concurrent infections is varied [14]. The principal mode of action

underlying co-infections is the ability of STHs to act as immunomodulators, meaning that they

can affect the host’s immune response in ways that facilitate their survival and persistence in the

host [14,15]. The immune response to STHs is characterized by a strong type 2 helper T-cell

(TH2) response, which is associated with the production of cytokines such as interleukin-4 (IL-4),

IL-5, and IL-13 [16,17]. This response is thought to be critical for the survival of STHs in the host,

as it can suppress the type 1 helper T-cell (TH1) response required to control other infections.

This immune response action works by invading cutaneous or mucosal sites and functions as pro-

tective immunity against other pathogens [17]. In addition, this type of immune response is asso-

ciated with increased susceptibility to other infections, particularly viral and bacterial infections,

as it does not provide strong protection against these types of pathogens [14].

On the other hand, some studies have suggested that STH infections may also have a pro-

tective effect against certain infections [2]. For example, a study in Cameroon found that chil-

dren co-infected with STHs and malaria had a lower risk of severe anemia than those infected

with malaria alone, implying that malaria and helminth co-infection was protective against

anemia in that study context [18]. The TH2-dominated immune response induced by STHs

may have a modulatory effect on the host’s immune response to other pathogens, reducing

excessive inflammation and tissue damage [19].
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The co-infection of STH and other infectious diseases has important implications for treat-

ment and control strategies. Elimination of parasites from a human host can become much

more difficult because the TH2-dominated immune response induced by STH infection can

suppress the TH1 immune response required to control other infections, leading to increased

pathogen load and disease severity [20]. Other mechanisms that make co-infections more chal-

lenging to eliminate include alteration of the performance of diagnostic tests, vaccine response,

and drug–drug interactions during treatment [21].

Overall, the interaction between STH infections and other infectious diseases is complex,

and more research is needed to fully understand the underlying mechanisms and the potential

for co-infections to influence disease outcomes. Although there is substantial literature on the

epidemiologic patterns of STH infections and their control, mechanisms, and the significance

associated with co-infections with other diseases are still not well understood. The goal of the

review is to synthesize existing evidence on the impact, etiology, and considerations for

reduced transmission of STH co-infections with other infectious diseases of concern. Increas-

ing the evidence of the relevance and behavior of STH co-infections in the context of elimina-

tion efforts is an intermediate step for reducing the associated burden of disease.

2.0. Methods

We searched PubMed, Scopus, and Google Scholar for studies that describe commonly

reported co-infections of STHs and other diseases of significant public health burden [21]. The

search was conducted in November 2022 and updated in March 2023. The scope of the search

focused on STH infections with malaria and anemia, human immunodeficiency virus (HIV),

tuberculosis, pregnancy-related anemia, pediatric anemia, neglected tropical diseases (NTDs)

(lymphatic filariasis, onchocerciasis, schistosomiasis, trachoma), Coronavirus Disease 2019

(COVID-19), and human papillomavirus (HPV). We used different combinations of the fol-

lowing keywords in our search: “soil-transmitted helminths and malaria co-infections,” “soil-
transmitted helminths and anemia co-infections” (with variations including pregnant women
and children), “soil-transmitted helminths and HIV co-infections,” “soil-transmitted helminths
and tuberculosis co-infections,” “soil-transmitted helminths and COVID-19 co-infections,” “soil-
transmitted helminths and HPV co-infections,” “soil-transmitted helminths and schistosomiasis
co-infections,” “soil-transmitted helminths andW. bancrofti co-infections,” “soil-transmitted hel-
minths and T. solium co-infections,” “soil-transmitted helminths and T. cruzi co-infections,” and
“soil-transmitted helminths and onchocerciasis co-infections.” We also searched reference lists

from the identified studies. The inclusion criteria were predefined as studies providing infor-

mation on STH co-infections with other diseases (including prevalence, host–pathogen inter-

actions, biological mechanisms of action, and control strategies). Original field studies,

reviews, models, laboratory-based studies, viewpoints, and letters to the editor were included.

Studies published in a language other than English and gray literature were excluded from the

review. In addition, articles were excluded if they focused on STH infections alone, rather than

as co-infections alongside other diseases. However, we did not apply exclusion criteria with

regards to the date of publication of the study.

Based on these criteria, 106 relevant studies were identified and used to synthesize informa-

tion on the burden of STH co-infections, relevance, mechanisms of immunoregulatory action,

and implication on control of infections. A flowchart documenting article screening and rea-

sons for exclusion is provided in S1 Fig. As the impact and control of STH co-infections is a

relatively understudied area, we opted not to further screen the identified studies. This is

because a more inclusive approach to the available literature could provide a more detailed

and thorough comprehension of the limited state of knowledge in the field. Table 1 provides
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Table 1. Mechanisms of immunological response and implications for control and elimination of STH co-infections with other diseases.

Coinfecting

disease

Outcome The direction

of

association*

Hypothetical immunological

mechanisms

Implications for control Reference(s)

Malaria and

malaria-

induced

anemia

Ascaris have been associated with

reduced incidence, prevalence, or

parasitemia

Negative I. Immunomodulation generated by

both parasites may indicate a cross-

reactivity between helminths and

plasmodia that could confer

protection to co-infected subjects.

II. Inhibition of dendritic cell

maturation by P. falciparum-infected

erythrocytes.

III. Genetic susceptibility/resistance

of the host.

Single antihelminthic

community therapy programs

targeting Ascaris could prevent

an increase in malaria incidence.

[23,24]

Hookworms have been associated

with increased malaria incidence and

severity.

Positive I. T cells with a regulatory function

may be preferably induced in

helminth-infected patients thereby

leading to a suppression of TH1 cells

and proinflammatory activity.

I. Hookworm-related blood loss may

boost cues attractive for the vector

such as increased respiratory and

cardiac output thus leading to a

greater probability of infective bites.

Significant progress has been

achieved in the development of

vaccines against hookworms,

and ongoing medical studies are

exploring vaccines that focus on

the infectious L3 stage larvae and

adult worms.

[28,85]

Ascaris co-infection neither

exacerbates nor ameliorates the

severity of malarial anemia.

No

association

I. Helminth-induced

immunoregulatory cytokines may

reduce the magnitude of the

proinflammatory immune response

induced by malaria infection, but

there may not be any visible effect

among asymptomatic people because

of a prevailing malaria-induced

immunoregulatory response.

Ensuring adequate access to

diagnosis and treatment of

malaria is paramount in

protecting co-infected people

from the devastating effects of

severe malaria-induced anemia.

[24,25]

HIV Helminth co-infection in HIV-1–

infected individuals may result in

increased plasma levels of HIV-1

RNA.

Helminth infections may reduce the

number of CD4+ cells.

Positive I. Persistent antigenic stimulation

may cause abnormal activation of the

immune system, resulting in

peripheral lymphocytes that are

susceptible to HIV infection.

II. Immunoregulation from helminth

infections may suppress HIV-

1-specific CD4 and CD8 counts and

cytokine production, which may

compromise control of HIV-1

replication.

Deworming with

antihelminthics may slow the

progression of HIV-1. Treating

confirmed helminth infections

in HIV–positive adults showed a

small suppressive effect on mean

plasma viral load.

[30,32–34]

Tuberculosis Increase in tuberculosis morbidity

and mortality.

Positive I. Infection from STH can cause

activation of latent tuberculosis

infection and suppresses both innate

and adaptive immunity.

II. Co-infection with S. stercoralis can

reduce the activation of antigen-

stimulated type 1 and type 17

cytokines, promoting an increase in

systemic type 2 and regulatory

cytokines.

Co-infections are reversible (for

the most part) by antihelminthic

treatment.

[40–43]

Gestational

anemia

The risk of anemia increases with

increasing intensity of either

Trichuris infection or hookworm

infection, and hookworm infection is

associated with a decrease in blood

hemoglobin.

Positive I. During pregnancy, STH infections

can increase systemic inflammation

that subsequently disrupts placental

vasculogenesis and angiogenesis, and

in turn, negatively impact fetal

growth and development.

WHO recommends a single dose

of preventive chemotherapy

administered during the first

trimester in areas with a high

baseline prevalence of helminth

infection. Concerns about safety

and potential side effects should

be considered.

[44–46]

(Continued)
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an overview of the synthesis matrix that was used to organize and synthesize the research find-

ings. Box 1 summarizes the key findings from the review. In Box 2, we highlight a set of 5 cru-

cial papers in the field that demonstrate the evidence regarding the significance of STH co-

infections, the history of their control and elimination, and the future strategies to consider for

their control and elimination.

Table 1. (Continued)

Coinfecting

disease

Outcome The direction

of

association*

Hypothetical immunological

mechanisms

Implications for control Reference(s)

Pediatric

anemia

STH infections are associated with a

higher risk for anemia among

children.

Positive I. STH infections can disrupt the

normal function of the intestinal

epithelium, leading to malabsorption

of iron, chronic blood loss, and

intestinal inflammation.

It is recommended that both

STH detection and hemoglobin

level assessment be conducted

simultaneously in school-aged

children.

[52,53,86]

NTDs Co-infections with lymphatic

filariasis, onchocerciasis,

schistosomiasis, and trachoma

commonly occur in co-endemic

areas.

Inconclusive Not available Innovative and integrated

control programs such as

improving household-level

conditions, access to improved

water and sanitation, intensive

disease management; vector

control, bed nets, and vaccines.

[23,62,63,69,87,88]

COVID-19 COVID-19 may be less severe in

patients with preexisting helminth

infections. STH treatment can

decrease the morbidity,

hospitalization rate, and mortality

associated with COVID-19.

However, helminth-induced

immunosuppression activity could

be disadvantageous by reducing

vaccination efficacy.

Negative I. Through an excessive immune

response and subsequent cytokine

storm, helminth-driven immune

modulation can contribute to the less

severe outcomes of COVID-19.

II. Expansion of Treg cells coupled

with modulation of monocyte/

macrophage trafficking and

activation.

III. Infections can suppress the

immune responses and mitigate

SARS-CoV-2 vaccine efficiency

among people who have been

vaccinated.

Further studies are warranted in

a cohort of SARS-CoV-

2-infected individuals residing

in helminth and air pollution

endemic regions to offer more

clarification.

[72,75,76]

HPV Increased HPV prevalence associated

with STH infections.

Positive I. Excess in detectable levels of HPV

might be explained by a Th2-biased

mucosal immune response secondary

to STH infection.

Consideration of antiviral

treatment for HPV alongside

helminth deworming programs.

[79–81]

* This list includes only predominant associations of co-infections as identified in the literature. This list is not exhaustive.

https://doi.org/10.1371/journal.pntd.0011496.t001

Box 1. Key learning points

1. There is substantial literature on the epidemiologic patterns of STH infections and

their control; however, the significance and the mechanisms associated with co-

infections with other diseases are still not well understood.

2. Immune response triggered by STH infections is characterized by a strong type 2

helper T-cell response.

3. This immune response is thought to be critical for immunomodulation in a

human host, as it can suppress the type 1 helper T-cell response required to control

other infections, thus, increasing the likelihood of co-infection.
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3.0. Co-infection with other diseases: Burden, etiology, and

implications for control

3.1. Malaria and malaria-induced anemia

The body of literature on STH-malaria co-infections can be synthesized into broad trends.

Studies have found a positive association between malaria and STH co-infections. For exam-

ple, in a systematic review conducted on 22,114 children in 13 countries, a pooled estimate

showed a prevalence of plasmodium-helminth co-infections of 17.7% (95% CI 12.7 to 23.2)

[22]. This study also reported that the odds of anemia were higher in children co-infected with

malaria and STH than in children with malaria infection alone (OR 1.20, 95% CI 0.59 to 2.45).

A. lumbricoides have an overall protective effect on malaria (incidence, prevalence, or reduc-

tion of parasitemia) [23,24]. Studies that demonstrate a clear negative interaction between A.

lumbricoides and P. falciparum density have an important implication for treatment; single

antihelminthic community therapy programs targeting Ascaris could prevent an increase in

malaria incidence [23]. However, there is scarce literature on the effect of Ascaris-malaria co-

infections with contradictory results. Some studies have reported increased or no association

with P. falciparum parasitemia or malaria-induced anemia among people infected with A.

Box 2. Five key papers in the field

1. Freeman MC, Akogun O, Belizario V Jr, Brooker SJ, Gyorkos TW, Imtiaz R, et al.

Challenges and opportunities for control and elimination of soil-transmitted hel-

minth infection beyond 2020. PLoS Negl Trop Dis. 2019 Apr 11;13(4):e0007201.

2. Banda GT, Deribe K, Davey G. How can we better integrate the prevention, treat-

ment, control and elimination of neglected tropical diseases with other health

interventions? A systematic review. BMJ Glob Health. 2021 Oct 1;6(10):e006968.

3. Montresor A, Mupfasoni D, Mikhailov A, Mwinzi P, Lucianez A, Jamsheed M,

et al. The global progress of soil-transmitted helminthiases control in 2020 and

World Health Organization targets for 2030. PLoS Negl Trop Dis. 2020 Aug 10;14

(8):e0008505.

4. McArdle AJ, Turkova A, Cunnington AJ. When do co-infections matter? Curr

Opin Infect Dis. 2018 Jun;31(3):209.

5. Vlas SJ de, Stolk WA, Rutte EA le, Hontelez JAC, Bakker R, Blok DJ, et al. Con-

certed Efforts to Control or Eliminate Neglected Tropical Diseases: How Much

Health Will Be Gained? PLoS Negl Trop Dis. 2016 Feb 18;10(2):e0004386.

4. Preventive chemotherapy alone can reduce the prevalence of STH but may

unlikely be adequate for interrupting transmission and achieving elimination

goals.

5. A concerted effort of intervention strategies that incorporate WASH interven-

tions, health education, and vaccines can effectively complement mass

chemotherapy.

PLOS NEGLECTED TROPICAL DISEASES Importance and control of soil-transmitted helminth co-infections

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011496 August 10, 2023 6 / 21

https://doi.org/10.1371/journal.pntd.0011496


lumbricoides [25–27]. Hookworms have been associated with increased malaria incidence and

parasitemia. For example, a systematic review conducted in sub-Saharan Africa reported that

45.1 million (95% CI 43.9 to 46) (25%) school-aged children are at a coincidental risk of hook-

worm and malaria infection risk [28]. Similar studies have also confirmed that malaria para-

sites are more prevalent in hookworm-infected children than in hookworm-free children [29].

Further, P. falciparum and STH infections have long been recognized as major contributors to

anemia as well as other complications of malnutrition, especially in malaria-endemic coun-

tries. A study reported that the odds ratio of having anemia among adults infected with both

malaria and STH was 2.91 (95% CI 1.38 to 6.14) while the odds ratio of the association between

anemia and malaria alone was 1.53 (95% CI 0.97 to 2.42) [29]. One hypothesis that describes

the nature of interactions between malaria and hookworm infections could be linked to the

combination of immune modulation and hookworm-related blood loss, which might increase

cues attractive for the vector such as increased respiratory and cardiac output thus leading to a

greater probability of infective bites [24]. On the other hand, the apparent decrease of malaria

in Ascaris infections can be explained by the regulatory function of T cells preferably induced

in helminth-infected patients thereby leading to a suppression of TH1 cells and proinflamma-

tory activity [24]. Significant progress has been achieved in the development of vaccines

against hookworms, and ongoing medical studies are exploring vaccines that target the infec-

tious larvae and adult hookworms at the L3 stage.

3.2. Human immunodeficiency virus (HIV)

Research examining the prevalence of detectable helminth infections among individuals who

are HIV-1 seropositive has reported a prevalence range of 12.5% to 19.3% [30,31]. There is

insufficient evidence to conclusively determine the potential benefit of helminth eradication in

HIV-1 and helminth co-infected adults. Current evidence suggests that helminth co-infection

in HIV-1–infected individuals may result in increased plasma levels of HIV-1 RNA, and there-

fore, deworming seropositive patients with antihelminthics could possibly slow the progres-

sion of the HIV-1 disease [32,33]. In several studies, treating confirmed helminth infections in

HIV–positive adults showed a small suppressive effect on mean plasma viral load at 6 to 12

weeks following deworming (difference in mean change −0.13 log10 viral RNA, 95% CI 0.26

to 0.00, p = 0.04) [32] and −0.54 log10 viral HIV-1 RNA; p = 0.09) [34], suggesting that

deworming may be an important potential strategy to delay HIV-1 progression. However, the

evidence on the association of CD4 count with persistent helminth infection is varied, with

some studies finding no significant association [30] and others reporting significant increases

[34,35] among HIV–positive individuals treated with antihelminthics. Several factors have

been implicated in facilitating the progression of HIV-1 among individuals with STH infec-

tions. First, persistent antigenic stimulation may cause abnormal activation of the immune sys-

tem, resulting in peripheral lymphocytes that are susceptible to HIV infection [36]. Second,

immunoregulation from helminth infections may suppress HIV-1–specific CD4 and CD8

counts, and cytokine production, which may compromise control of HIV-1 replication [37].

Another hypothesis is that chronic helminth infections are associated with antigen-specific

anergy and hyporesponsiveness that have the potential to down-regulate control of HIV-1 rep-

lication [38]. Finally, immune activation can trigger a cellular response that manifests in sus-

ceptibility to HIV-1 infection [39]. In conclusion, while the evidence is still limited and mixed,

deworming with antihelminthics may be a potential strategy to delay HIV-1 progression in

individuals co-infected with helminths. Further research is needed to establish the effectiveness

of this strategy and to explore the underlying mechanisms of the association between helminth

infections and HIV-1 progression.
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3.3. Tuberculosis

STH co-infection with tuberculosis may cause activation of latent tuberculosis infection and sup-

press both innate and adaptive immunity, leading to an eventual increase in morbidity and mor-

tality [40]. In a cross-sectional study, the prevalence of intestinal parasite co-infections among

tuberculosis patients was reported as 16.1% [41]. A systematic review estimated a higher pooled

prevalence of 33% (95% CI: 23.3, 44.3), with the most common parasites being A. lumbricoides at

10.5% (95% CI: 6.0, 17.5), followed by hookworm at 9.5% (95% CI: 6.10, 14.4), and Strongyloides
sterocoralis at 5.6% (95% CI: 3.3, 9.5) [42]. It is estimated that patients with tuberculosis are twice

as likely to be infested with intestinal helminths and are 2 to 3 times more likely to harbor�1

intestinal parasite compared to people without tuberculosis [42]. However, real-world evidence

that helminth–tuberculosis interactions are clinically important is less convincing [21]. In latent

tuberculosis, co-infection with S. stercoralis can reduce the activation of antigen-stimulated type 1

and type 17 cytokines, and instead, promote an increase in systemic type 2 and regulatory cyto-

kines [21,43]. Note that protection from tuberculosis requires a type 1 helper T cell (Th1) response.

In a study in Ethiopia, among HIV–positive patients who have tuberculosis, administering the

HAART (highly active antiretroviral therapy) might have contributed to the rapid decline in

worm rate seen in the study without direct antihelminthic therapy [41]. In this study, as a result of

tuberculosis treatment, the worm infection rate of HIV and tuberculosis-infected patients declined

from 31% at week 0 to 9% at week 2 of treatment, whereas in nonpatients, the worm infection rate

showed no change [41]. Altogether, literature on STH-tuberculosis infections seems to suggest

that co-infected individuals might be at an increased risk for tuberculosis morbidity and mortality,

particularly for latent tuberculosis cases, but the real-world evidence is less convincing.

3.4. Pregnancy-related anemia

Pregnancy-induced anemia facilitated by STH infections is of particular concern because of its

association with maternal mortality. Previous studies have estimated that gestational anemia is

common in developing countries, affecting approximately 57% of pregnancies [44], and the

prevalence of STH infections during pregnancy range from 11% to 31% [45]. The association

between hookworm infection and anemia in pregnancy is well demonstrated. In a meta-analy-

sis conducted in 2008, a hookworm infection of 1,999 eggs per gram was found to be associ-

ated with a significant decrease in blood hemoglobin [46]. There is limited evidence

demonstrating that, in cases where there is hookworm infection, the risk of anemia increases

[47]. During pregnancy, hookworm infections can increase systemic inflammation that subse-

quently disrupts placental vasculogenesis and angiogenesis, and in turn, negatively impact

fetal growth and development [46]. For treatment, WHO recommends preventive chemother-

apy administered to pregnant women as a single dose of either 400 mg of albendazole or 500

mg of mebendazole during the first trimester in areas with a high baseline prevalence of hel-

minth infection (20%) and anemia (40%) [46]. The effects of preventive chemotherapy have

been studied among pregnant women and have shown a reduction of the risk of maternal ane-

mia in the third trimester (RR 0.94, CI 0.81 to 1.10) [48]. Overall, controlling STH infections

during pregnancy is crucial for maternal and fetal health, and preventive chemotherapy can be

an effective strategy to reduce the burden of gestational anemia in areas with a high prevalence

of STH infections. Future research and programs may focus on further understanding and dis-

pelling potential side effects of routine antihelminthic treatment during pregnancy.

3.5. Pediatric anemia

Studies have reported that STH infections are associated with a higher risk of anemia among

children. For example, in Ethiopia, children infected with intestinal helminths were highly
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likely to have anemia (aOR 8.87, 95% CI 2.28 to 34.58) [49]. A meta-analytical study confirmed

the direction of this effect by reporting a high OR 4.49, 95% CI 1.58 to 12.75, p< 0.05 among

children with multiple STH infections [50]. The study delineated the effect of single STH para-

sites on child anemia and reported the greatest risk of anemia among hookworm-infected chil-

dren with OR 3.3, 95% CI 1.98 to 5.49, p< 0.05, while A. lumbricoides had OR 1.57, 95% CI 1.2

to 2.07, p< 0.05 and T. trichiura with OR 1.66, 95% CI 1.13 to 2.43, p< 0.05 [50]. These results

confirm the hypothesis that among children who are infected with STH, the mean hemoglobin

levels are significantly lower in individuals with polyparasitism (referring to individuals harbor-

ing more than 1 helminth species in their body) [51]. Contrary results have been reported in

Indonesia, with a single-species STH infection being associated with a lower risk of anemia (OR

0.320, 95% CI 0.126 to 0.809, p = 0.016) [52]. One hypothesis for this effect is that STHs can

cause malabsorption of nutrients like iron, by damaging the intestinal wall [53]. The worms can

disrupt the normal function of the intestinal epithelium, leading to the malabsorption of iron

and other nutrients, which can exacerbate iron deficiency and contribute to the development of

malaria. In addition, STHs attach to the intestinal wall and feed on the host’s blood and other

nutrients, leading to chronic blood loss and intestinal inflammation [54]. The evidence suggests

that there is a clear correlation between STH infections and an increased risk of anemia among

children. This relationship is particularly significant in cases where hookworm is present. Based

on these findings, it is recommended that both STH detection and hemoglobin level assessment

be conducted simultaneously among school-aged children.

3.6. Neglected tropical diseases (NTDs)

STHs may be endemic in settings with a high burden of other NTDs, such as schistosomiasis, try-

panosomiasis, onchocerciasis, and others. A framework for morbidity control and the potential

elimination of NTDs was formulated in the London Declaration of 2012, to control lymphatic filari-

asis, onchocerciasis, schistosomiasis, trachoma, and STH infections through controlled chemother-

apy [55]. Co-endemicity of schistosomiasis and STH infections has been reported in many

developing countries, with the prevalence of co-infection among the general population ranging

from 0.4% to 2.2% [56–59]. Hygiene-related risk factors that are associated with STH infections

such as poor sanitation conditions, inadequate access to clean water, overcrowding, handwashing,

shoe wearing, and nail trimming are simultaneously implicated with schistosomiasis infections [60].

STH and schistosomiasis infections can both be controlled through the periodic administration of

preventive chemotherapy with albendazole and praziquantel, respectively [61]. School-aged children

are the most affected risk profile, and therefore, most control programs target this age group. Impor-

tant to note is that the burden of hookworm and Strongyloides infections tend to be higher among

adults, e.g., those who live and work in agricultural settings, thus, treatment strategies that focus on

school children may not be effective for at-risk adults [61]. Innovative variations of control programs

have since been proposed to curb co-infections, such as: community-directed treatment and pediat-

ric formulations of ivermectin for controlling onchocerciasis and STH infections among adults and

children, respectively [62,63]; improving household-level conditions such as access to improved

water and sanitation [60,64,65]; intensive disease management; vector control [66]; bed nets [67];

and vaccines [68,69]. Although challenges remain, control and elimination prospects for STH co-

infections with other NTDs reflect the need for integrated and intimately linked intervention strate-

gies focused on providing improved access to basic services and healthy hygiene behavior.

3.7. COVID-19

Recent studies on the association between COVID-19 and STH infections report mixed

results. Helminth-induced immune regulation is both beneficial and detrimental to COVID-
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19 patients [70]. A study conducted in Ethiopia enrolled a cohort of COVID-19 patients and

followed them progressively to assess the rate of STH infections among them [71]. They

reported an STH infection rate of 33.8% among the patients and that COVID-19 was less

severe in patients with preexisting helminth infections. In addition, COVID-19 patients with

helminth co-infection had a lower probability of developing severe COVID-19 (aOR 0.37, 95%

CI 0.17 to 0.80, p = 0.011) compared with those without helminth co-infection [71]. These

results are consistent with other studies that reported negative associations between COVID-

19 and helminth co-infections in helminth-endemic regions with aOR 0.23, 95% CI 0.17 to

0.30, p< 0.0001 [71–73]. The pathology of COVID-19 is primarily mediated by an excessive

immune response and subsequent cytokine storm, thus helminth-driven immune modulation

will hypothetically contribute to less severe outcomes of COVID-19 [74]. Emerging reports

also stated that helminth co-infections can have a protective effect on COVID-19 patients via

two mechanisms of action. First, STH treatment can decrease the morbidity, hospitalization,

and mortality rates associated with COVID-19 through the expansion of Treg cells coupled

with modulation of monocyte/macrophage trafficking and activation [72,75,76]. Secondly,

researchers have shown that it is likely that people with helminth infections and type 2

immune responses might have a higher risk for both non-IgE-mediated and IgE-mediated

anaphylaxis upon receiving the first vaccine dose and or booster doses, respectively [77]. As

the literature on COVID-19 is evolving, more research should focus on understanding under-

lying immunology and consequences for joint SARS-CoV-2 vaccination and STH treatment

[71]. In summary, research on COVID-19 and simultaneous infections with STH indicates

that using antihelminthic treatment could potentially reduce the severity of COVID-19 and

related complications. However, individuals with helminth infections might have an increased

risk of experiencing anaphylaxis after getting vaccinated for COVID-19. As more studies are

conducted, it is crucial to explore the immunological mechanisms involved and the implica-

tions for administering both the SARS-CoV-2 vaccine and STH treatment concurrently.

3.8. Human papillomavirus (HPV)

Studies have found an association between HPV, the primary cause of cervical cancer, and

STH infection. A recent study conducted among women in Peru revealed that those with STH

infection exhibited a 60% higher prevalence of HPV compared to their counterparts without

STH infection (PR, 1.6; 95% confidence interval, 1.0 to 2.7). The hypothesis is that the excess

in detectable levels of HPV might be explained by a Th2-biased mucosal immune response sec-

ondary to STH infection. This hypothesis is supported experimentally by a study conducted

among women in Latin America, which reported a 1.6-fold increase in HPV prevalence [78].

More specifically, Th2-induced immunity in the female reproductive tract either via type 2

cytokines activating M2 macrophages or the differentiation of CD4+ T cells can boost type 1

immunity and increase susceptibility to HPV as illustrated in Fig 1 [79]. Accordingly,

researchers argue that patients infected with STH should be included in cancer vaccine studies

[78]. Interestingly, exposure to hookworms may have a protective effect on cervical cancer cell

progression [80]. This effect was demonstrated by a laboratory experiment with rodent models

of human hookworm whose findings show the role of altering epithelial–mesenchymal transi-

tion (EMT) marker expression and a selective inhibitory effect on cervical cancer cell migra-

tion [80]. Contradicting findings reported hookworm infection as inducing type 1/type 2

immune signature in the reproductive female tract of women who tested positive for HPV

[81]. These findings highlight STH infection as a significant risk factor for acquiring HPV and

potentially raise the need to consider antiviral treatment alongside helminth deworming

programs.
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Table 1 summarizes STH co-infections with the diseases discussed above, including plausi-

ble biological mechanisms of action and considerations for advancing control and

elimination.

4.0. Rethinking elimination strategies for STH co-infections

Efforts targeting the control of STH co-infections have focused on antihelminthic treatment

through the large-scale administration of albendazole or mebendazole deworming medication.

Most programs have targeted school-aged children through school-based delivery schemes.

This approach is considered cost effective and appropriate because children have the highest

infection rates and can be reached easily through schools. In 2018, a total of 576 million

(59.9%) of the estimated 1.1 billion children requiring deworming medication received treat-

ment and this number is expected to continue rising [89]. Despite its contribution to control-

ling STH morbidity, targeted drug administration alone appears unsuccessful at eliminating

STH infections due to the resurgence of reinfections, limited efficacy of current drugs, gaps in

drug availability, and the risk of antihelminthic drug resistance [64].

Fig 1. STHs employ both immune protection and immune suppression mechanisms to evade the host’s immune system. The induction of type 2

immune response is thought to be a crucial immune protection mechanism, while the suppression of dendritic cell function and T cell activation are key

immune suppression mechanisms. Helminths trigger the Th2 response that activates cells to release anti-inflammatory and regulatory cytokines (e.g., IL-4,

IL-5, IL-9, IL-10, IL-13, TGF-B). These cytokines mediate the activation of effector mechanisms that include the antibody-based immune response and

regulatory T cells, inhibit the proinflammatory Th1 response, and modulate antigen activity [82–84]. Figure developed through www.biorender.com. STH,

soil-transmitted helminth.

https://doi.org/10.1371/journal.pntd.0011496.g001
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Recent research has pointed to the importance of expansion of STH elimination strategies

beyond mass drug administration in schools to additional subpopulations at risk (e.g., in

humanitarian settings, prisons, fishing communities) and through water, sanitation, and

hygiene (WASH) interventions, public education, and community engagement efforts [2,90].

Although current WHO goals emphasize morbidity control, WASH interventions have been

proven to successfully interrupt STH transmission, although the evidence on effect estimates is

mixed [91,92]. A systematic review on the effect of WASH on STH infections reported a pro-

tective effect from using treated water (OR: 0.46, 95% CI 0.36 to 0.60), access to improved sani-

tation (OR: 0.66, 95% CI 0.57 to 0.76), handwashing after defecating (OR: 0.45, 95% CI 0.35 to

0.58), and wearing shoes (OR: 0.30, 95% CI 0.11 to 0.83) [93]. The impact of WASH in effec-

tively eliminating STH can be influenced by coverage, adherence, sustained usage, and quality

of the intervention [94].

Health education programs that focus on teaching best hygiene practices and sanitary behaviors

are often based on the premise that knowledge would be increased and health-promoting behaviors

against increasing STH infections would be executed. These programs have been commonly imple-

mented among school children, particularly because they tend to adapt and change behaviors at a

young age [64]. Successful reduction of STH prevalence has been noted in multiple programs,

implemented as stand-alone strategies or alongside mass drug administration [95–97].

Vaccines are considered an effective long-term solution to control and eliminate STH infec-

tions. Advances have been made in the development of vaccines against STH through animal

models, but there is sparse data regarding understanding vaccine-elicited immune responses

in human hosts [98]. Moreover, STHs have complex genomes and proteomes that make it dif-

ficult to identify antigenic targets for the development of an effective vaccine. Nonetheless,

preclinical vaccine trials have identified potential candidates for hookworm [99], Ascaris
[100,101], and T. trichuriasis [102] vaccines. Vaccine development efforts for STHs have pri-

marily focused on the development of recombinant protein-based vaccines, as well as DNA-

based and live attenuated vaccines. One of the most promising recombinant protein-based

vaccine candidates is Na-GST-1, which is based on the glutathione S-transferase enzyme

found in the intestinal tissue of hookworms [103,104]. Clinical trials have shown that Na-GST-

1 may decrease fecal egg count and clinical pathology associated with hookworms [103].

Another promising recombinant protein-based vaccine candidate is Ancylostoma ceylanicum
metalloprotease-1 (Ace-MTP-1), which has shown efficacy in preclinical studies against hook-

worm infections [104]. Another vaccine candidate is Tm-WAP49 protein, a recombinant pro-

tein vaccine against T. trichiura. A Phase 1 clinical trial found that the vaccine was safe and

induced an immune response in vaccinated individuals [105]. Further studies are ongoing to

assess the vaccine’s efficacy. In addition to recombinant protein-based vaccines, DNA-based

vaccines have also been developed for STHs [106]. For example, a DNA vaccine targeting a

protein found in the excretory-secretory products of hookworms has been shown to elicit pro-

tective immune responses in preclinical studies [107]. Live attenuated vaccines, which are

weakened forms of the parasite, have also been investigated for STHs. One example is the irra-

diated hookworm vaccine, which has shown efficacy in animal models and has been evaluated

in clinical trials [108]. While progress has been made in the development of STH vaccines,

there is currently no approved STH vaccine due to challenges of vaccine efficacy, delivery, and

cost effectiveness. Nonetheless, the development of effective vaccines against STHs remains a

priority in global health efforts to control and eliminate these infections. Future research

should focus on advancing clinical developments of vaccines and evaluating their efficacy and

safety. Furthermore, studies should examine the efficacy of a cocktail vaccine containing mul-

tiple recombinant antigens against STH species and other infections.

Several factors need to be considered for the optimal impact of control strategies:
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1. Examining immunomodulation caused by STH infections: Due to the shared endemicity

of pathogens in many geographical areas, co-infections between STH and other diseases are

likely. An understanding of the immunomodulation mechanism of STH and resulting

antagonistic and synergistic effects can inform intervention efforts. It is prudent to conduct

more research on the mode of action of existing treatment regimen and their pharmacoki-

netic and pharmacodynamic effects in human hosts to fill the knowledge gaps in STH con-

trol [109]. Further, there is a need to identify and estimate the development of drug

resistance mechanisms in STH control.

2. Acknowledging the limitations of preventive chemotherapy in the fight against STH co-

infections: Overall, data shows that preventive chemotherapy can reduce the prevalence of

STH but may unlikely be adequate to achieve the elimination of infections from all at-risk

populations. Questions such as “who should be prioritized for treatment,” “how often

should they be treated,” and “how long should the treatment be,” remain fully unanswered,

particularly in cases of STH co-infections. More needs to be done if treatment is to be inter-

rupted. For example, conclusions drawn from many studies postulate that treatment cover-

age should be wide and encompass all infected cases, the fidelity of the program should be

high, and treatment should be more frequent and sustained over a long period if the trans-

mission is to be interrupted by mass chemotherapy alone [61,110].

3. Optimizing control efforts through integrated interventions: A concerted effort of inter-

vention strategies that incorporate WASH interventions, health education, and vaccines

can effectively complement mass chemotherapy. National control programs can benefit

from setting up coordinating committees to synchronize interventions and optimize over-

lapping areas. Fig 2 shows multiple transmission pathways for STHs and interventions that

can be interrupted by the implementation of targeted, multifaceted interventions.

4. Expanding antihelminthic treatment beyond school children subpopulations: Exposure

to STH is associated with increasing age, peaking among children aged 9 to 12 years [61];

hence, school children are usually the sentinel group for which interventions for antihel-

minthic treatments are implemented [64]. Differentially high prevalence has been reported

among pregnant women, the elderly population, farmers, fishermen, and other at-risk pop-

ulations, for whom control interventions are uncommon [64]. Besides, the burdens of

hookworm and Strongyloides infection tend to be higher in adults than among children. To

maximize health benefits to communities facing the high burden of co-infection, care must

be taken to diversify control programs to reach all at-risk populations beyond school-aged

children. Future research and intervention programs should target other age groups.

The main limitation of this review is that a limited number of infections that occur along-

side STH infections were reviewed. Only infections that are commonly reported in the litera-

ture were discussed. This potentially contributes to the underreporting of rare co-infections

between STH and other pathogens. More studies should exhaustively investigate understudied

STH co-infections and their implications on control and elimination. Moreover, there is a

need for more observational studies and meta-analytical studies to estimate the prevalence of

STH co-infections among different populations.

5.0. Conclusions

Even though evidence of the effectiveness of existing STH elimination strategies is fairly

understood, co-infections and comorbidities with other diseases pose a bigger challenge for
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elimination. This study highlights the high burden of disease caused by STH co-infections,

underscoring the need for a more refined and coordinated delivery of interventions to achieve

the WHO target of eliminating STH infections in highly endemic countries. A crucial aspect

in the control of these co-infections is the ability of STH to act as immunomodulators on the

human host’s immune system, resulting in synergistic or antagonistic effects that modify the

severity of other diseases. Knowledge of the mechanisms of STH co-infections and immune

response will help to design effective control strategies. Preventive chemotherapy and treat-

ment are currently the most common approaches used for the control of STH infections, but

these approaches alone may not adequately achieve elimination goals. Besides, there is little

concerted effort in using antihelminthic treatment to strategically target co-infections with

other diseases. Approaches that combine drug administration with WASH interventions,

hygiene education, and community engagement have the greatest chance of interrupting the

transmission of STH co-infections. Although progress has been made on nonclinical trials of

vaccines against STH, more research should be done to understand their effectiveness in

humans. Findings can inform policy and practitioner efforts toward controlling co-infections

of STH and other diseases.
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Fig 2. Integrated strategies for reducing the transmission of STH infections. Created by authors. STH, soil-transmitted helminth.
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